The ocean crust remnants of the Proto-Tethys were preserved as the Kudi ophiolites in the West Kunlun Orogenic Belt (WKOB), and its evolutionary history was mainly constructed by research on igneous or metamorphic rocks in the WKOB. Sedimentary rocks in the WKOB received little attention in the past; however, they could provide important constraints on the evolution of the oceanic lithosphere. Here, a series of shales and greywackes found in the Kudi area of WKOB were studied to constrain their depositional ages and explore their significance in the evolution of the Proto-Tethys oceanic crust. U-Pb dating and europium anomaly (Eu/Eu*) were analyzed for detrital zircons from greywackes interlayers, while bulk rare earth elements and yttrium (REY) of the shales were measured. Detrital zircons U-Pb ages yielded a maximum depositional age of 436 Ma for the greywackes and black shales, while the REY distribution patterns of the black shales are similar to those of the Tarim Ordovician Saergan shales. Accordingly, the studied WKOB black shales were deposited in the Proto-Tethys Ocean during the Late Ordovician-Early Silurian period. The maximum depositional age at 436 Ma may represent a minimum closure time of the Proto-Tethys Ocean, which is also supported by the absence of increases in Eu/Eu* values during the Late Ordovician-Early Silurian. Besides, our Eu/Eu* values in detrital zircons indicate diminished orogenesis during the Archean to Mesoproterozoic, subduction-related accretion at the margins of the supercontinent Rodinia during the Neoproterozoic.