Citation: | Zhipeng Xie, Chuandong Xue, Tiannan Yang, Wei Wang, Di Xin. Geochemistry and Detrital Zircon U-Pb Geochronology of Lower Carboniferous Clastic Sedimentary Rocks in the Changning-Menglian Belt: Implications for the Evolution of the Paleo-Tethys Ocean. Journal of Earth Science, 2025, 36(3): 910-929. doi: 10.1007/s12583-022-1659-4 |
Lower Carboniferous clastic sedimentary rocks (i.e., the Nanduan Formation) in the Changning-Menglian belt of the southeastern Tibetan Plateau may provide new insights into the tectonic evolution of the Paleo-Tethys Ocean. This paper presents new petrographic, geochemical, and detrital zircon U-Pb age data to constrain the provenance and depositional setting of these rocks. Sandstone samples of the Nanduan Formation are all quartz arenites (Q92–99F1–7L0–2) with high SiO2 contents (85.1 wt.%–95.2 wt.%; average = 90.9 wt.%), indicating high compositional maturity. They exhibit fractionated rare earth element (REE) patterns, with light REE enrichment [(La/Yb)N = 6.48-12.1] and negative Eu anomalies (Eu/Eu* = 0.53–0.74), and marked negative Sr-Cs-V-Cr-Ni anomalies in upper continental crust-normalised multi-element diagrams. The geochemical features and heavy mineral assemblages suggest that sediments were mainly derived from ancient sedimentary rocks in cratonic interiors or stable continental areas, and were probably deposited in a passive continental margin setting. Detrital zircon U-Pb dating (
Acharyya, S. K., 1998. Break-up of the Greater Indo-Australian Continent and Accretion of Blocks Framing South and East Asia. Journal of Geodynamics, 26(1): 149-170. https://doi.org/10.1016/s0264-3707(98)00012-x |
Agematsu, S., Sashida, K., 2009. Ordovician Sea-Level Change and Paleogeography of the Sibumasu Terrane Based on the Conodont Biostratigraphy. Paleontological Research, 13(4): 327-336. https://doi.org/10.2517/1342-8144-13.4.327 |
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x |
Bhatia, M. R., 1985. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 45(1/2): 97-113. https://doi.org/10.1016/0037-0738(85)90025-9 |
Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292 |
Bhowmik, S. K., Wilde, S. A., Bhandari, A., et al., 2012. Growth of the Greater Indian Landmass and Its Assembly in Rodinia: Geochronological Evidence from the Central Indian Tectonic Zone. Gondwana Research, 22(1): 54-72. https://doi.org/10.1016/j.gr.2011.09.008 |
Boger, S. D., Carson, C. J., Wilson, C. J. L., et al., 2000. Neoproterozoic Deformation in the Radok Lake Region of the Northern Prince Charles Mountains, East Antarctica; Evidence for a Single Protracted Orogenic Event. Precambrian Research, 104(1/2): 1-24. https://doi.org/10.1016/s0301-9268(00)00079-6 |
Bora, S., Kumar, S., Yi, K., et al., 2013. Geochemistry and U-Pb SHRIMP Zircon Chronology of Granitoids and Microgranular Enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central India Tectonic Zone, India. Journal of Asian Earth Sciences, 70: 99-114. https://doi.org/10.1016/j.jseaes.2013.03.006 |
Campos, A., N. O., Roser, B. P., 2007. Geochemistry of Black Shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source Weathering, Provenance, and Tectonic Setting. Journal of South American Earth Sciences, 23(4): 271-289. https://doi.org/10.1016/j.jsames.2007.02.003 |
Cawood, P. A., Buchan, C., 2007. Linking Accretionary Orogenesis with Supercontinent Assembly. Earth-Science Reviews, 82(3/4): 217-256. https://doi.org/10.1016/j.earscirev.2007.03.003 |
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875-878. https://doi.org/10.1130/g32945.1 |
Cawood, P. A., Johnson, M. R. W., Nemchin, A. A., 2007. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana: Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 255(1/2): 70-84. https://doi.org/10.1016/j.epsl.2006.12.006 |
Chen, M., Huang, Z. L., Luo, T. Y., et al., 2010. SHRIMP Dating and Its Geological Significance of Zircon in Volcanic from Laochang Large Silver-Lead-Zinc Deposit in Western Yunnan Province, China. Acta Mineralogica Sinica, 30(4): 456-462. https://doi.org/10.16461/j.cnki.1000-4734.2010.04.003 (in Chinese with English Abstract) |
Cong, F., Wu, F. Y., Li, W. C., et al., 2020. Origin of the Triassic Lincang Granites in the Southeastern Tibetan Plateau: Crystallization from Crystal Mush. Lithos, 360/361: 105452. https://doi.org/10.1016/j.lithos.2020.105452 |
Cui, C. L., Zeng, Y. F., Huang, Z. X., et al., 1999. The Sedimentary Environment and Origin Analysis of Nanduan Formation in Changning-Menglian Belt, Western Yunnan, China. Chinese Journal of Geology (Scientia Geologica Sinica), 34(1): 40-48 (in Chinese with English Abstract) |
Deer, W. A., Howie, R. A., Zussman, J., 1992. An Introduction to the Rock-Forming Minerals. Longman Group Limited, Hong Kong. 696 |
Dickinson, W. R., Valloni, R., 1980. Plate Settings and Provenance of Sands in Modern Ocean Basins. Geology, 8(2): 82-86. https://doi.org/10.1130/0091-7613(1980)8<82:psapos>2.0.co;2 doi: 10.1130/0091-7613(1980)8<82:psapos>2.0.co;2 |
Dickinson, W. R., 1985. Interpreting Provenance Relations from Detrital Modes of Sandstones. In: Zuffa, G. G., ed., Provenance of Arenites. Springer Netherlands, Dordrecht. 333-361. https://doi.org/10.1007/978-94-017-2809-6_15 |
Dong, C. Y., Li, C., Wan, Y. S., et al., 2011. Detrital Zircon Age Model of Ordovician Wenquan Quartzite South of Lungmuco-Shuanghu Suture in the Qiangtang Area, Tibet: Constraint on Tectonic Affinity and Source Regions. Science China Earth Sciences, 54(7): 1034-1042. https://doi.org/10.1007/s11430-010-4166-x |
Dong, M. L., Dong, G. C., Mo, X. X., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes of Granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic Evolution along the Gondwana Margin. Lithos, 179: 36-47. https://doi.org/10.1016/j.lithos.2013.05.011 |
Duan, X. D., Li, J., Zeng, W. T., et al., 2006. The Discovery of Ganlongtang Tectonic Melange in the Middle Section of Changning-Menglian Zone. Yunnan Geology, 25(1): 53-62 (in Chinese with English Abstract) |
Fan, W. M., Wang, Y. J., Zhang, Y. H., et al., 2015. Paleotethyan Subduction Process Revealed from Triassic Blueschists in the Lancang Tectonic Belt of Southwest China. Tectonophysics, 662: 95-108. https://doi.org/10.1016/j.tecto.2014.12.021 |
Fang, Z. J., Wang, Y. J., Zhou, Z. C., et al., 2000. A Discussion on Two Problems Concerning the Stratigraphy of the West Zone in the Changning-Menglian Belt, Western Yunnan, China. Journal of Stratigraphy, 24(3): 182-189 (in Chinese with English Abstract) |
Feng, Q. L., Liu, B. P., Ye, M., et al., 1996. Age and Tectonic Setting of the Nanduan Formation and the Laba Group in Southwestern Yunnan. Journal of Stratigraphy, 20(3): 183-189. https://doi.org/10.19839/j.cnki.dcxzz.1996.03.004 (in Chinese with English Abstract) |
Fitzsimons, I. C. W., 2000. Grenville-Age Basement Provinces in East Antarctica: Evidence for Three Separate Collisional Orogens. Geology, 28(10): 879-882. https://doi.org/10.1130/0091-7613(2000)28<879:gbpiea>2.0.co;2 doi: 10.1130/0091-7613(2000)28<879:gbpiea>2.0.co;2 |
Floyd, P. A., Leveridge, B. E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144(4): 531-542. https://doi.org/10.1144/gsjgs.144.4.0531 |
Garcia, D., Fonteilles, M., Moutte, J., 1994. Sedimentary Fractionations between Al, Ti, and Zr and the Genesis of Strongly Peraluminous Granites. The Journal of Geology, 102(4): 411-422. https://doi.org/10.1086/629683 |
Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011 |
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 |
Hu, P. Y., Li, C., Wu, Y. W., et al., 2014. Opening of the Longmu Co-Shuanghu-Lancangjiang Ocean: Constraints from Plagiogranites. Chinese Science Bulletin, 59(25): 3188-3199. https://doi.org/10.1007/s11434-014-0434-z |
Hu, P. Y., Zhai, Q. G., Jahn, B. M., et al., 2015. Early Ordovician Granites from the South Qiangtang Terrane, Northern Tibet: Implications for the Early Paleozoic Tectonic Evolution along the Gondwanan Proto-Tethyan Margin. Lithos, 220: 318-338. https://doi.org/10.1016/j.lithos.2014.12.020 |
Humphries, D. W., 1992. The Preparation of Thin Sections of Rocks, Minerals and Ceramics. Royal Microscopical Society, Oxford Science Publications, Microscopy Handbooks, 24: 83 |
Jian, P., Liu, D. Y., Kröner, A., et al., 2009a. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅰ): Geochemistry of Ophiolites, Arc/back-Arc Assemblages and Within-Plate Igneous Rocks. Lithos, 113(3/4): 748-766. https://doi.org/10.1016/j.lithos.2009.04.004 |
Jian, P., Liu, D. Y., Kröner, A., et al., 2009b. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ): Insights from Zircon Ages of Ophiolites, Arc/back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3/4): 767-784. https://doi.org/10.1016/j.lithos.2009.04.006 |
Leier, A. L., Kapp, P., Gehrels, G. E., et al., 2007. Detrital Zircon Geochronology of Carboniferous-Cretaceous Strata in the Lhasa Terrane, Southern Tibet. Basin Research, 19(3): 361-378. https://doi.org/10.1111/j.1365-2117.2007.00330.x |
Li, C., 2008. A Review on 20 Years' Study of the Longmu Co-Shuanghu-Lancang River Suture Zone in Qinghai-Xizang (Tibet) Plateau. Geological Review, 54(1): 105-119. https://doi.org/10.16509/j.georeview.2008.01.005 (in Chinese with English Abstract) |
Li, D. P., Chen, Y. L., Hou, K. J., et al., 2015. Detrital Zircon Record of Paleozoic and Mesozoic Meta-Sedimentary Strata in the Eastern Part of the Baoshan Block: Implications of Their Provenance and the Tectonic Evolution of the Southeastern Margin of the Tibetan Plateau. Lithos, 227: 194-204. https://doi.org/10.1016/j.lithos.2015.04.009 |
Li, G. J., Deng, J., Wang, Q. F., et al., 2015. Metallogenic Model for the Laochang Pb-Zn-Ag-Cu Volcanogenic Massive Sulfide Deposit Related to a Paleo-Tethys OIB-Like Volcanic Center, SW China. Ore Geology Reviews, 70: 578-594. https://doi.org/10.1016/j.oregeorev.2015.01.012 |
Li, G. Z., Li, C. S., Ripley, E. M., et al., 2012. Geochronology, Petrology and Geochemistry of the Nanlinshan and Banpo Mafic-Ultramafic Intrusions: Implications for Subduction Initiation in the Eastern Paleo-Tethys. Contributions to Mineralogy and Petrology, 164(5): 773-788. https://doi.org/10.1007/s00410-012-0770-4 |
Li, S. Z., Zhao, S. J., Yu, S., et al., 2016. Proto-Tehtys Ocean in East Asia (Ⅱ): Affinity and Assmbly of Early Paleozoic Micro-Continental Blocks. Acta Petrologica Sinica, 32(9): 2628-2644 (in Chinese with English Abstract) |
Liu, B. P., Feng, Q. L., Fang, N. Q., 1991. Tectonic Evolution of the Palaeo-Tethys in Changning-Menglian Belt and Adjacent Regions, Western Yunnan. Journal of China University of Geosciences, 2(1): 18-28 |
Liu, B. P., Feng, Q. L., Fang, N. Q., et al., 1993. Tectonic Evolution of Palaeo-Tethys Poly-Island-Ocean in Changning-Menglian and Lancangjiang Belts, Southwestern Yunnan, China. Earth Science, 18(5): 529-539, 671 (in Chinese with English Abstract) |
Liu, G. C., Sun, Z. B., Zeng, W. T., et al., 2017. Redefinition and Geological Significance of Wanhe Ophiolitic Mélange from Menku Area, Shuangjiang County, Western Yunnnan Province. Acta Petrologica et Mineralogica, 36: 1-12 (in Chinese with English Abstract) |
Long, S. A., McQuarrie, N., 2010. Placing Limits on Channel Flow: Insights from the Bhutan Himalaya. Earth and Planetary Science Letters, 290(3/4): 375-390. https://doi.org/10.1016/j.epsl.2009.12.033 |
Ludwig, K. R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Special Publication No. 4. Berkeley Geochronology Center, Berkeley |
Mange, M. A., Maurer, H. F. W., 1992. Heavy Minerals in Color. Chapman and Hall, London |
Marsaglia, K. M., Ingersoll, R. V., 1992. Compositional Trends in Arc-Related, Deep-Marine Sand and Sandstone: A Reassessment of Magmatic-Arc Provenance. GSA Bulletin, 104(12): 1637-1649. https://doi.org/10.1130/0016-7606(1992)104<1637:ctiard>2.3.co;2 |
McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In: Johnsson, M. J., Basu, A., eds., Processes Controlling the Composition of Clastic Sediments. Geological Society of America: 21-40. |
McQuarrie, N., Robinson, D., Long, S. A., et al., 2008. Preliminary Stratigraphic and Structural Architecture of Bhutan: Implications for the along Strike Architecture of the Himalayan System. Earth and Planetary Science Letters, 272(1/2): 105-117. https://doi.org/10.1016/j.epsl.2008.04.030 |
Metcalfe, I., 2002. Permian Tectonic Framework and Palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551-566. https://doi.org/10.1016/s1367-9120(02)00022-6 |
Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020 |
Myrow, P. M., Hughes, N. C., Goodge, J. W., et al., 2010. Extraordinary Transport and Mixing of Sediment across Himalayan Central Gondwana during the Cambrian-Ordovician. GSA Bulletin, 122(9/10): 1660-1670. https://doi.org/10.1130/b30123.1 |
Myrow, P. M., Hughes, N. C., Searle, M. P., et al., 2009. Stratigraphic Correlation of Cambrian-Ordovician Deposits along the Himalaya: Implications for the Age and Nature of Rocks in the Mount Everest Region. GSA Bulletin, 121(3/4): 323-332. https://doi.org/10.1130/b26384.1 |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 |
Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3 |
Nie, X. M., Feng, Q. L., Metcalfe, I., et al., 2016. Discovery of a Late Devonian Magmatic Arc in the Southern Lancangjiang Zone, Western Yunnan: Geochemical and Zircon U-Pb Geochronological Constraints on the Evolution of Tethyan Ocean Basins in SW China. Journal of Asian Earth Sciences, 118: 32-50. https://doi.org/10.1016/j.jseaes.2015.12.026 |
Nie, X. M., Feng, Q. L., Qian, X., et al., 2015. Magmatic Record of Prototethyan Evolution in SW Yunnan, China: Geochemical, Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence from the Huimin Metavolcanic Rocks in the Southern Lancangjiang Zone. Gondwana Research, 28(2): 757-768. https://doi.org/10.1016/j.gr.2014.05.011 |
Peng, T. P., Wang, Y. J., Zhao, G. C., et al., 2008. Arc-Like Volcanic Rocks from the Southern Lancangjiang Zone, SW China: Geochronological and Geochemical Constraints on Their Petrogenesis and Tectonic Implications. Lithos, 102(1/2): 358-373. https://doi.org/10.1016/j.lithos.2007.08.012 |
Peng, T. P., Wilde, S. A., Wang, Y. J., et al., 2013. Mid-Triassic Felsic Igneous Rocks from the Southern Lancangjiang Zone, SW China: Petrogenesis and Implications for the Evolution of Paleo-Tethys. Lithos, 168: 15-32. https://doi.org/10.1016/j.lithos.2013.01.015 |
Pourmand, A., Dauphas, N., Ireland, T. J., 2012. A Novel Extraction Chromatography and MC-ICP-MS Technique for Rapid Analysis of REE, Sc and Y: Revising CI-Chondrite and Post-Archean Australian Shale (PAAS) Abundances. Chemical Geology, 291: 38-54. |
Roser, B. P., Ishiga, H., Lee, H. K., 2000. Geochemistry and Provenance of Cretaceous Sediments from the Eusing Block, Gyeongsang Basin, Korea. Memoirs of the Geological Society of Japan, 57: 155-170 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. 1-64. |
Selvaraj, K., Chen, C. A., 2006. Moderate Chemical Weathering of Subtropical Taiwan: Constraints from Solid-Phase Geochemistry of Sediments and Sedimentary Rocks. Journal of Geology, 114(1): 101-116. https://doi.org/10.1086/498102 |
Shabeer, K. Â. P., Satish-Kumar, M., Armstrong, R., et al., 2005. Constraints on the Timing of Pan-African Granulite-Facies Metamorphism in the Kerala Khondalite Belt of Southern India: SHRIMP Mineral Ages and Nd Isotopic Systematics. Journal of Geology, 113(1): 95-106. https://doi.org/10.1086/425971 |
Singh, P., 2010. Geochemistry and Provenance of Stream Sediments of the Ganga River and Its Major Tributaries in the Himalayan Region, India. Chemical Geology, 269(3/4): 220-236. https://doi.org/10.1016/j.chemgeo.2009.09.020 |
Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Géoscience, 340(2/3): 166-179. https://doi.org/10.1016/j.crte.2007.09.008 |
Stampfli, G. M., Borel, G. D., 2002. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 196(1/2): 17-33. https://doi.org/10.1016/S0012-821X(01)00588-X |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
Sun, Z. B., Li, J., Zhou, K., et al., 2018. Zircon U-Pb Age and Geological Significance of Retrograded Eclogites from Mengku Area in Western Yunnan Province. Geological Bulletin of China, 37(11): 2032-2043 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford. 312 |
Ueno, K., 2003. The Permian Fusulinoidean Faunas of the Sibumasu and Baoshan Blocks: Their Implications for the Paleogeographic and Paleoclimatologic Reconstruction of the Cimmerian Continent. Palaeogeography, Palaeoclimatology, Palaeoecology, 193(1): 1-24. https://doi.org/10.1016/s0031-0182(02)00708-3 |
Wang, B. D., Wang, L. Q., Pan, G. T., et al., 2013. U-Pb Zircon Dating of Early Paleozoic Gabbro from the Nantinghe Ophiolite in the Changning-Menglian Suture Zone and Its Geological Implication. Chinese Science Bulletin, 58(8): 920-930. https://doi.org/10.1007/s11434-012-5481-8 |
Wang, C., Liang, X. Q., Foster, D. A., et al., 2016. Detrital Zircon U-Pb Geochronology, Lu-Hf Isotopes and REE Geochemistry Constrains on the Provenance and Tectonic Setting of Indochina Block in the Paleozoic. Tectonophysics, 677: 125-134. https://doi.org/10.1016/j.tecto.2016.04.008 |
Wang, H. N., Liu, F. L., Li, J., et al., 2019. Petrology, Geochemistry and P-T-t Path of Lawsonite-Bearing Retrograded Eclogites in the Changning-Menglian Orogenic Belt, Southeast Tibetan Plateau. Journal of Metamorphic Geology, 37(4): 439-478. https://doi.org/10.1111/jmg.12462 |
Wang, H. N., Liu, F. L., Santosh, M., et al., 2020. Rapid Cold Slab Subduction of the Paleo-Tethys: Insights from Lawsonite-Bearing Blueschist in the Changning-Menglian Orogenic Belt, Southeastern Tibetan Plateau. Gondwana Research, 85: 189-223. https://doi.org/10.1016/j.gr.2020.05.006 |
Wang, Q. F., Deng, J., Li, C. S., et al., 2014. The Boundary between the Simao and Yangtze Blocks and Their Locations in Gondwana and Rodinia: Constraints from Detrital and Inherited Zircons. Gondwana Research, 26(2): 438-448. https://doi.org/10.1016/j.gr.2013.10.002 |
Wang, Y. J., Zhang, F. F., Fan, W. M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010tc002750 |
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x |
Wu, H. R., Boulter, C. A., Ke, B. J., et al., 1995. The Changning-Menglian Suture Zone: A Segment of the Major Cathaysian-Gondwana Divide in Southeast Asia. Tectonophysics, 242(3/4): 267-280. https://doi.org/10.1016/0040-1951(94)00210-z |
Wu, L., Jia, D., Li, H. B., et al., 2010. Provenance of Detrital Zircons from the Late Neoproterozoic to Ordovician Sandstones of South China: Implications for Its Continental Affinity. Geological Magazine, 147(6): 974-980. https://doi.org/10.1017/s0016756810000725 |
Xia, X. P., Nie, X. S., Lai, C. K., et al., 2016. Where Was the Ailaoshan Ocean and when did it Open: A Perspective Based on Detrital Zircon U-Pb Age and Hf Isotope Evidence. Gondwana Research, 36: 488-502. https://doi.org/10.1016/j.gr.2015.08.006 |
Xie, Z. P., Wu, X. L., Wang, T. F., et al., 2022. Petrogenesis of Early Carboniferous Ultramafic-Mafic Volcanic Rocks in the Southern Changning-Menglian Belt, Southeastern Tibetan Plateau: Implications for the Evolution of the Paleo-Tethyan Ocean. Acta Geologica Sinica-English Edition, 96(3): 858-874. https://doi.org/10.1111/1755-6724.14780 |
Xie, Z. P., Xue, C. D., Yang, T. N., et al., 2020. Petrogenesis and Geodynamic Implications of Early Cretaceous Highly Fractionated Leucogranites in the Northern Lanping-Simao Terrane, Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 197: 104340. https://doi.org/10.1016/j.jseaes.2020.104340 |
Xing, X. W., Wang, Y. J., Cawood, P. A., et al., 2017. Early Paleozoic Accretionary Orogenesis along Northern Margin of Gondwana Constrained by High-Mg Metaigneous Rocks, SW Yunnan. International Journal of Earth Sciences, 106(5): 1469-1486. https://doi.org/10.1007/s00531-015-1282-z |
Xu, Y., Cawood, P. A., Du, Y., et al., 2014. Early Paleozoic Orogenesis along Gondwana's Northern Margin Constrained by Provenance Data from South China. Tectonophysics, 636: 40-51. https://doi.org/10.1016/j.tecto.2014.08.022 |
Yan, Z., Aitchison, J. C., Fu, C. L., et al., 2016. Devonian Sedimentation in the Xiqingshan Mountains: Implications for Paleogeographic Reconstructions of the SW Qinling Orogen. Sedimentary Geology, 343: 1-17. https://doi.org/10.1016/j.sedgeo.2016.07.009 |
Yan, Z., Wang, Z. Q., Yan, Q. R., et al., 2012. Geochemical Constraints on the Provenance and Depositional Setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the Tectonic Evolution of the Qinling Orogenic Belt. Journal of Sedimentary Research, 82(1): 9-20. https://doi.org/10.2110/jsr.2012.4 |
Yan, Z., Wang, Z. Q., Wang, T., et al., 2006. Provenance and Tectonic Setting of Clastic Deposits in the Devonian Xicheng Basin, Qinling Orogen, Central China. Journal of Sedimentary Research, 76(3): 557-574. https://doi.org/10.2110/jsr.2006.046 |
Yang, T. N., Ding, Y., Zhang, H. R., et al., 2014. Two-Phase Subduction and Subsequent Collision Defines the Paleotethyan Tectonics of the Southeastern Tibetan Plateau: Evidence from Zircon U-Pb Dating, Geochemistry, and Structural Geology of the Sanjiang Orogenic Belt, Southwest China. Geological Society of America Bulletin, 126(11/12): 1654-1682. https://doi.org/10.1130/b30921.1 |
Yang, X. J., Jia, X. C., Xiong, C. L., et al., 2012. LA-ICP-MS Zircon U-Pb Age of Metamorphic Basic Volcanic Rock in Gongyanghe Group of Southern Gaoligong Mountain, Western Yunnan Province, and Its Geological Significance. Geological Bulletin of China, 31(S1): 264-276 (in Chinese with English Abstract) |
Yao, J. L., Shu, L. S., Santosh, M., 2011. Detrital Zircon U-Pb Geochronology, Hf-Isotopes and Geochemistry-New Clues for the Precambrian Crustal Evolution of Cathaysia Block, South China. Gondwana Research, 20(2/3): 553-567. https://doi.org/10.1016/j.gr.2011.01.005 |
Ye, L., Gao, W., Cheng, Z. T., et al., 2010. LA-ICP-MS Zircon U-Pb Geochronology and Petrology of the Muchang Alkali Granite, Zhenkang County, Western Yunnan Province, China. Acta Geologica Sinica-English Edition, 84(6): 1488-1499. https://doi.org/10.1111/j.1755-6724.2010.00343.x |
Yin, A., Dubey, C. S., Kelty, T. K., et al., 2010. Geologic Correlation of the Himalayan Orogen and Indian Craton: Part 2. Structural Geology, Geochronology, and Tectonic Evolution of the Eastern Himalaya. Geological Society of America Bulletin, 122(3/4): 360-395. https://doi.org/10.1130/b26461.1 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908X.2004.tb00755.x |
Yunnan Bureau Geological Mineral Resource, (YBGMR), 1990. Regional Geology of Yunnan Province. Geological Publishing House, Beijing. 1-729 (in Chinese) |
Yunnan Bureau Geological Mineral Resources (YBGMR), 2000. 1: 50 000 Manxin Geologic Map and Explanatory Notes Geological Publishing House, Beijing (in Chinese) |
Zeng, W. T., Liu, G. C., Feng, Q. L., et al., 2017. The Relationship between Lincang Block and Provenance of Nanduan Formation: Evidence of Detrital Zircon U-Pb Dating from Metasandstone of Devonian-Carboniferous Nanduan Formation. Geological Bulletin of China, 36(7): 1175-1187 (in Chinese with English Abstract) |
Zhai, Q. G., Chung, S. L., Tang, Y., et al., 2019. Late Carboniferous Ophiolites from the Southern Lancangjiang Belt, SW China: Implication for the Arc-Back-Arc System in the Eastern Paleo-Tethys. Lithos, 344: 134-146. https://doi.org/10.1016/j.lithos.2019.06.020 |
Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2016. Oldest Paleo-Tethyan Ophiolitic Mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128(3/4): 355-373. https://doi.org/10.1130/b31296.1 |
Zhai, Q. G., Wang, J., Li, C., et al., 2010. SHRIMP U-Pb Dating and Hf Isotopic Analyses of Middle Ordovician Meta-Cumulate Gabbro in Central Qiangtang, Northern Tibetan Plateau. Science China Earth Sciences, 53(5): 657-664. https://doi.org/10.1007/s11430-010-0063-6 |
Zhang, Z. M., Dong, X., Santosh, M., et al., 2012. Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet: Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 21(1): 123-137. https://doi.org/10.1016/j.gr.2011.02.002 |
Zhao, T. Y., Feng, Q. L., Metcalfe, I., et al., 2017. Detrital Zircon U-Pb-Hf Isotopes and Provenance of Late Neoproterozoic and Early Paleozoic Sediments of the Simao and Baoshan Blocks, SW China: Implications for Proto-Tethys and Paleo-Tethys Evolution and Gondwana Reconstruction. Gondwana Research, 51: 193-208. https://doi.org/10.1016/j.gr.2017.07.012 |
Zheng, J. B., Jin, X. C., Huang, H., et al., 2019. Sedimentology and Detrital Zircon Geochronology of the Nanduan Formation (Carboniferous) of the Changning-Menglian Belt: Indications for the Evolution of Paleo-Tethys in Western Yunnan, China. International Journal of Earth Sciences, 108(3): 1029-1048. https://doi.org/10.1007/s00531-019-01694-x |
Zheng, J. B., Zong, P., Huang, H., et al., 2020. Early Carboniferous Ammonoids from the Nanduan Formation in the Changning-Menglian Belt, Western Yunnan, China. Palaeoworld, 29(1): 88-95. https://doi.org/10.1016/j.palwor.2019.05.014 |
Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. Lhasa Terrane in Southern Tibet Came from Australia. Geology, 39(8): 727-730. https://doi.org/10.1130/g31895.1 |
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 |