Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Limei Wang, Guowang Jin, Xin Xiong. Flood Duration Estimation Based on Multisensor, Multitemporal Remote Sensing: The Sardoba Reservoir Flood. Journal of Earth Science, 2023, 34(3): 868-878. doi: 10.1007/s12583-022-1670-9
Citation: Limei Wang, Guowang Jin, Xin Xiong. Flood Duration Estimation Based on Multisensor, Multitemporal Remote Sensing: The Sardoba Reservoir Flood. Journal of Earth Science, 2023, 34(3): 868-878. doi: 10.1007/s12583-022-1670-9

Flood Duration Estimation Based on Multisensor, Multitemporal Remote Sensing: The Sardoba Reservoir Flood

doi: 10.1007/s12583-022-1670-9
More Information
  • Corresponding author: Guowang Jin, guowang_jin@163.com
  • Received Date: 21 Dec 2021
  • Accepted Date: 09 Apr 2022
  • Issue Publish Date: 30 Jun 2023
  • Single-sensor monitoring of flood events at high spatial and temporal resolutions is difficult because of the lack of data owing to instrument defects, cloud contamination, imaging geometry. However, combining multisensor data provides an impressive solution to this problem. In this study, 11 synthetic aperture radar (SAR) images and 13 optical images were collected from the Google Earth Engine (GEE) platform during the Sardoba Reservoir flood event to constitute a time series dataset. Threshold-based and indices-based methods were used for SAR and optical data, respectively, to extract the water extent. The final sequential flood water maps were obtained by fusing the results from multisensor time series imagery. Experiments show that, when compare with the Global Surface Water Dynamic (GSWD) dataset, the overall accuracy and Kappa coefficient of the water body extent extracted by our methods range from 98.8% to 99.1% and 0.839 to 0.900, respectively. The flooded extent and area increased sharply to a maximum between May 1 and May 4, and then experienced a sustained decline over time. The flood lasted for more than a month in the lowland areas in the north, indicating that the northern region is severely affected. Land cover changes could be detected using the temporal spectrum analysis, which indicated that detailed temporal information benefiting from the multisensor data is highly important for time series analyses.

     

  • loading
  • Amitrano, D., Martino, G. D., Iodice, A., 2018. Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 1–10. https://doi.org/10.1109/tgrs.2018.2797536
    Ban, Y., Jacob, A., 2013. Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B Multispectral Data for Urban Land-Cover Mapping. IEEE Transactions on Geoscience & Remote Sensing, 51(4): 1998–2006. https://doi.org/10.1109/tgrs.2012.2236560
    Cao, Z., Zhang, G., Dai, W., 2017. Fast Optical and Sar Water Image Registration Based on Second Otsu And SIFT. Journal of Computer-Aided Design & Computer Graphics, 29(11): 1963–1970. https://doi.org/10.3969/j.issn.1003-9775.2017.11.001
    Chaouch, N., Temimi, M., Hagen, S., 2012. A Synergetic Use of Satellite Imagery from SAR and Optical Sensors to Improve Coastal Flood Mapping in the Gulf of Mexico. Hydrological Processes, 26(11): 1617–1628. https://doi.org/10.1002/hyp.8268
    Criss, R. E., 2016. Statistics of Evolving Populations and Their Relevance to Flood Risk. Journal of Earth Science, 27(1): 2–8. https://doi.org/10.1007/s12583-015-0641-9
    D'Addabbo, A., Refice, A., Pasquariello, G., et al., 2016. Following Flood Dynamics by SAR/Optical Data Fusion. 2016 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Bari, Italy. 1–5. https://doi.org/10.1109/eesms.2016.7504848
    Deo, R. C., Byun, H. R., Kim, G. B., et al., 2018. A Real-Time Hourly Water Index for Flood Risk Monitoring: Pilot Studies in Brisbane, Australia, and Dobong Observatory, South Korea. Environmental Monitoring & Assessment, 190(8): 450. https://doi.org/10.1007/s10661-018-6806-0
    Duan, K., Mei, Y. D., Zhang, L. P., 2016. Copula-Based Bivariate Flood Frequency Analysis in a Changing Climate—A Case Study in the Huai River Basin, China. Journal of Earth Science, 27(1): 37–46. https://doi.org/10.1007/s12583-016-0625-4
    Dwyer, J. L., Roy, D. P., Sauer, B., et al., 2018. Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sensing, 10(9): 1363. https://doi.org/10.3390/rs10091363
    Feyisa, G. L., Meilby, H., Fensholt, R., et al., 2014. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ, 140: 23–35. https://doi.org/10.1016/j.rse.2013.08.029
    Kay, S. M., Doyle, S. B., 2003. Rapid Estimation of the Range-Doppler Scattering Function. IEEE Transactions on Signal Processing, 51(1): 255–268. https://doi.org/10.1109/tsp.2002.806579
    Li, J., Wang, S., 2015. An Automatic Method For Mapping Inland Surface Water Bodies with Radarsat-2 Imagery. Int. J. Remote Sens., 36: 1367–1384. https://doi.org/10.1080/01431161.2015.1009653
    Lu, G., Yin, F., Chen, C., et al., 2017. Water Depth Extraction from Landsat-8 Image in Hongze Lake. Beijing Surveying and Mapping, 4: 13–18. https://doi.org/10.19580/j.cnki.1007-3000.2017.04.004
    Olasz, A., Kristóf, D., Thai, B. N., et al., 2017. Processing Big Remote Sensing Data for Fast Flood Detection in a Distributed Computing Environment. ISPRS–International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W2: 137–138. https://doi.org/10.5194/isprs-archives-xlii-4-W2-137-2017
    Pandey, P., Ali, S. N., Ray, P., 2021. Glacier-Glacial Lake Interactions and Glacial Lake Development in the Central Himalaya, India (1994–2017). Journal of Earth Science, 32(6): 1563–1574. https://doi.org/10.1007/s12583-020-1056-9
    Pasqualotto, N., Delegido, J., Wittenberghe, S. V., 2019. Multi-Crop Green LAI Estimation with a New Simple Sentinel-2 LAI Index (SeLI). Sensors, 19(4): 904. https://doi.org/10.3390/s19040904
    Pickens, A. H., Hansen, M. C., Hancher, M., et al., 2020. Mapping and Sampling to Characterize Global Inland Water Dynamics from 1999 to 2018 with Full Landsat Time Series. Remote Sens. Environ., 243: 111792. https://doi.org/10.1016/j.rse.2020.111792
    Pu, R., Bell, S., Meyer, C., 2014. Mapping and Assessing Seagrass Bed Changes in Central Florida's West Coast Using Multitemporal Landsat TM Imagery. Estuarine Coastal & Shelf Science, 149: 68–79. https://doi.org/10.1016/j.ecss.2014.07.014
    Refice, A., Addabbo, A. D., Lovergine, F. P., et al., 2018. Monitoring Flood Extent and Area through Multisensor, Multi-Temporal Remote Sensing: The Strymonas (Greece) River Flood. In: Refice, A., D'Addabbo, A., Capolongo, D., et al., ed., Flood Monitoring through Remote Sensing. Springer Remote Sensing/Photogrammetry, Berlin. https://doi.org/10.1007/978-3-319-63959-8_5
    Refice, A., Capolongo, D., Pasquariello, G., 2014. SAR and Insar for Flood Monitoring: Examples with COSMO-Skymed Data. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 7(7): 2711–2722. https://doi.org/10.1109/jstars.2014.2305165
    Sarker, C., Mejias, L., Maire, F., et al., 2019. Flood Mapping with Convolutional Neural Networks Using Spatio-Contextual Pixel Information. Remote Sensing, 11(19): 2331. https://doi.org/10.3390/rs11192331
    Shah-Hosseini, R., Homayouni, S., Safari, A., 2015. Environmental Monitoring Based on Automatic Change Detection from Remotely Sensed Data: Kernel-Based Approach. Journal of Applied Remote Sensing, 9(1): 234–242. https://doi.org/10.1117/1.jrs.9.095992
    Tamiminia, H., Salehi, B., Mahdianpari, M., et al., 2020. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.00
    Tholey, N., Clandillon, S., Fraipont, P. D., 2015. The Contribution of Spaceborne SAR and Optical Data in Monitoring Flood Events: Examples in Northern and Southern France. Hydrological Processes, 11(10): 1409–1413. https://doi.org/10.1002/(sici)1099–1085(199708)11:10<1409::aid–hyp531>3.0.co,2–v doi: 10.1002/(sici)1099–1085(199708)11:10<1409::aid–hyp531>3.0.co,2–v
    Tulbure, M. G., Broich, M., Stehman, S. V., et al., 2016. Surface Water Extent Dynamics from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale in a Semi-Arid Region. Remote Sens. Environ., 178: 142–157. https://doi.org/10.1016/j.rse.2016.02.034
    Verpoorter, C., Kutser, T., Seekell, D. A., et al., 2014. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophysical Research Letters, 41(18): 6396–6402. https://doi.org/10.1002/2014gl060641
    Voigt, S., Giulio-Tonolo, F., Lyons, J., et al., 2016. Global Trends in Satellite-Based Emergency Mapping. Science, 353: 247–252. https://doi.org/10.1126/science.aad8728
    Wang, X., Zhou, A. G., Sun, Z. Y., 2016. Spatial and Temporal Dynamics of Lakes in Nam Co Basin, 1991–2011. Journal of Earth Science, 27(1): 130–138. https://doi.org/10.1007/s12583-016-0634-3
    Wulder, M. A., White, J. C., Loveland, T. R., et al., 2016. The Global Landsat Archive: Status, Consolidation, And Direction. Remote Sens. Environ, 185: 271–283. https://doi.org/10.1016/j.rse.2015.11.032
    Yang, X., Chen, L., 2017. Evaluation of Automated Urban Surface Water Extraction from Sentinel-2A Imagery Using Different Water Indices. Journal of Applied Remote Sensing, 11(2): 026016. https://doi.org/10.1117/1.jrs.11.026016
    Yang, X., Chen, Y., Wang, J., 2020. Combined Use of Sentinel-2 and Landsat 8 To Monitor Water Surface Area Dynamics Using Google Earth Engine. Remote Sensing Letters, 11(7): 687–696. https://doi.org/10.1080/2150704x.2020.1757780
    Young, N. E., Anderson, R. S., Chignell, S. M., et al., 2017. A Survival Guide to Landsat Preprocessing. Ecology, 98(4): 920–32. https://doi.org/10.1002/ecy.1730
    Yu, R., Xu, Y., Liu, Y., et al., 2009. Reversing Water Depth in Shallow Lake of Arid Area Using Multi-Spectral Remote Sensing Information. Advances in Water Science, 20(1): 111–117. https://doi.org/10.3321/j.issn:1001-6791.2009.01.018
    Zhang, F. Z., Zhang, B., Li, J. S., et al., 2011. Comparative Analysis of Automatic Water Identification Method Based on Multispectral Remote Sensing. Procedia Environ. Sci., 11: 1482–1487. https://doi.org/10.1016/j.proenv.2011.12.223
    Zhou, X., Chang, N. B., Li, S., 2009. Applications of SAR Interferometry in Earth and Environmental Science Research. Sensors, 9(3): 1876–1912. https://doi.org/10.3390/s90301876
    Zhu, Z., Woodcock, C. E., 2014. Automated Cloud, Cloud Shadow, And Snow Detection in Multitemporal Landsat Data: An Algorithm Designed Specifically for Monitoring Land Cover Change. Remote Sens. Environ., 152: 217–234. https://doi.org/10.1016/j.rse.2014.06.012
    Zou, Z., Dong, J., Menarguez, M. A., et al., 2017. Continued Decrease of Open Surface Water Body Area in Oklahoma During 1984–2015. Sci. Total Environ., 595: 451–460. https://doi.org/10.1016/j.scitotenv.2017.03.259
    Zou, Z., Xiao, X., Dong, J., et al., 2018. Divergent Trends of Open-Surface Water Body Area in the Contiguous United States from 1984 to 2016. PNAS, 115: 3810–3815. https://doi.org/10.1073/pnas.1719275115
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(173) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return