Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Yinggang Zhang, Xizhu Yao, Jin Wang, Wenqing Pan, Yongquan Chen, Baoshou Zhang, Tao Yang. U-Pb Ages and Europium Anomalies of Detrital Zircon from Sediments in the West Kunlun Orogenic Belt: Implications for the Proto-Tethys Ocean Evolution. Journal of Earth Science, 2025, 36(3): 947-959. doi: 10.1007/s12583-022-1671-8
Citation: Yinggang Zhang, Xizhu Yao, Jin Wang, Wenqing Pan, Yongquan Chen, Baoshou Zhang, Tao Yang. U-Pb Ages and Europium Anomalies of Detrital Zircon from Sediments in the West Kunlun Orogenic Belt: Implications for the Proto-Tethys Ocean Evolution. Journal of Earth Science, 2025, 36(3): 947-959. doi: 10.1007/s12583-022-1671-8

U-Pb Ages and Europium Anomalies of Detrital Zircon from Sediments in the West Kunlun Orogenic Belt: Implications for the Proto-Tethys Ocean Evolution

doi: 10.1007/s12583-022-1671-8
More Information
  • Corresponding author: Tao Yang, yangtao@nju.edu.cn
  • Received Date: 11 Jan 2022
  • Accepted Date: 13 Apr 2022
  • Issue Publish Date: 30 Jun 2025
  • The ocean crust remnants of the Proto-Tethys were preserved as the Kudi ophiolites in the West Kunlun Orogenic Belt (WKOB), and its evolutionary history was mainly constructed by research on igneous or metamorphic rocks in the WKOB. Sedimentary rocks in the WKOB received little attention in the past; however, they could provide important constraints on the evolution of the oceanic lithosphere. Here, a series of shales and greywackes found in the Kudi area of WKOB were studied to constrain their deposition ages and explore their significance in the evolution of the Proto-Tethys oceanic crust. The U-Pb dating and europium anomaly (Eu/Eu*) were analyzed for detrital zircons from greywackes interlayers, while bulk rare earth elements and yttrium (REY) of the shales were measured. Detrital zircons U-Pb ages yield a maximum deposition age of 436 Ma for the greywackes and black shales, while the REY distribution patterns of the black shales are similar to those of the Tarim Ordovician Saergan shales. Accordingly, the studied WKOB black shales were deposited in the Proto-Tethys Ocean during the Late Ordovician–Early Silurian period. The maximum deposition age at 436 Ma may represent a minimum closure time of the Proto-Tethys Ocean, which is also supported by the absence of increases in Eu/Eu* values during the Late Ordovician–Early Silurian. Besides, our Eu/Eu* values in detrital zircons indicate diminished orogenesis during the Archean to Meso–Proterozoic, subduction-related accretion at the margins of the supercontinent Rodinia during the Neoproterozoic.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1671-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Blatt, H., Tracy, R. J., 1996. Petrology: Igneous, Sedimentary and Metamorphic. W. H. Freeman & Co., New York
    Brasier, M. D., Lindsay, J. F., 1998. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26(6): 555–558. https://doi.org/10.1130/0091-7613(1998)0260555:abyoes>2.3.co;2 doi: 10.1130/0091-7613(1998)0260555:abyoes>2.3.co;2
    Burnham, A. D., Berry, A. J., 2017. Formation of Hadean Granites by Melting of Igneous Crust. Nature Geoscience, 10(6): 457–461. https://doi.org/10.1038/ngeo2942
    Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875–878. https://doi.org/10.1130/g32945.1
    Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118–126. https://doi.org/10.1016/j.epsl.2016.05.049
    Chen, X., Zhang, Y. D., Li, Y., et al., 2012. Biostratigraphic Correlation of the Ordovician Black Shales in Tarim Basin and Its Peripheral Regions. Science China Earth Sciences, 55(8): 1230–1237. https://doi.org/10.1007/s11430-012-4448-6
    Cui, J. T., Wang, J. C., Bian, X. W., et al., 2007. Zircon SHRIMP U-Pb Dating of Early Paleozoic Granite in the Mengguobao-Pushou Area on the Northern Side of the Kangxiwa, West Kunlun. Geological Bulletin of China, 26: 710–719 (in Chinese with English Abstract)
    Decelles, P. G., Gray, M. B., Ridgway, K. D., et al., 1991. Kinematic History of a Foreland Uplift from Paleocene Synorogenic Conglomerate, Beartooth Range, Wyoming and Montana. GSA Bulletin, 103(11): 1458–1475. https://doi.org/10.1130/0016-7606(1991)1031458:khoafu>2.3.co;2 doi: 10.1130/0016-7606(1991)1031458:khoafu>2.3.co;2
    Dickinson, W. R., Gehrels, G. E., 2009. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of strata: A Test against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 288(1/2): 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    Fillmore, R., 2010. Geological Evolution of the Colorado Plateau of Eastern Utah and Western Colorado. Including the San Juan River, Natural Bridges, Canyonlands, Arches, and the Book Cliffs. University of Utah Press, Salt Lake City
    Gan, Z. Q., Feng, Q. L., Wei, Y. H., et al., 2024. Detrital Zircon of Devonian Sandstones in Changning-Menglian Suture Zone, Yunnan, SW China: Implications for the Early Evolution of Paleo-Tethys. Journal of Earth Science, 35(3): 786–796. https://doi.org/10.1007/s12583-021-1470-7
    Gao, J. F., Lu, J. J., Lai, M. Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844–850 (in Chinese with English Abstract)
    Garzanti, E., Mascle, G., 1987. Sedimentary Record of the Northward Flight of India and Its Collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta, 1(4/5): 297–312. https://doi.org/10.1080/09853111.1987.11105147
    Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2014. Archean Magmatism and Crustal Evolution in the Northern Tarim Craton: Insights from Zircon U-Pb-Hf-O Isotopes and Geochemistry of ~2.7 Ga Orthogneiss and Amphibolite in the Korla Complex. Precambrian Research, 252: 145–165. https://doi.org/10.1016/j.precamres.2014.07.019
    Guo, X., Zheng, Y., Gao, J., et al., 2013. Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains, Xinjiang, China. Geological Review, 59: 401–412 (in Chinese with English Abstract)
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027
    Hu, J., Wang, H., Huang, C. Y., et al., 2016. Geological Characteristics and Age of the Dahongliutan Fe-Ore Deposit in the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China. Journal of Asian Earth Sciences, 116(2): 1–25. https://doi.org/10.1016/j.jseaes.2015.08.014
    Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2002. Petrology and Geochemistry of Shoshonitic Plutons from the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China: Implications for Granitoid Geneses. Lithos, 63(3/4): 165–187. https://doi.org/10.1016/s0024-4937(02)00140-8
    Lai, W., Hu, X. M., Garzanti, E., et al., 2019. Early Cretaceous Sedimentary Evolution of the Northern Lhasa Terrane and the Timing of Initial Lhasa-Qiangtang Collision. Gondwana Research, 73: 136–152. https://doi.org/10.1016/j.gr.2019.03.016
    Li, S. Z., Zhao, S. J., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37–75. https://doi.org/10.1016/j.earscirev.2017.01.011
    Liu, S., Yu, B., Xu, K., 2012. Geochemistry Characteristics and Sedimentary Environment of Middle–Upper Ordovician Source Rock of Aksu area in Tarim Basin. Sino-Global Energy, 17: 34–39 (in Chinese with English Abstract)
    Liu, X. Q., Zhang, C. L., Ye, X. T., et al., 2019. Cambrian Mafic and Granitic Intrusions in the Mazar-Tianshuihai Terrane, West Kunlun Orogenic Belt: Constraints on the Subduction Orientation of the Proto-Tethys Ocean. Lithos, 350: 105226. https://doi.org/10.1016/j.lithos.2019.105226
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Liu, Z., 2015. Petrogenesis of Early Mesozoic Granites in Western Kunlun Orogen and Its Implications for Paleo-Tethys Tectonic Evolution: [Dissertation]. Nanjing University, Nanjing (in Chinese with English Abstract)
    Liu, Z., Jiang, Y. H., Jia, R. Y., et al., 2014. Origin of Middle Cambrian and Late Silurian Potassic Granitoids from the Western Kunlun Orogen, Northwest China: A Magmatic Response to the Proto-Tethys Evolution. Mineralogy and Petrology, 108(1): 91–110. https://doi.org/10.1007/s00710-013-0288-0
    Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94–107. https://doi.org/10.1016/j.precamres.2007.04.025
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. Stanford University, Stanford
    Ma, A. L., Hu, X. M., Garzanti, E., et al., 2017. Sedimentary and Tectonic Evolution of the Southern Qiangtang basin: Implications for the Lhasa-Qiangtang Collision Timing. Journal of Geophysical Research: Solid Earth, 122(7): 4790–4813. https://doi.org/10.1002/2017jb014211
    Mattern, F., Schneider, W., 2000. Suturing of the Proto- and Paleo-Tethys Oceans in the Western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 18(6): 637–650. https://doi.org/10.1016/s1367-9120(00)00011-0
    McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Reviews in Mineralogy and Geochemistry, 21(1): 169–200
    Pan, Y. S., 1996. Geological Evolution of the Karakorum and Kunlun Mountains. Seismological Press, Beijing (in Chinese with English Abstract)
    Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218–229. https://doi.org/10.1016/j.precamres.2011.07.004
    Ren, M. H., 2004. Partitioning of Sr, Ba, Rb, Y, and LREE between Alkali Feldspar and Peraluminous Silicic Magma. American Mineralogist, 89(8/9): 1290–1303. https://doi.org/10.2138/am-2004-8-918
    Tang, M., Chu, X., Hao, J. H., et al., 2021. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728–731. https://doi.org/10.1126/science.abf1876
    Tang, M., Erdman, M., Eldridge, G., et al., 2018. The Redox "Filter" beneath Magmatic Orogens and the Formation of Continental Crust. Science Advances, 4(5): eaar4444. https://doi.org/10.1126/sciadv.aar4444
    Tang, M., Ji, W. Q., Chu, X., et al., 2020. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons. Geology, 49(1): 76–80. https://doi.org/10.1130/g47745.1
    Wang, C., Wang, Y. H., Liu, L., et al., 2014. The Paleoproterozoic Magmatic-Metamorphic Events and Cover Sediments of the Tiekelik Belt and Their Tectonic Implications for the Southern Margin of the Tarim Craton, Northwestern China. Precambrian Research, 254: 210–225. https://doi.org/10.1016/j.precamres.2014.08.018
    Wang, C., Zhang, J. H., Li, M., et al., 2015. Generation of ca. 900–870 Ma Bimodal Rifting Volcanism along the Southwestern Margin of the Tarim Craton and Its Implications for the Tarim-North China Connection in the Early Neoproterozoic. Journal of Asian Earth Sciences, 113: 610–625. https://doi.org/10.1016/j.jseaes.2015.08.002
    Wang, J. G., Hu, X. M., Wu, F. Y., et al., 2010. Provenance of the Liuqu Conglomerate in Southern Tibet: A Paleogene Erosional Record of the Himalayan-Tibetan Orogen. Sedimentary Geology, 231(3/4): 74–84. https://doi.org/10.1016/j.sedgeo.2010.09.004
    Wang, L., Han, C., Liu, Y., et al., 2019. Petroleum Geologic Characteristics and Favorable Area Screening of Sinian, Tarim Basin of China. Henan Science, 37(10): 1651–1658 (in Chinese with English Abstract)
    Wang, P., 2001. Ordovician Graptolite Bearing Beds from Kandelike, West Kunlun Mts. Journal of Stratigraphy, 25(2): 123–124 (in Chinese with English Abstract)
    Wang, P., Zhao, G. C., Han, Y. G., et al., 2020. Timing of the Final Closure of the Proto-Tethys Ocean: Constraints from Provenance of Early Paleozoic Sedimentary Rocks in West Kunlun, NW China. Gondwana Research, 84: 151–162. https://doi.org/10.1016/j.gr.2020.04.001
    Wang, W., Cawood, P. A., Pandit, M. K., et al., 2021. Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 49(2): 228–232. https://doi.org/10.1130/g48308.1
    Wang, W., Cawood, P. A., Pandit, M. K., et al., 2019. No Collision between Eastern and Western Gondwana at Their Northern Extent. Geology, 47(4): 308–312. https://doi.org/10.1130/g45745.1
    Wang, W., Cawood, P. A., Zhou, M. F., et al., 2017. Low-δ18O Rhyolites from the Malani Igneous Suite: A Positive Test for South China and NW India Linkage in Rodinia. Geophysical Research Letters, 44(20): 10298–10305. https://doi.org/10.1002/2017gl074717
    Wang, Z. H., Li, J. L., Hou, Q. L., et al., 2000. Geology, Geochemistry and Genesis of the Kuda Ophiolite, Western Kunlun, China. Scientia Geologica Sinica, 35(2): 151–160 (in Chinese with English Abstract)
    Xiao, W. J., Windley, B., Hao, J., et al., 2002. Arc-Ophiolite Obduction in the Western Kunlun Range (China): Implications for the Palaeozoic Evolution of Central Asia. Journal of the Geological Society, 159(5): 517–528. https://doi.org/10.1144/0016-764901-09
    Xiao, X. C., Wang, J., Su, L., et al., 2003. A Further Discussion of the Küda Ophiolite, West Kunlun, and Its Tectonic Significance. Regional Geology of China, 22(10): 745–750 (in Chinese with English Abstract)
    Yang, Z. Y., Luo, P., Liu, B., et al., 2017. The Difference and Sedimentation of Two Black Rock Series from Yurtus Formation during the Earliest Cambrian in the Aksu Area of Tarim Basin, Northwest China. Acta Petrologica Sinica, 33(6): 1893–1918 (in Chinese with English Abstract)
    Yuan, C., Sun, M., Zhou, M. F., et al., 2002. Tectonic Evolution of the West Kunlun: Geochronologic and Geochemical Constraints from Kudi Granitoids. International Geology Review, 44(7): 653–669. https://doi.org/10.2747/0020-6814.44.7.653
    Yuan, C., Sun, M., Zhou, M. F., et al., 2005. Geochemistry and Petrogenesis of the Yishak Volcanic Sequence, Kudi Ophiolite, West Kunlun (NW China): Implications for the Magmatic Evolution in a Subduction Zone Environment. Contributions to Mineralogy and Petrology, 150: 195–211. https://doi.org/10.1007/s00410-005-0012-0
    Zhang, C. L., Yu, H. F., Shen, J. L., et al., 2004. Zircon SHRIMP age determination of the giant crystal gabbro and basalt in Kudi, west Kunlun, Dismembering of the Kudi ophiolite. Geological Review, 50: 639–643 (in Chinese with Engliash Abstract)
    Zhang, C. L., Ye, X. T., Zou, H. B., et al., 2006. Neoproterozoic Bimodal Intrusive Complex in the Southwestern Tarim Block, Northwest China: Age, Geochemistry, and Implications for the Rifting of Rodinia. International Geology Review, 48(2): 112–128. https://doi.org/10.2747/0020-6814.48.2.112
    Zhang, C. L., Zou, H. B., Ye, X. T., et al., 2019. Tectonic Evolution of the West Kunlun Orogenic Belt along the Northern Margin of the Tibetan Plateau: Implications for the Assembly of the Tarim Terrane to Gondwana. Geoscience Frontiers, 10(3): 973–988. https://doi.org/10.1016/j.gsf.2018.05.006
    Zhang, C. L., Zou, H. B., Ye, X. T., et al., 2018. Tectonic Evolution of the NE Section of the Pamir Plateau: New Evidence from Field Observations and Zircon U-Pb Geochronology. Tectonophysics, 723: 27–40. https://doi.org/10.1016/j.tecto.2017.11.036
    Zhang, Q. C., Wu, Z. H., Chen, X. H., et al., 2019. Proto-Tethys Oceanic Slab Break-off: Insights from Early Paleozoic Magmatic Diversity in the West Kunlun Orogen, NW Tibetan Plateau. Lithos, 346: 105147. https://doi.org/10.1016/j.lithos.2019.07.014
    Zhang, R. Y., Ao, W. H., Zhao, Y., 2023. U-Pb Zircon Ages and Geochemistry of the Metasedimentary Rocks from the Foping Area in the South Qinling Belt: Evidence for Early Devonian Amalgamation between North China and South China Blocks. Journal of Earth Science, 34(4): 1112–1127. https://doi.org/10.1007/s12583-022-1608-2
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1–1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1/2/3/4): 125–162. https://doi.org/10.1016/s0012-8252(02)00073-9
    Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262–286. https://doi.org/10.1016/j.earscirev.2018.10.003
    Zhu, G. Y., Du, D. D., Chen, W. Y., et al., 2017. The Discovery and Exploration Significance of the Old Thick Black Mudstones in the Southwest Margin of Tarim Basin. Acta Petrolei Sinica, 38(12): 1335–1342, 1370 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(482) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return