Citation: | Lefan Zhan, Shuyun Cao, Yanlong Dong, Wenyuan Li. Strain Localized Deformation Variation of a Small-Scale Ductile Shear Zone. Journal of Earth Science, 2023, 34(2): 409-430. doi: 10.1007/s12583-022-1681-6 |
A continental-scale strike-slip shear zone frequently presents a long-lasting deformation and physical expression of strain localization in a middle to lower crustal level. However, the deformation evolution of strain localization at a small-scale remains unclear. This study investigated < 10 cm wide shear zones developing in undeformed granodiorites exposed at the boundary of the continental-scale Gaoligong strike-slip shear zone. The small-scale ductile shear zones exhibit a typical transition from protomylonite, mylonite to extremely deformed ultramylonite, and decreasing mineral size from coarse-grained aggregates to extremely fine-grained mixed phases. Shearing sense indicators such as hornblende and feldspar porphyroclasts in the shear zone are the more significantly low-strain zone of mylonite. The microstructure and EBSD results revealed that the small-scale shear zone experienced ductile deformation under medium-high temperature conditions. Quartz aggregates suggested a consistent temperature with an irregular feature, exhibiting a dominated high-temperature prism <
Abers, G. A., van Keken, P. E., Wilson, C. R., 2020. Deep Decoupling in Subduction Zones: Observations and Temperature Limits. Geosphere, 16(6): 1408–1424. https://doi.org/10.1130/ges02278.1 |
Ahanger, M. A., Jeelani, G., 2022. Deformation Kinematics of Main Central Thrust Zone(MCTZ) in the Western Himalayas. Journal of Earth Science, 33(2): 452–461. https://doi.org/10.1007/s12583-020-1059-6 |
Altenberger, U., Wilhelm, S., 2000. Ductile Deformation of K-Feldspar in Dry Eclogite Facies Shear Zones in the Bergen Arcs, Norway. Tectonophysics, 320(2): 107–121. https://doi.org/10.1016/s0040-1951(00)00048-2 |
Behrmann, J., Seckel, C., 2007. Structures, Flow Stresses, and Estimated Strain Rates in Metamorphic Rocks of the Small Cyclades Islands Iraklia and Schinoussa (Aegean Sea, Greece). Geotectonic Research, 95: 1–11. https://doi.org/10.1127/1864-5658/07/0095-0001 |
Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171–192. https://doi.org/10.1016/j.earscirev.2013.09.008 |
Bestmann, M., Pennacchioni, G., 2015. Ti Distribution in Quartz across a Heterogeneous Shear Zone within a Granodiorite: The Effect of Deformation Mechanism and Strain on Ti Resetting. Lithos, 227: 37–56. https://doi.org/10.1016/j.lithos.2015.03.009 |
Bhattacharya, A. R., Weber, K., 2004. Fabric Development during Shear Deformation in the Main Central Thrust Zone, NW-Himalaya, India. Tectonophysics, 387(1/2/3/4): 23–46. https://doi.org/10.1016/j.tecto.2 004.04.026 doi: 10.1016/j.tecto.2004.04.026 |
Bistacchi, A., Massironi, M., Menegon, L., 2010. Three-Dimensional Characterization of a Crustal-Scale Fault Zone: The Pusteria and Sprechenstein Fault System (Eastern Alps). Journal of Structural Geology, 32(12): 2022–2041. https://doi.org/10.1016/j.jsg.2010.06.003 |
Blundy, J. D., Holland, T. J. B., 1990. Calcic Amphibole Equilibria and a New Amphibole-Plagioclase Geothermometer. Contributions to Mineralogy and Petrology, 104(2): 208–224. https://doi.org/10.1007/bf00306444 |
Bons, P. D., Jessell, M. W., 1999. Micro-Shear Zones in Experimentally Deformed Octachloropropane. Journal of Structural Geology, 21(3): 323–334. https://doi.org/10.1016/s0191-8141(98)90116-x |
Brown, M., Solar, G. S., 1998. Shear-Zone Systems and Melts: Feedback Relations and Self-Organization in Orogenic Belts. Journal of Structural Geology, 20(2/3): 211–227. https://doi.org/10.1016/s0191-8141(97)00068-0 |
Cao, S. Y., Liu, J. L., Leiss, B., 2010. Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan, SW Yunnan, China. Journal of Structural Geology, 32(5): 606–622. https://doi.org/10.1016/j.jsg.2010.03.012 |
Cao, S. Y., Liu, J. L., Leiss, B., et al., 2011. Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone: Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif, SE Tibet, China. Gondwana Research, 19(4): 975–993. https://doi.org/10.1016/j.gr.2010.10.006 |
Cao, S. Y., Neubauer, F., 2016. Deep Crustal Expressions of Exhumed Strike-Slip Fault Systems: Shear Zone Initiation on Rheological Boundaries. Earth-Science Reviews, 162: 155–176. https://doi.org/10.1 016/j.earscirev.2016.09.010 doi: 10.1016/j.earscirev.2016.09.010 |
Cao, S. Y., Neubauer, F., Bernroider, M., et al., 2013. Structures, Microfabrics and Textures of the Cordilleran-Type Rechnitz Metamorphic Core Complex, Eastern Alps. Tectonophysics, 608: 1201–1225. https://doi.org/10.1016/j.tecto.2013.06.025 |
Cao, S. Y., Neubauer, F., Bernroider, M., et al., 2013. The Lateral Boundary of a Metamorphic Core Complex: The Moutsounas Shear Zone on Naxos, Cyclades, Greece. Journal of Structural Geology, 54: 103–128. https://doi.org/10.1016/j.jsg.2013.07.002 |
Cao, S. Y., Neubauer, F., Liu, J. L., et al., 2017. Rheological Weakening of High-Grade Mylonites during Low-Temperature Retrogression: The Exhumed Continental Ailao Shan-Red River Fault Zone, SE Asia. Journal of Asian Earth Sciences, 139: 40–60. https://doi.org/10.1016/j.jseaes.2016.10.002 |
Cavalcante, C., Lagoeiro, L., Fossen, H., et al., 2018. Temperature Constraints on Microfabric Patterns in Quartzofeldsphatic Mylonites, Ribeira Belt (SE Brazil). Journal of Structural Geology, 115: 243–262. https://doi.org/10.1016/j.jsg.2018.07.013 |
Ceccato, A., Goncalves, P., Pennacchioni, G., 2020. Temperature, Fluid Content and Rheology of Localized Ductile Shear Zones in Subsolidus Cooling Plutons. Journal of Metamorphic Geology, 38(8): 881–903. https://doi.org/10.1111/jmg.12553 |
Ceccato, A., Menegon, L., Pennacchioni, G., et al., 2018. Myrmekite and Strain Weakening in Granitoid Mylonites. Solid Earth, 9(6): 1399–1419. https://doi.org/10.5194/se-9-1399-2018 |
Chen, I. W., Argon, A. S., 1979. Grain Boundary and Interphase Boundary Sliding in Power Law Creep. Acta Metallurgica, 27(5): 749–754. https://doi.org/10.1016/0001-6160(79)90108-1 |
Chen, K. L., Scales, M., Kyriakides, S., 2018. Ductile Failure under Combined Tension and Shear. Journal of Physics Conference Series, 1063(1): 012163. https://doi.org/10.1088/1742-6596/1063/1/012163 |
Cheng, X. M., Cao, S. Y., Li, J. Y., et al., 2018. Metamorphic, Deformation, Fluids and Geological Significance of Low-Temperature Retrograde Mylonites of Diancangshan Metamorphic Massif along Ailaoshan-Red River Strike-Slip Fault Zone, Yunnan, China. Science China Earth Sciences, 61(8): 1023–1041. https://doi.org/10.1007/s11430-017-9194-4 |
Chiu, Y. P., Yeh, M. W., Wu, K. H., et al., 2018. Transition from Extrusion to Flow Tectonism around the Eastern Himalaya Syntaxis. GSA Bulletin, 130(9/10): 1675–1696. https://doi.org/10.1130/b31811.1 |
Collettini, C., Niemeijer, A., Viti, C., et al., 2009. Fault Zone Fabric and Fault Weakness. Nature, 462(7275): 907–910. https://doi.org/10.1038/nature08585 |
Cunningham, W. D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290(1): 1–12. https://doi.org/10.1144/sp290.1 |
Czaplińska, D., Piazolo, S., Zibra, I., 2015. The Influence of Phase and Grain Size Distribution on the Dynamics of Strain Localization in Polymineralic Rocks. Journal of Structural Geology, 72: 15–32. https://doi.org/10.1016/j.jsg.2015.01.001 |
Dang, J. X., Zhou, Y. S., Rybacki, E., et al., 2017. An Experimental Study on the Brittle-Plastic Transition during Deformation of Granite. Journal of Asian Earth Sciences, 139: 30–39. https://doi.org/10.1016/j.jseaes.2016.08.023 |
Dayem, K. E., Houseman, G. A., Molnar, P., 2009. Localization of Shear along a Lithospheric Strength Discontinuity: Application of a Continuous Deformation Model to the Boundary between Tibet and the Tarim Basin. Tectonics, 28(3): TC3002.1–TC3002.15. https://doi.org/10.1029/2008tc002264 |
Dong, Y. L., Cao, S. Y., Cheng, X. M., et al., 2019. Grain-Size Reduction of Feldspar and Flow of Deformed Granites within the Gaoligong Shear Zone, Southwestern Yunnan, China. Science China Earth Sciences, 62(9): 1379–1398. https://doi.org/10.1007/s11430-018-9351-8 |
Dong, Y. L., Cao, S. Y., Neubauer, F., et al., 2022. Exhumation of the Crustal-Scale Gaoligong Strike-Slip Shear Belt in SE Asia. Journal of the Geological Society, 179(2): jgs2021-038. https://doi.org/10.1144/jgs2021-038 |
Drury, M. R., Humphreys, F. J., 1988. Microstructural Shear Criteria Associated with Grain-Boundary Sliding during Ductile Deformation. Journal of Structural Geology, 10(1): 83–89. https://doi.org/10.1016/0191-8141(88)90130-7 |
Egydio-Silva, M., Vauchez, A., Bascou, J., et al., 2002. High-Temperature Deformation in the Neoproterozoic Transpressional Ribeira Belt, Southeast Brazil. Tectonophysics, 352(1/2): 203–224. https://doi.org/10.1016/s0040-1951(02)00197-x |
Evans, D. M., Boadi, I., Byemelwa, L., et al., 2000. Kabanga Magmatic Nickel Sulphide Deposits, Tanzania: Morphology and Geochemistry of Associated Intrusions. Journal of African Earth Sciences, 30(3): 651–674. https://doi.org/10.1016/S0899-5362(00)00044-0. |
Fagereng, Å., Beall, A., 2021. Is Complex Fault Zone Behaviour a Reflection of Rheological Heterogeneity? Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 379(2193): 20190421. https://doi.org/10.1098/rsta.2019.0421 |
Faulkner, D. R., Rutter, E. H., 2001. Can the Maintenance of Overpressured Fluids in Large Strike-Slip Fault Zones Explain Their Apparent Weakness? Geology, 29(6): 503. https://doi.org/10.1130/0091-7613(2001)0290503:ctmoof>2.0.co;2 doi: 10.1130/0091-7613(2001)0290503:ctmoof>2.0.co;2 |
Finch, M. A., Weinberg, R. F., Hunter, N. J. R., 2016. Water Loss and the Origin of Thick Ultramylonites. Geology, 44(8): 599–602. https://doi.org/10.1130/g37972.1 |
Fliervoet, T. F., White, S. H., Drury, M. R., 1997. Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist- and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia. Journal of Structural Geology, 19(12): 1495–1520. https://doi.org/10.1016/s0191-8141(97)00076-x |
Fossen, H., Cavalcante, G. C. G., 2017. Shear Zones―A Review. Earth-Science Reviews, 171: 434–455. https://doi.org/10.1016/j.earscirev.2 017.05.002 doi: 10.1016/j.earscirev.2017.05.002 |
Franěk, J., Schulmann, K., Lexa, O., 2006. Kinematic and Rheological Model of Exhumation of High Pressure Granulites in the Variscan Orogenic Root: Example of the Blanský Les Granulite, Bohemian Massif, Czech Republic. Mineralogy and Petrology, 86(3): 253–276. https://doi.org/10.1007/s00710-005-0114-4 |
Fusseis, F., Regenauer-Lieb, K., Liu, J., et al., 2009. Creep Cavitation can Establish a Dynamic Granular Fluid Pump in Ductile Shear Zones. Nature, 459(7249): 974–977. https://doi.org/10.1038/nature08051 |
Ganade de Araujo, C. E., Weinberg, R. F., Cordani, U. G., 2014. Extruding the Borborema Province (NE-Brazil): A Two-Stage Neoproterozoic Collision Process. Terra Nova, 26(2): 157–168. https://doi.org/10.1111/ter.12084 |
Gandais, M., Willaime, C., 1984. Mechanical Properties of Feldspars. Feldspars and Feldspathoids. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-015-6929-3_6 |
Gibert, B., Mainprice, D., 2009. Effect of Crystal Preferred Orientations on the Thermal Diffusivity of Quartz Polycrystalline Aggregates at High Temperature. Tectonophysics, 465(1/2/3/4): 150–163. https://doi.org/10.1016/j.tecto.2008.11.006 |
Gower, R. J. W., Simpson, C., 1992. Phase Boundary Mobility in Naturally Deformed, High-Grade Quartzofeldspathic Rocks: Evidence for Diffusional Creep. Journal of Structural Geology, 14(3): 301–313. https://doi.org/10.1016/0191-8141(92)90088-e |
Handy, M. R., 1989. Deformation Regimes and the Rheological Evolution of Fault Zones in the Lithosphere: The Effects of Pressure, Temperature, Grainsize and Time. Tectonophysics, 163(1/2): 119–152. https://doi.org/10.1016/0040-1951(89)90122-4 |
Hanmer, S., 1988. Great Slave Lake Shear Zone, Canadian Shield: Reconstructed Vertical Profile of a Crustal-Scale Fault Zone. Tectonophysics, 149(3/4): 245–264. https://doi.org/10.1016/0040-1951(88)90176-x |
Hansen, L. N., Cheadle, M. J., John, B. E., et al., 2013. Mylonitic Deformation at the Kane Oceanic Core Complex: Implications for the Rheological Behavior of Oceanic Detachment Faults. Geochemistry, Geophysics, Geosystems, 14(8): 3085–3108. https://doi.org/10.1002/ggge.20184 |
Heidelbach, F., Post, A., Tullis, J., 2000. Crystallographic Preferred Orientation in Albite Samples Deformed Experimentally by Dislocation and Solution Precipitation Creep. Journal of Structural Geology, 22(11/12): 1649–1661. https://doi.org/10.1016/s0191-8141(0 0)00072-9 doi: 10.1016/s0191-8141(00)00072-9 |
Hippertt, J. F., 1998. Breakdown of Feldspar, Volume Gain and Lateral Mass Transfer during Mylonitization of Granitoid in a Low Metamorphic Grade Shear Zone. Journal of Structural Geology, 20(2/3): 175–193. https://doi.org/10.1016/S0191-8141(97)00083-7 |
Hippertt, J., Rocha, A., Lana, C., et al., 2001. Quartz Plastic Segregation and Ribbon Development in High-Grade Striped Gneisses. Journal of Structural Geology, 23(1): 67–80. https://doi.org/10.1016/s0191-8141(00)00129-2 |
Hirth, G., Teyssier, C., Dunlap, J. W., 2001. An Evaluation of Quartzite Flow Laws Based on Comparisons between Experimentally and Naturally Deformed Rocks. International Journal of Earth Sciences, 90(1): 77–87. https://doi.org/10.1007/s005310000152 |
Hirth, G., Tullis, J., 1992. Dislocation Creep Regimes in Quartz Aggregates. Journal of Structural Geology, 14(2): 145–159. https://doi.org/10.1016/0191-8141(92)90053-y |
Hobbs, B. E., 1985. The Geological Significance of Microfabric Analysis. Preferred Orientation in Deformed Metal and Rocks. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-744020-0.50027-4 |
Holland, T., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116(4): 433–447. https://doi.org/10.1007/bf00310910 |
Hollister, L. S., Grissom, G. C., Peters, E. K., et al., 1987. Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons. American Mineralogist, 72(3/4): 231–239 |
Holyoke, C. W., Tullis, J., 2006. Formation and Maintenance of Shear Zones. Geology, 34(2): 105. https://doi.org/10.1130/g22116.1 |
Hong, M., Shao, D. S., Wu, T. F., et al., 2018. Short-Impending Earthquake Anomaly Index Extraction of GNSS Continuous Observation Data in Yunnan, Southwestern China. Journal of Earth Science, 29(1): 230–236. https://doi.org/10.1007/s12583-018-0826-0 |
Imber, J., Holdsworth, R. E., Butler, C. A., et al., 1997. Fault-Zone Weakening Processes along the Reactivated Outer Hebrides Fault Zone, Scotland. Journal of the Geological Society, 154(1): 105–109. https://doi.org/10.1144/gsjgs.154.1.0105 |
Ishii, K., Kanagawa, K., Shigematsu, N., et al., 2007. High Ductility of K-Feldspar and Development of Granitic Banded Ultramylonite in the Ryoke Metamorphic Belt, SW Japan. Journal of Structural Geology, 29(6): 1083–1098. https://doi.org/10.1016/j.jsg.2007.02.008 |
Ji, J. Q., Zhong, D. L., Sang, H. Q., et al., 2000. Dating of Two Metamorphic Events on the Basalt Granulite from the Nabang Area on the Border of China and Burma. Acta Petrologica Sinica, 16(2): 227–232 |
Ji, J., Zhong, D., Sang, H., et al., 2000a. The Western Boundary of Extrusion Blocks in the Southeastern Tibetan Plateau. Chinese Science Bulletin, 45(10): 876–881 doi: 10.1007/BF02886191 |
Kilian, R., Heilbronner, R., Stünitz, H., 2011. Quartz Grain Size Reduction in a Granitoid Rock and the Transition from Dislocation to Diffusion Creep. Journal of Structural Geology, 33(8): 1265–1284. https://doi.org/10.1016/j.jsg.2011.05.004 |
Kohlstedt, D. L., 2006. The Role of Water in High-Temperature Rock Deformation. Reviews in Mineralogy and Geochemistry, 62(1): 377–396. https://doi.org/10.2138/rmg.2006.62.16 |
Kronenberg, A. K., 1994. Hydrogen Speciation and Chemical Weakening of Quartz. Reviews in Mineralogy, 29: 123–176. https://doi.org/10.1515/9781501509698-009 |
Kruhl, J. H., 1987. Preferred Lattice Orientations of Plagioclase from Amphibolite and Greenschist Facies Rocks near the Insubric Line (Western Alps). Tectonophysics, 135(1/2/3): 233–242. https://doi.org/10.1016/0040-1951(87)90164-8 |
Kruse, R., Stünitz, H., Kunze, K., 2001. Dynamic Recrystallization Processes in Plagioclase Porphyroclasts. Journal of Structural Geology, 23(11): 1781–1802. https://doi.org/10.1016/s0191-8141(01)00030-x |
Langdon, T. G., 2006. Grain Boundary Sliding Revisited: Developments in Sliding over Four Decades. Journal of Materials Science, 41(3): 597–609. https://doi.org/10.1007/s10853-006-6476-0 |
Liu, J. H., Cao, S. Y., Zhou, D. K., et al., 2019. Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone. Earth Science, 44(5): 1716–1733 (in Chinese with English Abstract) |
Liu, J. L., 2017. Strain Localization and Strain Weakening in the Continental Middle Crust. Acta Petrologica Sinica, 33(6): 1653–1666 (in Chinese with English Abstract) |
Liu, S. Q., Zhang, B., Zhang, J. J., et al., 2022. Microstructures, Fabrics, and Seismic Properties of Mylonitic Amphibolites: Implications for Strain Localization in a Thickening Anisotropic Middle Crust of the North China Craton, Journal of Earth Science, https://doi.org/10.1007/s12583-021-1480-5 |
Liu, Z. C., Ji, J. Q., Sa, X., et al., 2018. Crustal Deformation and Tectonic Levels of Nujiang Gorge since the Miocene. Science China Earth Sciences, 61(1): 93–108. https://doi.org/10.1007/s11430-017-9116-x |
Luan, F. C., Paterson, M. S., 1992. Preparation and Deformation of Synthetic Aggregates of Quartz. Journal of Geophysical Research, 97(B1): 301. https://doi.org/10.1029/91jb01748 |
Mainprice, D., Bouchez, J. L., Blumenfeld, P., et al., 1986. Dominant c Slip in Naturally Deformed Quartz: Implications for Dramatic Plastic Softening at High Temperature. Geology, 14(10): 819. https://doi.org/10.1130/0091-7613(1986)14819: dcsind>2.0.co;2 doi: 10.1130/0091-7613(1986)14819:dcsind>2.0.co;2 |
Mancktelow, N. S., 2002. Finite-Element Modelling of Shear Zone Development in Viscoelastic Materials and Its Implications for Localisation of Partial Melting. Journal of Structural Geology, 24(6/7): 1045–1053. https://doi.org/10.1016/S0191-8141(01)00090-6 |
Mancktelow, N. S., 2008. Tectonic Pressure: Theoretical Concepts and Modelled Examples. Lithos, 103(1/2): 149–177. https://doi.org/10.101 6/j.lithos.2007.09.013 doi: 10.1016/j.lithos.2007.09.013 |
Mancktelow, N. S., Pennacchioni, G., 2004. The Influence of Grain Boundary Fluids on the Microstructure of Quartz-Feldspar Mylonites. Journal of Structural Geology, 26(1): 47–69. https://doi.org/10.1016/S0191-8141(03)00081-6 |
Mancktelow, N. S., Pennacchioni, G., 2005. The Control of Precursor Brittle Fracture and Fluid-Rock Interaction on the Development of Single and Paired Ductile Shear Zones. Journal of Structural Geology, 27(4): 645–661. https://doi.org/10.1016/j.jsg.2004.12.001 |
Mancktelow, N. S., Pennacchioni, G., 2013. Late Magmatic Healed Fractures in Granitoids and Their Influence on Subsequent Solid-State Deformation. Journal of Structural Geology, 57: 81–96. https://doi.org/10.1016/j.jsg.2013.09.006 |
Mancktelow, N., Pennacchioni, G., 2020. Intermittent Fracturing in the Middle Continental Crust as Evidence for Transient Switching of Principal Stress Axes Associated with the Subduction Zone Earthquake Cycle. Geology, 48(11): 1072–1076. https://doi.org/10.1130/g47625.1 |
Mansard, N., Raimbourg, H., Augier, R., et al., 2018. Large-Scale Strain Localization Induced by Phase Nucleation in Mid-Crustal Granitoids of the South Armorican Massif. Tectonophysics, 745: 46–65. https://doi.org/10.1016/j.tecto.2018.07.022 |
Martelat, J. -E., Schulmann, K., Lardeaux, J. -M., et al., 1999. Granulite Microfabrics and Deformation Mechanisms in Southern Madagascar. Journal of Structural Geology, 21(6): 671–687 doi: 10.1016/S0191-8141(99)00052-8 |
Martelat, J. E., Schulmann, K., Lardeaux, J. M., et al., 1999. Granulite Microfabrics and Deformation Mechanisms in Southern Madagascar. Journal of Structural Geology, 21(6): 671–687. https://doi.org/10.1016/S0191-8141(99)00052-8 |
Menegon, L., Pennacchioni, G., 2009. Local Shear Zone Pattern and Bulk Deformation in the Gran Paradiso Metagranite (NW Italian Alps). International Journal of Earth Sciences, 99(8): 1805–1825 |
Menegon, L., Pennacchioni, G., 2010. Local Shear Zone Pattern and Bulk Deformation in the Gran Paradiso Metagranite (NW Italian Alps). International Journal of Earth Sciences, 99(8): 1805–1825. https://doi.org/10.1007/s00531-009-0485-6 |
Menegon, L., Pennacchioni, G., Malaspina, N., et al., 2017. Earthquakes as Precursors of Ductile Shear Zones in the Dry and Strong Lower Crust. Geochemistry, Geophysics, Geosystems, 18(12): 4356–4374. https://doi.org/10.1002/2017gc007189 |
Menegon, L., Pennacchioni, G., Malaspina, N., et al., 2017. Earthquakes as Precursors of Ductile Shear Zones in the Dry and Strong Lower Crust. Geochemistry, Geophysics, Geosystems, 18(12): 4356–4374 doi: 10.1002/2017GC007189 |
Menegon, L., Pennacchioni, G., Spiess, R., 2008. Dissolution-Precipitation Creep of K-Feldspar in Mid-Crustal Granite Mylonites. Journal of Structural Geology, 30(5): 565–579. https://doi.org/10.1016/j.jsg.2008.02.001 |
Menegon, L., Pennacchioni, G., Spiess, R., 2008. Dissolution-Precipitation Creep of K-Feldspar in Mid-Crustal Granite Mylonites. Journal of Structural Geology, 30(5): 565–579 doi: 10.1016/j.jsg.2008.02.001 |
Miranda, E. A., Hirth, G., John, B. E., 2016. Microstructural Evidence for the Transition from Dislocation Creep to Dislocation-Accommodated Grain Boundary Sliding in Naturally Deformed Plagioclase. Journal of Structural Geology, 92: 30–45. https://doi.org/10.1016/j.jsg.2016.09.002 |
Miranda, E. A., Hirth, G., John, B. E., 2016. Microstructural Evidence for the Transition from Dislocation Creep to Dislocation-Accommodated Grain Boundary Sliding in Naturally Deformed Plagioclase. Journal of Structural Geology, 92: 30–45 doi: 10.1016/j.jsg.2016.09.002 |
Misra, S., Mandal, N., 2007. Localization of Plastic Zones in Rocks around Rigid Inclusions: Insights from Experimental and Theoretical Models. Journal of Geophysical Research, 112(B9): B09206. https://doi.org/10. 1029/2006jb004328 doi: 10.1029/2006jb004328 |
Montardi, Y., Mainprice, D., 1987. A Transmission Electron Microscopic Study of Natural Plastic Deformation of Calcic Plagioclases (an 68–70). Bulletin de Minéralogie, 110(1): 1–14. https://doi.org/10.3406/bu lmi.1987.8022 doi: 10.3406/bulmi.1987.8022 |
Morley, C. K., 2007. Variations in Late Cenozoic-Recent Strike-Slip and Oblique-Extensional Geometries, within Indochina: The Influence of Pre-Existing Fabrics. Journal of Structural Geology, 29(1): 36–58. https://doi.org/10.1016/j.jsg.2006.07.003 |
Morrow, C., Solum, J., Tembe, S., et al., 2007. Using Drill Cutting Separates to Estimate the Strength of Narrow Shear Zones at SAFOD. Geophysical Research Letters, 34(11): L11301. https://doi.org/10.1029/2007gl029665 |
Nevitt, J. M., Pollard, D. D., 2017. Impacts of Off-Fault Plasticity on Fault Slip and Interaction at the Base of the Seismogenic Zone. Geophysical Research Letters, 44(4): 1714–1723 |
Nevitt, J. M., Warren, J. M., Pollard, D. D., 2017. Testing Constitutive Equations for Brittle-Ductile Deformation Associated with Faulting in Granitic Rock. Journal of Geophysical Research: Solid Earth, 122(8): 6269–6293. https://doi.org/10.1002/2017jb014000 |
Oliot, E., Goncalves, P., Marquer, D., 2010. Role of Plagioclase and Reaction Softening in a Metagranite Shear Zone at Mid-Crustal Conditions (Gotthard Massif, Swiss Central Alps). Journal of Metamorphic Geology, 28(8): 849–871. https://doi.org/10.1111/j.1525-1314.2010.00897.x |
Oliot, E., Goncalves, P., Schulmann, K., et al., 2014. Mid-Crustal Shear Zone Formation in Granitic Rocks: Constraints from Quantitative Textural and Crystallographic Preferred Orientations Analyses. Tectonophysics, 612/613: 63–80. https://doi.org/10.1016/j.tecto.2013.11.032 |
Olsen, T. S., Kohlstedt, D. L., 1984. Analysis of Dislocations in some Naturally Deformed Plagioclase Feldspars. Physics and Chemistry of Minerals, 11(4): 153–160. https://doi.org/10.1007/bf00387845 |
Olsen, T. S., Kohlstedt, D. L., 1985. Natural Deformation and Recrystallization of Some Intermediate Plagioclase Feldspars. Tectonophysics, 111(1/2): 107–131. https://doi.org/10.1016/0040-1951(85)90067-8 |
Oriolo, S., Wemmer, K., Oyhantçabal, P., et al., 2018. Geochronology of Shear Zones―A Review. Earth-Science Reviews, 185: 665–683. https://doi.org/10.1016/j.earscirev.2018.07.007 |
Otani, M., Wallis, S., 2006. Quartz Lattice Preferred Orientation Patterns and Static Recrystallization: Natural Examples from the Ryoke Belt, Japan. Geology, 34(7): 561. https://doi.org/10.1130/g22430.1 |
Passchier, C. W., Trouw, R. A. J., 2005. Microtectonics, Springer, Berlin |
Pennacchioni, G., 2005. Control of the Geometry of Precursor Brittle Structures on the Type of Ductile Shear Zone in the Adamello Tonalites, Southern Alps (Italy). Journal of Structural Geology, 27(4): 627–644. https://doi.org/10.1016/j.jsg.2004.11.008 |
Pennacchioni, G., Mancktelow, N. S., 2018. Small-Scale Ductile Shear Zones: Neither Extending, nor Thickening, nor Narrowing. Earth-Science Reviews, 184: 1–12. https://doi.org/10.1016/j.earscirev.201 8.06.004 doi: 10.1016/j.earscirev.2018.06.004 |
Pennacchioni, G., Zucchi, E., 2013. High Temperature Fracturing and Ductile Deformation during Cooling of a Pluton: The Lake Edison Granodiorite (Sierra Nevada Batholith, California). Journal of Structural Geology, 50: 54–81. https://doi.org/10.1016/j.jsg.2012.06.001 |
Platt, J. P., 2015. Rheology of Two-Phase Systems: A Microphysical and Observational Approach. Journal of Structural Geology, 77: 213–227. https://doi.org/10.1016/j.jsg.2015.05.003 |
Popp, R. K., Virgo, D., Yoder, H. S., et al., 1995. An Experimental Study of Phase Equilibria and Fe Oxy-Component in Kaersutitic Amphibole; Implications for the fH2 and Alpha aH2O in the Upper Mantle. American Mineralogist, 80(5/6): 534–548. https://doi.org/10.2138/am-1995-5-613 |
Précigout, J., Prigent, C., Palasse, L., et al., 2017. Water Pumping in Mantle Shear Zones. Nature Communications, 8(1): 15736. https://doi.org/10. 1038/ncomms15736 doi: 10.1038/ncomms15736 |
Précigout, J., Stünitz, H., 2016. Evidence of Phase Nucleation during Olivine Diffusion Creep: A New Perspective for Mantle Strain Localisation. Earth and Planetary Science Letters, 455: 94–105. https://doi.org/10.1016/j.epsl.2016.09.029 |
Ratschbacher, L., Merle, O., Davy, P., et al., 1991. Lateral Extrusion in the Eastern Alps, Part 1: Boundary Conditions and Experiments Scaled for Gravity. Tectonics, 10(2): 245–256. https://doi.org/10.1029/90tc02622 |
Ridolfi, F., Renzulli, A., 2012. Calcic Amphiboles in Calc-Alkaline and Alkaline Magmas: Thermobarometric and Chemometric Empirical Equations Valid up to 1 130 ℃ and 2.2 GPa. Contributions to Mineralogy and Petrology, 163(5): 877–895. https://doi.org/10.1007/s00410-011-0704-6 |
Rosenberg, C. L., 2004. Shear Zones and Magma Ascent: A Model Based on a Review of the Tertiary Magmatism in the Alps. Tectonics, 23(3): TC3002. https://doi.org/10.1029/2003tc001526 |
Schmid, S. M., Casey, M., 1986. Complete Fabric Analysis of some Commonly Observed Quartz C-Axis Patterns. Mineral and Rock Deformation: Laboratory Studies. American Geophysical Union, Washington, D. C. https://doi.org/10.1029/gm036p0263 |
Schmid, S. M., Pfiffner, O. A., Froitzheim, N., et al., 1996. Geophysical-Geological Transect and Tectonic Evolution of the Swiss-Italian Alps. Tectonics, 15(5): 1036–1064. https://doi.org/10.1029/96tc00433 |
Schmidt, M. W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2): 304–310. https://doi.org/10.1007/bf00310745 |
Scholz, C. H., 1980. Shear Heating and the State of Stress on Faults. Journal of Geophysical Research: Solid Earth, 85(B11): 6174–6184 doi: 10.1029/JB085iB11p06174 |
Scholz, C. H., 1989. Mechanics of Faulting. Annual Review of Earth and Planetary Sciences, 17: 309–334. https://doi.org/10.1146/annurev.ea.1 7.050189.001521 doi: 10.1146/annurev.ea.17.050189.001521 |
Searle, M. P., Yeh, M. W., Lin, T. H., et al., 2010. Structural Constraints on the Timing of Left-Lateral Shear along the Red River Shear Zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. Geosphere, 6(4): 316–338. https://doi.org/10.1130/ges00580.1 |
Sibson, R. H., 1977. Fault Rocks and Fault Mechanisms. Journal of the Geological Society, 133(3): 191–213. https://doi.org/10.1144/gsjgs.13 3.3.0191 doi: 10.1144/gsjgs.133.3.0191 |
Spruzeniece, L., Piazolo, S., 2015. Strain Localization in Brittle-Ductile Shear Zones: Fluid-Abundant vs. Fluid-Limited Conditions (an Example from Wyangala Area, Australia). Solid Earth, 6(3): 881–901. https://doi.org/10.5194/se-6-881-2015 |
Stein, E., Dietl, C., 2001. Hornblende Thermobarometry of Granitoids from the Central Odenwald (Germany) and Their Implications for the Geotectonic Development of the Odenwald. Mineralogy and Petrology, 72(1): 185–207. https://doi.org/10.1007/s007100170033 |
Stipp, M., 2003. The Recrystallized Grain Size Piezometer for Quartz. Geophysical Research Letters, 30(21): 2088. https://doi.org/10.1029/2 003gl018444 doi: 10.1029/2003gl018444 |
Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002. The Eastern Tonale Fault Zone: A 'Natural Laboratory' for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700 ℃. Journal of Structural Geology, 24(12): 1861–1884. https://doi.org/10.1016/s0191-8141(02)00035-4 |
Stünitz, H., Fitz Gerald, J. D., Tullis, J., 2003. Dislocation Generation, Slip Systems, and Dynamic Recrystallization in Experimentally Deformed Plagioclase Single Crystals. Tectonophysics, 372(3/4): 215–233. https://doi.org/10.1016/s0040-1951(03)00241-5 |
Stünitz, H., Gerald, J. D. F., 1993. Deformation of Granitoids at Low Metamorphic Grade. Ⅱ: Granular Flow in Albite-Rich Mylonites. Tectonophysics, 221(3/4): 299–324. https://doi.org/10.1016/0040-1951(93)90164-f |
Tang, Y., Wang, D. B., Liao, S. Y., et al., 2020. Fabrics and 40Ar/39Ar Ages of Metamorphic Rocks in the Gaoligong Tectonic Belt: Implications for Cenozoic Metamorphism and Deformation in the SE Tibetan Plateau. Journal of Asian Earth Sciences, 192: 104270. https://doi.org/10.1016/j.jseaes.2020.104270 |
Tapponnier, P., Lacassin, R., Leloup, P. H., et al., 1990. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 343(6257): 431–437. https://doi.org/10.1038/343431a0 |
Tapponnier, P., Molnar, P., 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82: 2905–2930. https://doi.org/10.1 029/jb082i020p02905 doi: 10.1029/jb082i020p02905 |
Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611. https://doi.org/10.1130/0091-7613(1982)10611: petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2 |
Toy, V. G., Prior, D. J., Norris, R. J., 2008. Quartz Fabrics in the Alpine Fault Mylonites: Influence of Pre-Existing Preferred Orientations on Fabric Development during Progressive Uplift. Journal of Structural Geology, 30(5): 602–621. https://doi.org/10.1016/j.jsg.2008.01.001 |
Tribe, I. R., D'Lemos, R. S., 1996. Significance of a Hiatus in Down-Temperature Fabric Development within Syn-Tectonic Quartz Diorite Complexes, Channel Islands, UK. Journal of the Geological Society, 153(1): 127–138. https://doi.org/10.1144/gsjgs.153.1.0127 |
Tullis, J., Wenk, H. R., 1994. Effect of Muscovite on the Strength and Lattice Preferred Orientations of Experimentally Deformed Quartz Aggregates. Materials Science and Engineering: A, 175(1/2): 209–220. https://doi.org/10.1016/0921-5093(94)91060-x |
Tullis, J., Yund, R. A., 1987. Transition from Cataclastic Flow to Dislocation Creep of Feldspar: Mechanisms and Microstructures. Geology, 15(7): 606. https://doi.org/10.1130/0091-7613(1987)15606:tfcftd>2.0.co;2 doi: 10.1130/0091-7613(1987)15606:tfcftd>2.0.co;2 |
Tullis, J., Yund, R. A., 1991. Diffusion Creep in Feldspar Aggregates: Experimental Evidence. Journal of Structural Geology, 13(9): 987–1000. https://doi.org/10.1016/0191-8141(91)90051-j |
Twiss, R. J., 1977. Theory and Applicability of a Recrystallized Grain Size Paleopiezometer. Pure and Applied Geophysics, 115: 227–244 doi: 10.1007/BF01637105 |
Twiss, R. J., 1980. Static Theory of Size Variations with Stress for Subgrains and Dynamically Recrystallized Grains, U. S. G. S. Open-file Report, 665–683 |
Vannucchi, P., 2019. Scaly Fabric and Slip within Fault Zones. Geosphere, 15(2): 342–356. https://doi.org/10.1130/ges01651.1 |
Vauchez, A., Egydio-Silva, M., Babinski, M., et al., 2007. Deformation of a Pervasively Molten Middle Crust: Insights from the Neoproterozoic Ribeira-Araçuaí Orogen (SE Brazil). Terra Nova, 19(4): 278–286. https://doi.org/10.1111/j.1365-3121.2007.00747.x |
Wang, W., Song, Z., Tang, Y., et al., 2020. The Ailao Shan-Red River Shear Zone Revisited: Timing and Tectonic Implications. GSA Bulletin, 132(5/6): 1165–1182. https://doi.org/10.1130/b35220.1 |
Wang, Y. J., Fan, W. M., Zhang, Y. H., et al., 2006. Kinematics and 40Ar/39Ar Geochronology of the Gaoligong and Chongshan Shear Systems, Western Yunnan, China: Implications for Early Oligocene Tectonic Extrusion of SE Asia. Tectonophysics, 418(3/4): 235–254. https://doi.org/10.1016/j.tecto.2006.02.005 |
Wehrens, P., Berger, A., Peters, M., et al., 2016. Deformation at the Frictional-Viscous Transition: Evidence for Cycles of Fluid-Assisted Embrittlement and Ductile Deformation in the Granitoid Crust. Tectonophysics, 693: 66–84. https://doi.org/10.1016/j.tecto.2016.10.022 |
White, S. H., Knipe, R. J., 1978. Transformation- and Reaction-Enhanced Ductility in Rocks. Journal of the Geological Society, 135(5): 513–516. https://doi.org/10.1144/gsjgs.135.5.0513 |
Wibberley, C. A. J., Yielding, G., di Toro, G., 2008. Recent Advances in the Understanding of Fault Zone Internal Structure: A Review. Geological Society, London, Special Publications, 299(1): 5–33. https://doi.org/10.1144/sp299.2 |
Wintsch, R. P., Christoffersen, R., Kronenberg, A. K., 1995. Fluid-Rock Reaction Weakening of Fault Zones. Journal of Geophysical Research, 100: 13021–13032. https://doi.org/10.1029/94jb02622 |
Wintsch, R. P., Yi, K., 2002. Dissolution and Replacement Creep: A Significant Deformation Mechanism in Mid-Crustal Rocks. Journal of Structural Geology, 24(6/7): 1179–1193. https://doi.org/10.1016/s019 1-8141(01)00100-6 doi: 10.1016/s0191-8141(01)00100-6 |
Wirth, R., Voll, G., 1987. Cellular Intergrowth between Quartz and Sodium-Rich Plagioclase (Myrmekite)—An Analogue of Discontinuous Precipitation in Metal Alloys. Journal of Materials Science, 22(6): 1913–1918. https://doi.org/10.1007/bf01132916 |
Wise, D. U., Dunn, D. E., Engelder, J. T., et al., 1984. Fault-Related Rocks: Suggestions for Terminology. Geology, 12(7): 391. https://doi.org/10.1 130/0091-7613(1984)12391:frsft>2.0.co;2 doi: 10.1130/0091-7613(1984)12391:frsft>2.0.co;2 |
Xia, H. R., Liu, J. L., 2011. The Crystallographic Preferred Orientation of Quartz and Its Applications. Geological Bulletin of China, 30(1): 58–70 (in Chinese with English Abstract) |
Xu, Y. G., Yang, Q. J., Lan, J. B., et al., 2012. Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area, Western Yunnan: Constraints from Zircon U-Pb Ages and Hf Isotopes. Journal of Asian Earth Sciences, 53: 151–175. https://doi.org/10.1016/j.jseaes.2011.06.018 |
Xu, Z. Q., Wang, Q., Cai, Z. H., et al., 2015. Kinematics of the Tengchong Terrane in SE Tibet from the Late Eocene to Early Miocene: Insights from Coeval Mid-Crustal Detachments and Strike-Slip Shear Zones. Tectonophysics, 665: 127–148. https://doi.org/10.1016/j.tecto.201 5.0 9.033 doi: 10.1016/j.tecto.2015.09.033 |
Yamasaki, T., Wright, T. J., Houseman, G. A., 2014. Weak Ductile Shear Zone beneath a Major Strike-Slip Fault: Inferences from Earthquake Cycle Model Constrained by Geodetic Observations of the Western North Anatolian Fault Zone. Journal of Geophysical Research: Solid Earth, 119(4): 3678–3699. https://doi.org/10.1002/2013jb010347 |
Zhang, B., Chai, Z., Yin, C. Y., et al., 2017. Intra-Continental Transpression and Gneiss Doming in an Obliquely Convergent Regime in SE Asia. Journal of Structural Geology, 97: 48–70. https://doi.org/10.1016/j.jsg. 2017.02.010 doi: 10.1016/j.jsg.2017.02.010 |
Zhang, B., Zhang, J. J., Chang, Z. F., et al., 2012. The Biluoxueshan Transpressive Deformation Zone Monitored by Synkinematic Plutons, around the Eastern Himalayan Syntaxis. Tectonophysics, 574/575: 158–180. https://doi.org/10.1016/j.tecto.2012.08.017 |
Zhang, B., Zhang, J. J., Zhong, D. L., et al., 2012. Polystage Deformation of the Gaoligong Metamorphic Zone: Structures, 40Ar/39Ar Mica Ages, and Tectonic Implications. Journal of Structural Geology, 37: 1–18. https://doi.org/10.1016/j.jsg.2012.02.007 |
Zhang, J. Y., Peng, T. P., Fan, W. M., et al., 2018. Petrogenesis of the Early Cretaceous Granitoids and Its Mafic Enclaves in the Northern Tengchong Terrane, Southern Margin of the Tibetan Plateau and Its Tectonic Implications. Lithos, 318/319: 283–298. https://doi.org/10.10 16/j.lithos.2018.08.017 doi: 10.1016/j.lithos.2018.08.017 |
Zhong, D. L., Ding, L., 1996. Discussion on the Uplift Process and Mechanism of the Tibetan Plateau. Science China Earth Science, 26(4): 289–29 |
Zhong, D. L., Tapponnier, P., Wu, H. W., et al., 1990. Large-Scale Strike Slip Fault: The Major Structure of Intracontinental Deformation after Collision. Chinese Science Bulletin, 35(4): 304–309 (in Chinese with English Abstract) |
Zhong, D. L., Tapponnier, P., Wu, H. W., et al., 1990. Large-Scale Strike Slip Fault: The Major Structure Of Intracontinental Deformation After Collision. Science Bulletin, 4: 304–309 (in Chinese with English Abstract) |
Zhu, R. Z., Lai, S. C., Qin, J. F., et al., 2017. Late Early-Cretaceous Quartz Diorite-Granodiorite-Monzogranite Association from the Gaoligong Belt, Southeastern Tibet Plateau: Chemical Variations and Geodynamic Implications. Lithos, 288/289: 311–325. https://doi.org/10.1016/j.lithos.2017.07.021 |