Citation: | Xu Zhang, Bowen Song, Tinglu Yang, Yafei Hou, Yibo Yang, Keke Ai, Jiaxuan Wang, Kexin Zhang. Source-to-Sink Relationships between the Qaidam Basin and Its Surrounding Mountain Ranges: New Insights from Detrital Zircon U-Pb Ages in Modern River Sediments. Journal of Earth Science, 2025, 36(3): 930-946. doi: 10.1007/s12583-022-1666-5 |
The Cenozoic source-to-sink history of the Qaidam Basin is crucial for understanding of the basin-filling architecture, mountain-building processes and even the dynamics of the Tibetan Plateau growth. However, the provenance history of Cenozoic strata in the Qaidam Basin remains ambiguous, especially in the northern Qaidam Basin. This controversy highlights the importance of obtaining the spatial source-to-sink relationships between the Qaidam Basin and its surrounding mountain ranges. In this study, we investigated the detrital zircon U-Pb ages of modern fluvial systems draining the East Kunlun Mountain. Their detrital zircon age distributions fall into five age groups: 300–190, 530–360, 1 000–560, 2 000–1 100 and 2 650–2 000 Ma. The dominant age groups are 530–360 and 300–190 Ma, which represent the successive subduction of the Proto-Tethys and Paleo- Tethys Oceans and the subsequent continental collisions, respectively. Combining these new detrital zircon U-Pb ages with available age datasets, we finally obtained complete detrital zircon age information for modern fluvial systems in the whole Qaidam Basin. The U-Pb age distributions of modern river sands reveal that the zircon age signature of basement rocks in the East Kunlun Mountain is significantly different from that in the South Qilian Mountain but is similar to that in the Altyn Tagh Mountain. Moreover, these zircon age observations were confirmed by the significant difference in the Nd isotopic signature of modern river sands, which reveals a significant difference between the East Kunlun Mountain and South Qilian Mountain in the formation and evolution process.
Black, L. P., Kamo, S. L., Williams, I. S., et al., 2003. The Application of SHRIMP to Phanerozoic Geochronology: A Critical Appraisal of Four Zircon Standards. Chemical Geology, 200(1/2): 171–188. https://doi.org/10.1016/s0009-2541(03)00166-9 |
Blayney, T., Najman, Y., Dupont-Nivet, G., et al., 2016. Indentation of the Pamirs with Respect to the Northern Margin of Tibet: Constraints from the Tarim Basin Sedimentary Record. Tectonics, 35(10): 2345–2369. https://doi.org/10.1002/2016tc004222 |
Bush, M. A., Saylor, J. E., Horton, B. K., et al., 2016. Growth of the Qaidam Basin during Cenozoic Exhumation in the Northern Tibetan Plateau: Inferences from Depositional Patterns and Multiproxy Detrital Provenance Signatures. Lithosphere, 8(1): 58–82. https://doi.org/10.1130/l449.1 |
Cawood, P. A., Nemchin, A. A., Freeman, M., et al., 2003. Linking Source and Sedimentary Basin: Detrital Zircon Record of Sediment Flux along a Modern River System and Implications for Provenance Studies. Earth and Planetary Science Letters, 210(1/2): 259–268. https://doi.org/10.1016/s0012-821x(03)00122-5 |
Chen, N. S., Li, X. Y., Zhang, K. X., et al., 2006. Lithological Characteristics of the Baishahe Formation to the South of Xiangride Town, Eastern Kunlun Mountains and Its Age Constrained from Zircon Pb-Pb Dating. Geological Science and Technology Information, 25(6): 1–7 (in Chinese with English Abstract) |
Chen, G. C., Pei, X. Z., Li, R. B., et al, , 2020. Late Palaeozoic–Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the East Section of the East Kunlun Orogenic Belts. Earth Science Frontiters, 27(4): 33–48. https://doi.org/10.13745/j.esf.sf.2020. 4.20 (in Chinese with English Abstract) doi: 10.13745/j.esf.sf.2020.4.20 |
Chen, J., Li, G. J., Yang, J. D., et al., 2007. Nd and Sr Isotopic Characteristics of Chinese Deserts: Implications for the Provenances of Asian Dust. Geochimica et Cosmochimica Acta, 71(15): 3904–3914. https://doi.org/10.1016/j.gca.2007.04.033 |
Chen, X. H., Dang, Y. Q., Yin, A., et al., 2010. Basin Mountain Coupling and Tectonic Evolution of Qaidam Basin and Its Adjacent Orogenic Belts. Geological Publishing House, Beijing. 365 (in Chinese) |
Cheng, F., Jolivet, M., Hallot, E., et al., 2017. Tectono-Magmatic Rejuvenation of the Qaidam Craton, Northern Tibet. Gondwana Research, 49: 248–263. https://doi.org/10.1016/j.gr.2017.06.004 |
Cheng, F., Garzione, C. N., Mitra, G., et al., 2019a. The Interplay between Climate and Tectonics during the Upward and Outward Growth of the Qilian Shan Orogenic Wedge, Northern Tibetan Plateau. Earth-Science Reviews, 198: 102945. https://doi.org/10.1016/j.earscirev.2019.102945 |
Cheng, F., Garzione, C. N., Jolivet, M., et al., 2019b. Initial Deformation of the Northern Tibetan Plateau: Insights from Deposition of the Lulehe Formation in the Qaidam Basin. Tectonics, 38(2): 741–766. https://doi.org/10.1029/2018TC005214 |
Cheng, F., Jolivet, M., Guo, Z. J., et al., 2021. Cenozoic Evolution of the Qaidam Basin and Implications for the Growth of the Northern Tibetan Plateau: A Review. Earth-Science Reviews, 220: 103730. https://doi.org/10.1016/j.earscirev.2021.103730 |
Cheng, F., Zuza, A. V., Jolivet, M., et al., 2023. Linking Source and Sink: the Timing of Deposition of Paleogene Syntectonic Strata in Central Asia. Geology, 51(11): 1083–1088. https://doi.org/10.1130/g51382.1 |
Clift, P. D., Zheng, H. B., Carter, A., et al., 2017. Controls on Erosion in the Western Tarim Basin: Implications for the Uplift of Northwest Tibet and the Pamir. Geosphere, 13(5): 1747–1765. https://doi.org/10.1130/ges01378.1 |
Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469 |
Cowgill, E., An, Y., Harrison, T. M., et al., 2003. Reconstruction of the Altyn Tagh Fault Based on U-Pb Geochronology: Role of back Thrusts, Mantle Sutures, and Heterogeneous Crustal Strength in Forming the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B7): 2346. https://doi.org/10.1029/2002jb002080 |
Dai, J. G., Wang, C. S., Hourigan, J., et al., 2013. Multi-Stage Tectono-Magmatic Events of the Eastern Kunlun Range, Northern Tibet: Insights from U-Pb Geochronology and (U-Th)/He Thermochronology. Tectonophysics, 599: 97–106. https://doi.org/10.1016/j.tecto.2013.04.005 |
Dickinson, W. R., 2008. Impact of Differential Zircon Fertility of Granitoid Basement Rocks in North America on Age Populations of Detrital Zircons and Implications for Granite Petrogenesis. Earth and Planetary Science Letters, 275(1/2): 80–92. https://doi.org/10.1016/j.epsl.2008.08.003 |
Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231–261. https://doi.org/10.1016/j.earscirev.2017.12.006 |
Dong, Y. P., Sun, S. S., Santosh, M., et al., 2021. Central China Orogenic Belt and Amalgamation of East Asian Continents. Gondwana Research, 100: 131–194. https://doi.org/10.1016/j.gr.2021.03.006 |
Dong, Z. C., Gu, P. Y., Chen, R. M., et al., 2015. Geochronology, Geochemistry, and Hf Isotope of Yanchangbeishan Adamellite of Lenghu Area in Qinghai. Earth Science, 40(1): 130–144. https://doi.org/10.3799/dqkx.2015.009 (in Chinese with English Abstract) |
Fang, X. M., Zhang, W. L., Meng, Q. Q., et al., 2007. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1/2): 293–306. https://doi.org/10.1016/j.epsl.2007.03.042 |
Fang, X. M., Galy, A., Yang, Y. B., et al., 2019. Paleogene Global Cooling-Induced Temperature Feedback on Chemical Weathering, as Recorded in the Northern Tibetan Plateau. Geology, 47(10): 992–996. https://doi.org/10.1130/g46422.1 |
Fedo, C. M., Sircombe, K. N., Rainbird, R. H., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53(1): 277–303. https://doi.org/10.2113/0530277 |
Fu, L., Guan, P., Zhao, W. Y., et al., 2013. Heavy Mineral Feature and Provenance Analysis of Paleogene Lulehe Formation in Qaidam Basin. Acta Petrologica Sinica, 29(8): 2867–2875 (in Chinese with English Abstract) |
Ge, M. J., Wu, L., Wu, S. T., et al., 2025. Late Oligocene Formation of the Qaidam Basin Revealed by Calcite U-Pb Dating: Insights into the Northward Growth of Tibetan Plateau. Earth and Planetary Science Letters, 653: 119208. https://doi.org/10.1016/j.epsl.2025.119208 |
Gehrels, G., 2012. Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities. In: Tectonics of Sedimentary Basins: Recent Advances. John Wiley and Sons. 45–62. |
Gehrels, G., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annual Review of Earth and Planetary Sciences, 42: 127–149. https://doi.org/10.1146/annurev-earth-050212-124012 |
Gehrels, G. E., Yin, A., Wang, X. F., 2003. Magmatic History of the Northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B9): 2423. https://doi.org/10.1029/2002jb001876 |
He, D. F., Dong, Y. P., Liu, X. M., et al., 2018. Zircon U-Pb Geochronology and Hf Isotope of Granitoids in East Kunlun: Implications for the Neoproterozoic Magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Research, 314: 377–393. https://doi.org/10.1016/j.precamres.2018.06.017 |
He, P. J., Song, C. H., Wang, Y. D., et al., 2021. Early Cenozoic Activated Deformation in the Qilian Shan, Northeastern Tibetan Plateau: Insights from Detrital Apatite Fission-Track Analysis. Basin Research, 33(3): 1731–1748. https://doi.org/10.1111/bre.12533 |
Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x |
Hou, Y. F., Song, B. W., Li, X. C., et al., 2024. First Record of Cyclocarya from the Early Oligocene Qaidam Basin, North Tibet: Implications for the Paleogeography and Paleoecology. Journal of Earth Science, 35(1): 201–211. https://doi.org/10.1007/s12583-021-1580-2 |
Kang, H., Chen, Y. L., Li, D. P., 2020. The Nature and History of the South Qilian Orogenic Belt: Constraints from Compositions of Rivers' Sediments and Their Detrital Zircon U-Pb Geochronology, Lu-Hf Isotopic Compositions. Geological Journal, 55(1): 712–727. https://doi.org/10.1002/gj.3434 |
Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017 |
Ji, J. L., Zhang, K. X., Clift, P. D., et al., 2017. High-Resolution Magnetostratigraphic Study of the Paleogene-Neogene Strata in the Northern Qaidam Basin: Implications for the Growth of the Northeastern Tibetan Plateau. Gondwana Research, 46: 141–155. https://doi.org/10.1016/j.gr.2017.02.015 |
Jian, X., Guan, P., Zhang, D. W., et al., 2013. Provenance of Tertiary Sandstone in the Northern Qaidam Basin, Northeastern Tibetan Plateau: Integration of Framework Petrography, Heavy Mineral Analysis and Mineral Chemistry. Sedimentary Geology, 290: 109–125. https://doi.org/10.1016/j.sedgeo.2013.03.010 |
Jian, X., Weislogel, A., Pullen, A., et al., 2020. Formation and Evolution of the Eastern Kunlun Range, Northern Tibet: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 83: 63–79. https://doi.org/10.1016/j.gr.2020.01.015 |
Jian, X., Fu, L., Wang, P., et al., 2023. Sediment Provenance of the Lulehe Formation in the Qaidam Basin: Insight to Initial Cenozoic Deposition and Deformation in Northern Tibetan Plateau. Basin Research, 35(1): 271–294. https://doi.org/10.1111/bre.12712 |
Jolivet, M., Brunel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints. Tectonophysics, 343(1/2): 111–134. https://doi.org/10.1016/S0040-1951(01)00196-2 |
Li, C. P., Zheng, D. W., Zhou, R. J., et al., 2021. Topographic Growth of the Northeastern Tibetan Plateau during the Middle–Late Miocene: Insights from Integrated Provenance Analysis in the NE Qaidam Basin. Basin Research, 33(6): 3212–3230. https://doi.org/10.1111/bre.12600 |
Li, H., Watanabe, K., Yonezu, K., 2014. Zircon Morphology, Geochronology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geology Reviews, 60: 14–35. https://doi.org/10.1016/j.oregeorev.2013.12.009 |
Li, W., Neubauer, F., Liu, Y. J., et al., 2013. Paleozoic Evolution of the Qimantagh Magmatic Arcs, Eastern Kunlun Mountains: Constraints from Zircon Dating of Granitoids and Modern River Sands. Journal of Asian Earth Sciences, 77: 183–202. https://doi.org/10.1016/j.jseaes.2013.08.030 |
Liu, C. D., Mo, X. X., Luo, Z. H., et al., 2004. Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun: Evidence from Zircon SHRIMP Ⅱ Chronology. Chinese Science Bulletin, 49(8): 828–834. https://doi.org/10.1007/bf02889756 |
Liu, C. F., Wu, C., Song, Z. J., et al., 2019. Petrogenesis and Tectonic Significance of Early Paleozoic Magmatism in the Northern Margin of the Qilian Block, Northeastern Tibetan Plateau. Lithosphere, 11(3): 365–385. https://doi.org/10.1130/l1047.1 |
Liu, B., Ma, C. Q., Zhang, J. Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6): 1785–1807 (in Chinese with English Abstract) |
Lu, H. J., Xiong, S. F., 2009. Magnetostratigraphy of the Dahonggou Section, Northern Qaidam Basin and Its Bearing on Cenozoic Tectonic Evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters, 288(3/4): 539–550. https://doi.org/10.1016/j.epsl.2009.10.016 |
Lu, H. J., Ye, J. C., Guo, L. C., et al., 2019. Towards a Clarification of the Provenance of Cenozoic Sediments in the Northern Qaidam Basin. Lithosphere, 11(2): 252–272. https://doi.org/10.1130/l1037.1 |
Lu, H. J., Malusà, M. G., Zhang, Z. Y., et al., 2022. Syntectonic Sediment Recycling Controls Eolian Deposition in Eastern Asia since ~8 Ma. Geophysical Research Letters, 49(3): e2021GL096789. https://doi.org/10.1029/2021gl096789 |
Lu, S. N., 2002. The Precambrian Geology of Northern Tibet. Geological Publishing House, Beijing (in Chinese) |
Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94–107. https://doi.org/10.1016/j.precamres.2007.04.025 |
Lu, S. N., Yu, H. F., Li, H. K., 2006. Research on Precambrian Major Problems in China. Geological Publishing House, Beijing. 206 (in Chinese) |
Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. 39 |
Lü, F. L., Zhang, H., Liu, C. L., et al., 2021. The Finalization of the Modern Drainage Pattern of the Tarim Basin: Insights from Petrology and Detrital Zircon Geochronology of Sediments from Lop Nur. CATENA, 205: 105473. https://doi.org/10.1016/j.catena.2021.105473 |
Ma, C. Q., Xiong, F. H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555–3568 (in Chinese with English Abstract) |
Meng, F. C., Cui, M. H., Wu, X. K., et al., 2013. Magmatic and Metamorphic Events Recorded in Granitic Gneisses from the Qimantag, East Kunlun Mountains, Northwest China. Acta Petrologica Sinica, 29(6): 2107–2122 (in Chinese with English Abstract) |
Meng, Q. R., Fang, X., 2008. Cenozoic Tectonic Development of the Qaidam Basin in the Northeastern Tibetan Plateau. In: Burchfiel, B. C., Wang, E. Q., eds., Investigations into the Tectonics of the Tibetan Plateau. Geological Society of America Special Paper, 444: 1–24. |
Menold, C. A., 2006. Tectonic and Metamorphic Evolution of the North Qaidam Ultrahigh-Pressure Metamorphic Terrane, Western China: [Dissertation]. University of California, Los Angeles. 261 |
Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403–414 (in Chinese with English Abstract) |
Najman, Y., 2006. The Detrital Record of Orogenesis: A Review of Approaches and Techniques Used in the Himalayan Sedimentary Basins. Earth-Science Reviews, 74(1/2): 1–72. https://doi.org/10.1016/j.earscirev.2005.04.004 |
Nie, J. S., Horton, B. K., Saylor, J. E., et al., 2012. Integrated Provenance Analysis of a Convergent Retroarc Foreland System: U-Pb Ages, Heavy Minerals, Nd Isotopes, and Sandstone Compositions of the Middle Magdalena Valley Basin, Northern Andes, Colombia. Earth-Science Reviews, 110(1/2/3/4): 111–126. https://doi.org/10.1016/j.earscirev.2011.11.002 |
Nie, J. S., Ren, X. P., Saylor, J. E., et al., 2020. Magnetic Polarity Stratigraphy, Provenance, and Paleoclimate Analysis of Cenozoic Strata in the Qaidam Basin, NE Tibetan Plateau. GSA Bulletin, 132(1/2): 310–320. https://doi.org/10.1130/b35175.1 |
Pan, G. T., Ding, J., Yao, D., et al., 2004. Geological Map of Qinghai-Xiang (Tibet) Plateau and Adjacent Areas, Scale 1 : 1 500 000. Chengdu Cartographic Publishing House, Chengdu (in Chinese) |
Peng, Y. B., Yu, S. Y., Li, S. Z., et al., 2019. Early Neoproterozoic Magmatic Imprints in the Altun-Qilian-Kunlun Region of the Qinghai-Tibet Plateau: Response to the Assembly and Breakup of Rodinia Supercontinent. Earth-Science Reviews, 199: 102954. https://doi.org/10.1016/j.earscirev.2019.102954 |
Qinghai Bureau of Geology and Mineral Resources (QBGMR), 1991. Regional Geology of the Qinghai Province. Geological Publishing House, Beijing. 1–604 (in Chinese) |
Qiu, S. D., Dong, Z. C., Gu, P. Y., 2015. The Discovery of Adakitic Granit in the West Segment of the North Margin of Qaidam and Its Geological Significance. Acta Geologica Sinica, 89(7): 1231–1243 (in Chinese with English Abstract) |
Ren, R., Guan, S. W., Han, B. F., et al., 2017. Chronological Constraints on the Tectonic Evolution of the Chinese Tianshan Orogen through Detrital Zircons from Modern and Palaeo-River Sands. International Geology Review, 59(13): 1657–1676. https://doi.org/10.1080/00206814.2017.1292468 |
Robinson, D. M., DeCelles, P. G., Patchett, P. J., et al., 2001. The Kinematic Evolution of the Nepalese Himalaya Interpreted from Nd Isotopes. Earth and Planetary Science Letters, 192(4): 507–521. https://doi.org/10.1016/s0012-821x(01)00451-4 |
Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2 |
Song, B. W., Zhang, K. X., Lu, J. F., et al., 2013. The Middle Eocene to Early Miocene Integrated Sedimentary Record in the Qaidam Basin and Its Implications for Paleoclimate and Early Tibetan Plateau Uplift. Canadian Journal of Earth Sciences, 50(2): 183–196. https://doi.org/10.1139/cjes-2012-0048 |
Song, B. W., Zhang, K. X., Hou, Y. F., et al., 2019. New Insights into the Provenance of Cenozoic Strata in the Qaidam Basin, Northern Tibet: Constraints from Combined U-Pb Dating of Detrital Zircons in Recent and Ancient Fluvial Sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 533: 109254. https://doi.org/10.1016/j.palaeo.2019.109254 |
Song, B. W., Spicer, R. A., Zhang, K. X., et al., 2020. Qaidam Basin Leaf Fossils Show Northeastern Tibet Was High, Wet and Cool in the Early Oligocene. Earth and Planetary Science Letters, 537: 116175. https://doi.org/10.1016/j.epsl.2020.116175 |
Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59–84. https://doi.org/10.1016/j.earscirev.2013.11.010 |
Song, S. G., Su, L., Li, X. H., et al., 2012. Grenville-Age Orogenesis in the Qaidam-Qilian Block: The Link between South China and Tarim. Precambrian Research, 220: 9–22. https://doi.org/10.1016/j.precamres.2012.07.007 |
Sun, J. P., Dong, Y. P., Ma, L. C., et al., 2021. Devonian to Triassic Tectonic Evolution and Basin Transition in the East Kunlun-Qaidam Area, Northern Tibetan Plateau: Constraints from Stratigraphy and Detrital Zircon U-Pb Geochronology. GSA Bulletin, 134(7/8): 1967–1993. https://doi.org/10.1130/b36147.1 |
Saylor, J. E., Knowles, J. N., Horton, B. K., et al., 2013. Mixing of Source Populations Recorded in Detrital Zircon U-Pb Age Spectra of Modern River Sands. The Journal of Geology, 121(1): 17–33. https://doi.org/10.1086/668683 |
Vermeesch, P., 2013. Multi-Sample Comparison of Detrital Age Distributions. Chemical Geology, 341: 140–146. https://doi.org/10.1016/j.chemgeo.2013.01.010 |
Wang, G. C., Wang, Q. H., Jian, P., et al., 2004. Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China. Earth Science Frontiers, 11(4): 481–490 (in Chinese with English Abstract) |
Wang, W., Yang, X. H., Bidgoli, T. S., et al., 2019. Detrital Zircon Geochronology Reveals Source-to-Sink Relationships in the Pearl River Mouth Basin, China. Sedimentary Geology, 388: 81–98. https://doi.org/10.1016/j.sedgeo.2019.04.004 |
Wang, W. T., Zhang, P. Z., Yu, J. X., et al., 2016. Constraints on Mountain Building in the Northeastern Tibet: Detrital Zircon Records from Synorogenic Deposits in the Yumen Basin. Scientific Reports, 6: 27604. https://doi.org/10.1038/srep27604 |
Wang, W. T., Zheng, W. J., Zhang, P. Z., et al., 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8: 15887. https://doi.org/10.1038/ncomms15887 |
Wang, W. T., Zhang, P. Z., Garzione, C. N., et al., 2022. Pulsed Rise and Growth of the Tibetan Plateau to Its Northern Margin since ca. 30 Ma. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2120364119. https://doi.org/10.1073/pnas.2120364119 |
Wang, L., MacLennan, S. A., Cheng, F., 2020. From a Proximal-Deposition-Dominated Basin Sink to a Significant Sediment Source to the Chinese Loess Plateau: Insight from the Quantitative Provenance Analysis on the Cenozoic Sediments in the Qaidam Basin, Northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109883. https://doi.org/10.1016/j.palaeo.2020.109883 |
Wang, L. Q., Pan, G. T., Ding, J., et al., 2013. Geological Map of the Tibetan Plateau at a Scale of 1 : 1.5 M with Explanations. Geological Publishing House, Beijing. 288 (in Chinese) |
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x |
Wu, C., Yin, A., Zuza, A. V., et al., 2016. Pre-Cenozoic Geologic History of the Central and Northern Tibetan Plateau and the Role of Wilson Cycles in Constructing the Tethyan Orogenic System. Lithosphere, 8(3): 254–292. https://doi.org/10.1130/l494.1 |
Wu, C., Liu, C. F., Fan, S. Y., et al., 2020. Structural Analysis and Tectonic Evolution of the Western Domain of the Eastern Kunlun Range, Northwest Tibet. GSA Bulletin, 132(5/6): 1291–1315. https://doi.org/10.1130/b35388.1 |
Wu, C. L., Xu, X. Y., Gao, Q. M., et al., 2010. Early Palaeozoic Granitoid Magmatism and Tectonic Evolution in North Qilian, NW China. Acta Petrological Sinica, 26(4): 1027–1044 (in Chinese with English Abstract) |
Wu, W. H., Xu, S. J., Yang, J. D., et al., 2010. Isotopic Characteristics of River Sediments on the Tibetan Plateau. Chemical Geology, 269(3/4): 406–413. https://doi.org/10.1016/j.chemgeo.2009.10.015 |
Xia, R., Wang, C. M., Deng, J., et al., 2014. Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton. Journal of Asian Earth Sciences, 93: 193–210. https://doi.org/10.1016/j.jseaes.2014.07.013 |
Yang, Y. B., Galy, A., Fang, X. M., et al., 2021. Neodymium Isotopic Constraints on Cenozoic Asian Dust Provenance Changes Linked to the Exhumation History of the Northern Tibetan Plateau and the Central Asian Orogenic Belt. Geochimica et Cosmochimica Acta, 296: 38–55. https://doi.org/10.1016/j.gca.2020.12.026 |
Yi, K. X., Cheng, F., Jolivet, M., et al., 2024. Carbonate U-Pb Ages Constrain Paleocene Motion along the Altyn Tagh Fault in Response to the India-Asia Collision. Geophysical Research Letters, 51(8): e2023GL107716. https://doi.org/10.1029/2023gl107716 |
Yin, A., Dang, Y. Q., Zhang, M., et al., 2008. Cenozoic Tectonic Evolution of the Qaidam Basin and Its Surrounding Regions (Part 3): Structural Geology, Sedimentation, and Regional Tectonic Reconstruction. GSA Bulletin, 120(7/8): 847–876. https://doi.org/10.1130/b26232.1 |
Yu, M., Feng, C. Y., Santosh, M., et al., 2017. The Qiman Tagh Orogen as a Window to the Crustal Evolution in Northern Qinghai-Tibet Plateau. Earth-Science Reviews, 167: 103–123. https://doi.org/10.1016/j.earscirev.2017.02.008 |
Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2019. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190–211. https://doi.org/10.1016/j.earscirev.2019.02.016 |
Zhang, J. X., Meng, F. C., Wan, Y. S., et al., 2003. Early Paleozoic Tectono-Thermal Event of the Jinshuikou Group on the Southern Margin of Qaidam: Zircon U-Pb SHRIMP Age Evidence. Regional Geology of China, 22(6): 397–404 (in Chinese with English Abstract) |
Zhang, J. Y., Yin, A., Liu, W. C., et al., 2012a. Coupled U-Pb Dating and Hf Isotopic Analysis of Detrital Zircon of Modern River Sand from the Yalu River (Yarlung Tsangpo) Drainage System in Southern Tibet: Constraints on the Transport Processes and Evolution of Himalayan Rivers. GSA Bulletin, 124(9/10): 1449–1473. https://doi.org/10.1130/b30592.1 |
Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2012b. Petrogenesis and Tectonic Significance of the Late Permian–Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China. Geological Magazine, 149(5): 892–908. https://doi.org/10.1017/s0016756811001142 |
Zhang, X. T., Yang, S. D., Yang, Z. J., 2007. Qinghai Province Plate Tectonics Research—1 : 1 000 000 Qinghai Province Tectonic Map Instructions. Geological Publishing House, Beijing. 1–221 (in Chinese) |
Zhang, S., Jian, X., Pullen, A., et al., 2021. Tectono-Magmatic Events of the Qilian Orogenic Belt in Northern Tibet: New Insights from Detrital Zircon Geochronology of River Sands. International Geology Review, 63(8): 917–940. https://doi.org/10.1080/00206814.2020.1734876 |
Zhang, J. X., Mattinson, C. G., Meng, F. C., et al., 2008. Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China: Evidence from Zircon U-Pb Geochronology. GSA Bulletin, 120(5/6): 732–749. https://doi.org/10.1130/b26093.1 |
Zhang, K. X., Wang, G. C., Ji, J. L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science China Earth Sciences, 53(9): 1271–1294. https://doi.org/10.1007/s11430-010-4048-2 |
Zhou, C. A., Song, S. G., 2023. Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt. Earth Science, 48(12): 4481–4494. 10.3799/dqkx. 2022.117 (in Chinese with English Abstract) doi: 10.3799/dqkx.2022.117 |
Zhuang, G., Hourigan, J. K., Ritts, B. D., et al., 2011. Cenozoic Multiple-Phase Tectonic Evolution of the Northern Tibetan Plateau: Constraints from Sedimentary Records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China. American Journal of Science, 311(2): 116–152. https://doi.org/10.2475/02.2011.02 |
Zhuang, G. S., Johnstone, S. A., Hourigan, J., et al., 2018. Understanding the Geologic Evolution of Northern Tibetan Plateau with Multiple Thermochronometers. Gondwana Research, 58: 195–210. https://doi.org/10.1016/j.gr.2018.02.014 |
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32–48. https://doi.org/10.1016/j.precamres.2016.12.010 |
Zuza, A. V., Wu, C., Reith, R. C., et al., 2018. Tectonic Evolution of the Qilian Shan: An Early Paleozoic Orogen Reactivated in the Cenozoic. GSA Bulletin, 130(5/6): 881–925. https://doi.org/10.1130/b31721.1 |