Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 2
Apr 2023
Turn off MathJax
Article Contents
Lefan Zhan, Shuyun Cao, Yanlong Dong, Wenyuan Li. Strain Localized Deformation Variation of a Small-Scale Ductile Shear Zone. Journal of Earth Science, 2023, 34(2): 409-430. doi: 10.1007/s12583-022-1681-6
Citation: Lefan Zhan, Shuyun Cao, Yanlong Dong, Wenyuan Li. Strain Localized Deformation Variation of a Small-Scale Ductile Shear Zone. Journal of Earth Science, 2023, 34(2): 409-430. doi: 10.1007/s12583-022-1681-6

Strain Localized Deformation Variation of a Small-Scale Ductile Shear Zone

doi: 10.1007/s12583-022-1681-6
More Information
  • Corresponding author: Shuyun Cao, shuyun.cao@cug.edu.cn
  • Received Date: 17 Mar 2022
  • Accepted Date: 10 May 2022
  • Issue Publish Date: 30 Apr 2023
  • A continental-scale strike-slip shear zone frequently presents a long-lasting deformation and physical expression of strain localization in a middle to lower crustal level. However, the deformation evolution of strain localization at a small-scale remains unclear. This study investigated < 10 cm wide shear zones developing in undeformed granodiorites exposed at the boundary of the continental-scale Gaoligong strike-slip shear zone. The small-scale ductile shear zones exhibit a typical transition from protomylonite, mylonite to extremely deformed ultramylonite, and decreasing mineral size from coarse-grained aggregates to extremely fine-grained mixed phases. Shearing sense indicators such as hornblende and feldspar porphyroclasts in the shear zone are the more significantly low-strain zone of mylonite. The microstructure and EBSD results revealed that the small-scale shear zone experienced ductile deformation under medium-high temperature conditions. Quartz aggregates suggested a consistent temperature with an irregular feature, exhibiting a dominated high-temperature prism < a > slip system. Additionally, coarse-grained aggregates in the mylonite of the shear zone were deformed predominantly by dislocation creep, while ultra-plastic flow by viscous grain boundary sliding was an essential deformation process in the extremely fine-grained (~50 μm) mixed-phases in the ultramylonite. Microstructural-derived strain rates calculated from quartz paleopiezometry were on the order of 10-15 to 10-13 s-1 from low-strain mylonite to high strained ultramylonite. The localization and strain rate-limited process was fluid-assisted precipitation presenting transitions of compositions as hydrous retrogression of hornblende to mica during increasing deformation and exhumation. Furthermore, the potential occurrence of the small-scale shear zone was initiated at a middle-deep crust seated crustal condition dominated by the temperature-controlled formation and rheological weakening.

     

  • loading
  • Abers, G. A., van Keken, P. E., Wilson, C. R., 2020. Deep Decoupling in Subduction Zones: Observations and Temperature Limits. Geosphere, 16(6): 1408–1424. https://doi.org/10.1130/ges02278.1
    Ahanger, M. A., Jeelani, G., 2022. Deformation Kinematics of Main Central Thrust Zone(MCTZ) in the Western Himalayas. Journal of Earth Science, 33(2): 452–461. https://doi.org/10.1007/s12583-020-1059-6
    Altenberger, U., Wilhelm, S., 2000. Ductile Deformation of K-Feldspar in Dry Eclogite Facies Shear Zones in the Bergen Arcs, Norway. Tectonophysics, 320(2): 107–121. https://doi.org/10.1016/s0040-1951(00)00048-2
    Behrmann, J., Seckel, C., 2007. Structures, Flow Stresses, and Estimated Strain Rates in Metamorphic Rocks of the Small Cyclades Islands Iraklia and Schinoussa (Aegean Sea, Greece). Geotectonic Research, 95: 1–11. https://doi.org/10.1127/1864-5658/07/0095-0001
    Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171–192. https://doi.org/10.1016/j.earscirev.2013.09.008
    Bestmann, M., Pennacchioni, G., 2015. Ti Distribution in Quartz across a Heterogeneous Shear Zone within a Granodiorite: The Effect of Deformation Mechanism and Strain on Ti Resetting. Lithos, 227: 37–56. https://doi.org/10.1016/j.lithos.2015.03.009
    Bhattacharya, A. R., Weber, K., 2004. Fabric Development during Shear Deformation in the Main Central Thrust Zone, NW-Himalaya, India. Tectonophysics, 387(1/2/3/4): 23–46. https://doi.org/10.1016/j.tecto.2 004.04.026 doi: 10.1016/j.tecto.2004.04.026
    Bistacchi, A., Massironi, M., Menegon, L., 2010. Three-Dimensional Characterization of a Crustal-Scale Fault Zone: The Pusteria and Sprechenstein Fault System (Eastern Alps). Journal of Structural Geology, 32(12): 2022–2041. https://doi.org/10.1016/j.jsg.2010.06.003
    Blundy, J. D., Holland, T. J. B., 1990. Calcic Amphibole Equilibria and a New Amphibole-Plagioclase Geothermometer. Contributions to Mineralogy and Petrology, 104(2): 208–224. https://doi.org/10.1007/bf00306444
    Bons, P. D., Jessell, M. W., 1999. Micro-Shear Zones in Experimentally Deformed Octachloropropane. Journal of Structural Geology, 21(3): 323–334. https://doi.org/10.1016/s0191-8141(98)90116-x
    Brown, M., Solar, G. S., 1998. Shear-Zone Systems and Melts: Feedback Relations and Self-Organization in Orogenic Belts. Journal of Structural Geology, 20(2/3): 211–227. https://doi.org/10.1016/s0191-8141(97)00068-0
    Cao, S. Y., Liu, J. L., Leiss, B., 2010. Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan, SW Yunnan, China. Journal of Structural Geology, 32(5): 606–622. https://doi.org/10.1016/j.jsg.2010.03.012
    Cao, S. Y., Liu, J. L., Leiss, B., et al., 2011. Oligo-Miocene Shearing along the Ailao Shan-Red River Shear Zone: Constraints from Structural Analysis and Zircon U/Pb Geochronology of Magmatic Rocks in the Diancang Shan Massif, SE Tibet, China. Gondwana Research, 19(4): 975–993. https://doi.org/10.1016/j.gr.2010.10.006
    Cao, S. Y., Neubauer, F., 2016. Deep Crustal Expressions of Exhumed Strike-Slip Fault Systems: Shear Zone Initiation on Rheological Boundaries. Earth-Science Reviews, 162: 155–176. https://doi.org/10.1 016/j.earscirev.2016.09.010 doi: 10.1016/j.earscirev.2016.09.010
    Cao, S. Y., Neubauer, F., Bernroider, M., et al., 2013. Structures, Microfabrics and Textures of the Cordilleran-Type Rechnitz Metamorphic Core Complex, Eastern Alps. Tectonophysics, 608: 1201–1225. https://doi.org/10.1016/j.tecto.2013.06.025
    Cao, S. Y., Neubauer, F., Bernroider, M., et al., 2013. The Lateral Boundary of a Metamorphic Core Complex: The Moutsounas Shear Zone on Naxos, Cyclades, Greece. Journal of Structural Geology, 54: 103–128. https://doi.org/10.1016/j.jsg.2013.07.002
    Cao, S. Y., Neubauer, F., Liu, J. L., et al., 2017. Rheological Weakening of High-Grade Mylonites during Low-Temperature Retrogression: The Exhumed Continental Ailao Shan-Red River Fault Zone, SE Asia. Journal of Asian Earth Sciences, 139: 40–60. https://doi.org/10.1016/j.jseaes.2016.10.002
    Cavalcante, C., Lagoeiro, L., Fossen, H., et al., 2018. Temperature Constraints on Microfabric Patterns in Quartzofeldsphatic Mylonites, Ribeira Belt (SE Brazil). Journal of Structural Geology, 115: 243–262. https://doi.org/10.1016/j.jsg.2018.07.013
    Ceccato, A., Goncalves, P., Pennacchioni, G., 2020. Temperature, Fluid Content and Rheology of Localized Ductile Shear Zones in Subsolidus Cooling Plutons. Journal of Metamorphic Geology, 38(8): 881–903. https://doi.org/10.1111/jmg.12553
    Ceccato, A., Menegon, L., Pennacchioni, G., et al., 2018. Myrmekite and Strain Weakening in Granitoid Mylonites. Solid Earth, 9(6): 1399–1419. https://doi.org/10.5194/se-9-1399-2018
    Chen, I. W., Argon, A. S., 1979. Grain Boundary and Interphase Boundary Sliding in Power Law Creep. Acta Metallurgica, 27(5): 749–754. https://doi.org/10.1016/0001-6160(79)90108-1
    Chen, K. L., Scales, M., Kyriakides, S., 2018. Ductile Failure under Combined Tension and Shear. Journal of Physics Conference Series, 1063(1): 012163. https://doi.org/10.1088/1742-6596/1063/1/012163
    Cheng, X. M., Cao, S. Y., Li, J. Y., et al., 2018. Metamorphic, Deformation, Fluids and Geological Significance of Low-Temperature Retrograde Mylonites of Diancangshan Metamorphic Massif along Ailaoshan-Red River Strike-Slip Fault Zone, Yunnan, China. Science China Earth Sciences, 61(8): 1023–1041. https://doi.org/10.1007/s11430-017-9194-4
    Chiu, Y. P., Yeh, M. W., Wu, K. H., et al., 2018. Transition from Extrusion to Flow Tectonism around the Eastern Himalaya Syntaxis. GSA Bulletin, 130(9/10): 1675–1696. https://doi.org/10.1130/b31811.1
    Collettini, C., Niemeijer, A., Viti, C., et al., 2009. Fault Zone Fabric and Fault Weakness. Nature, 462(7275): 907–910. https://doi.org/10.1038/nature08585
    Cunningham, W. D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, London, Special Publications, 290(1): 1–12. https://doi.org/10.1144/sp290.1
    Czaplińska, D., Piazolo, S., Zibra, I., 2015. The Influence of Phase and Grain Size Distribution on the Dynamics of Strain Localization in Polymineralic Rocks. Journal of Structural Geology, 72: 15–32. https://doi.org/10.1016/j.jsg.2015.01.001
    Dang, J. X., Zhou, Y. S., Rybacki, E., et al., 2017. An Experimental Study on the Brittle-Plastic Transition during Deformation of Granite. Journal of Asian Earth Sciences, 139: 30–39. https://doi.org/10.1016/j.jseaes.2016.08.023
    Dayem, K. E., Houseman, G. A., Molnar, P., 2009. Localization of Shear along a Lithospheric Strength Discontinuity: Application of a Continuous Deformation Model to the Boundary between Tibet and the Tarim Basin. Tectonics, 28(3): TC3002.1–TC3002.15. https://doi.org/10.1029/2008tc002264
    Dong, Y. L., Cao, S. Y., Cheng, X. M., et al., 2019. Grain-Size Reduction of Feldspar and Flow of Deformed Granites within the Gaoligong Shear Zone, Southwestern Yunnan, China. Science China Earth Sciences, 62(9): 1379–1398. https://doi.org/10.1007/s11430-018-9351-8
    Dong, Y. L., Cao, S. Y., Neubauer, F., et al., 2022. Exhumation of the Crustal-Scale Gaoligong Strike-Slip Shear Belt in SE Asia. Journal of the Geological Society, 179(2): jgs2021-038. https://doi.org/10.1144/jgs2021-038
    Drury, M. R., Humphreys, F. J., 1988. Microstructural Shear Criteria Associated with Grain-Boundary Sliding during Ductile Deformation. Journal of Structural Geology, 10(1): 83–89. https://doi.org/10.1016/0191-8141(88)90130-7
    Egydio-Silva, M., Vauchez, A., Bascou, J., et al., 2002. High-Temperature Deformation in the Neoproterozoic Transpressional Ribeira Belt, Southeast Brazil. Tectonophysics, 352(1/2): 203–224. https://doi.org/10.1016/s0040-1951(02)00197-x
    Evans, D. M., Boadi, I., Byemelwa, L., et al., 2000. Kabanga Magmatic Nickel Sulphide Deposits, Tanzania: Morphology and Geochemistry of Associated Intrusions. Journal of African Earth Sciences, 30(3): 651–674. https://doi.org/10.1016/S0899-5362(00)00044-0.
    Fagereng, Å., Beall, A., 2021. Is Complex Fault Zone Behaviour a Reflection of Rheological Heterogeneity? Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 379(2193): 20190421. https://doi.org/10.1098/rsta.2019.0421
    Faulkner, D. R., Rutter, E. H., 2001. Can the Maintenance of Overpressured Fluids in Large Strike-Slip Fault Zones Explain Their Apparent Weakness? Geology, 29(6): 503. https://doi.org/10.1130/0091-7613(2001)0290503:ctmoof>2.0.co;2 doi: 10.1130/0091-7613(2001)0290503:ctmoof>2.0.co;2
    Finch, M. A., Weinberg, R. F., Hunter, N. J. R., 2016. Water Loss and the Origin of Thick Ultramylonites. Geology, 44(8): 599–602. https://doi.org/10.1130/g37972.1
    Fliervoet, T. F., White, S. H., Drury, M. R., 1997. Evidence for Dominant Grain-Boundary Sliding Deformation in Greenschist- and Amphibolite-Grade Polymineralic Ultramylonites from the Redbank Deformed Zone, Central Australia. Journal of Structural Geology, 19(12): 1495–1520. https://doi.org/10.1016/s0191-8141(97)00076-x
    Fossen, H., Cavalcante, G. C. G., 2017. Shear Zones―A Review. Earth-Science Reviews, 171: 434–455. https://doi.org/10.1016/j.earscirev.2 017.05.002 doi: 10.1016/j.earscirev.2017.05.002
    Franěk, J., Schulmann, K., Lexa, O., 2006. Kinematic and Rheological Model of Exhumation of High Pressure Granulites in the Variscan Orogenic Root: Example of the Blanský Les Granulite, Bohemian Massif, Czech Republic. Mineralogy and Petrology, 86(3): 253–276. https://doi.org/10.1007/s00710-005-0114-4
    Fusseis, F., Regenauer-Lieb, K., Liu, J., et al., 2009. Creep Cavitation can Establish a Dynamic Granular Fluid Pump in Ductile Shear Zones. Nature, 459(7249): 974–977. https://doi.org/10.1038/nature08051
    Ganade de Araujo, C. E., Weinberg, R. F., Cordani, U. G., 2014. Extruding the Borborema Province (NE-Brazil): A Two-Stage Neoproterozoic Collision Process. Terra Nova, 26(2): 157–168. https://doi.org/10.1111/ter.12084
    Gandais, M., Willaime, C., 1984. Mechanical Properties of Feldspars. Feldspars and Feldspathoids. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-015-6929-3_6
    Gibert, B., Mainprice, D., 2009. Effect of Crystal Preferred Orientations on the Thermal Diffusivity of Quartz Polycrystalline Aggregates at High Temperature. Tectonophysics, 465(1/2/3/4): 150–163. https://doi.org/10.1016/j.tecto.2008.11.006
    Gower, R. J. W., Simpson, C., 1992. Phase Boundary Mobility in Naturally Deformed, High-Grade Quartzofeldspathic Rocks: Evidence for Diffusional Creep. Journal of Structural Geology, 14(3): 301–313. https://doi.org/10.1016/0191-8141(92)90088-e
    Handy, M. R., 1989. Deformation Regimes and the Rheological Evolution of Fault Zones in the Lithosphere: The Effects of Pressure, Temperature, Grainsize and Time. Tectonophysics, 163(1/2): 119–152. https://doi.org/10.1016/0040-1951(89)90122-4
    Hanmer, S., 1988. Great Slave Lake Shear Zone, Canadian Shield: Reconstructed Vertical Profile of a Crustal-Scale Fault Zone. Tectonophysics, 149(3/4): 245–264. https://doi.org/10.1016/0040-1951(88)90176-x
    Hansen, L. N., Cheadle, M. J., John, B. E., et al., 2013. Mylonitic Deformation at the Kane Oceanic Core Complex: Implications for the Rheological Behavior of Oceanic Detachment Faults. Geochemistry, Geophysics, Geosystems, 14(8): 3085–3108. https://doi.org/10.1002/ggge.20184
    Heidelbach, F., Post, A., Tullis, J., 2000. Crystallographic Preferred Orientation in Albite Samples Deformed Experimentally by Dislocation and Solution Precipitation Creep. Journal of Structural Geology, 22(11/12): 1649–1661. https://doi.org/10.1016/s0191-8141(0 0)00072-9 doi: 10.1016/s0191-8141(00)00072-9
    Hippertt, J. F., 1998. Breakdown of Feldspar, Volume Gain and Lateral Mass Transfer during Mylonitization of Granitoid in a Low Metamorphic Grade Shear Zone. Journal of Structural Geology, 20(2/3): 175–193. https://doi.org/10.1016/S0191-8141(97)00083-7
    Hippertt, J., Rocha, A., Lana, C., et al., 2001. Quartz Plastic Segregation and Ribbon Development in High-Grade Striped Gneisses. Journal of Structural Geology, 23(1): 67–80. https://doi.org/10.1016/s0191-8141(00)00129-2
    Hirth, G., Teyssier, C., Dunlap, J. W., 2001. An Evaluation of Quartzite Flow Laws Based on Comparisons between Experimentally and Naturally Deformed Rocks. International Journal of Earth Sciences, 90(1): 77–87. https://doi.org/10.1007/s005310000152
    Hirth, G., Tullis, J., 1992. Dislocation Creep Regimes in Quartz Aggregates. Journal of Structural Geology, 14(2): 145–159. https://doi.org/10.1016/0191-8141(92)90053-y
    Hobbs, B. E., 1985. The Geological Significance of Microfabric Analysis. Preferred Orientation in Deformed Metal and Rocks. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-12-744020-0.50027-4
    Holland, T., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116(4): 433–447. https://doi.org/10.1007/bf00310910
    Hollister, L. S., Grissom, G. C., Peters, E. K., et al., 1987. Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons. American Mineralogist, 72(3/4): 231–239
    Holyoke, C. W., Tullis, J., 2006. Formation and Maintenance of Shear Zones. Geology, 34(2): 105. https://doi.org/10.1130/g22116.1
    Hong, M., Shao, D. S., Wu, T. F., et al., 2018. Short-Impending Earthquake Anomaly Index Extraction of GNSS Continuous Observation Data in Yunnan, Southwestern China. Journal of Earth Science, 29(1): 230–236. https://doi.org/10.1007/s12583-018-0826-0
    Imber, J., Holdsworth, R. E., Butler, C. A., et al., 1997. Fault-Zone Weakening Processes along the Reactivated Outer Hebrides Fault Zone, Scotland. Journal of the Geological Society, 154(1): 105–109. https://doi.org/10.1144/gsjgs.154.1.0105
    Ishii, K., Kanagawa, K., Shigematsu, N., et al., 2007. High Ductility of K-Feldspar and Development of Granitic Banded Ultramylonite in the Ryoke Metamorphic Belt, SW Japan. Journal of Structural Geology, 29(6): 1083–1098. https://doi.org/10.1016/j.jsg.2007.02.008
    Ji, J. Q., Zhong, D. L., Sang, H. Q., et al., 2000. Dating of Two Metamorphic Events on the Basalt Granulite from the Nabang Area on the Border of China and Burma. Acta Petrologica Sinica, 16(2): 227–232
    Ji, J., Zhong, D., Sang, H., et al., 2000a. The Western Boundary of Extrusion Blocks in the Southeastern Tibetan Plateau. Chinese Science Bulletin, 45(10): 876–881 doi: 10.1007/BF02886191
    Kilian, R., Heilbronner, R., Stünitz, H., 2011. Quartz Grain Size Reduction in a Granitoid Rock and the Transition from Dislocation to Diffusion Creep. Journal of Structural Geology, 33(8): 1265–1284. https://doi.org/10.1016/j.jsg.2011.05.004
    Kohlstedt, D. L., 2006. The Role of Water in High-Temperature Rock Deformation. Reviews in Mineralogy and Geochemistry, 62(1): 377–396. https://doi.org/10.2138/rmg.2006.62.16
    Kronenberg, A. K., 1994. Hydrogen Speciation and Chemical Weakening of Quartz. Reviews in Mineralogy, 29: 123–176. https://doi.org/10.1515/9781501509698-009
    Kruhl, J. H., 1987. Preferred Lattice Orientations of Plagioclase from Amphibolite and Greenschist Facies Rocks near the Insubric Line (Western Alps). Tectonophysics, 135(1/2/3): 233–242. https://doi.org/10.1016/0040-1951(87)90164-8
    Kruse, R., Stünitz, H., Kunze, K., 2001. Dynamic Recrystallization Processes in Plagioclase Porphyroclasts. Journal of Structural Geology, 23(11): 1781–1802. https://doi.org/10.1016/s0191-8141(01)00030-x
    Langdon, T. G., 2006. Grain Boundary Sliding Revisited: Developments in Sliding over Four Decades. Journal of Materials Science, 41(3): 597–609. https://doi.org/10.1007/s10853-006-6476-0
    Liu, J. H., Cao, S. Y., Zhou, D. K., et al., 2019. Deformation Characteristics and Seismic Wave Anisotropy of Amphibole in Amphibolite from Red River-Ailao Shan Shear Zone. Earth Science, 44(5): 1716–1733 (in Chinese with English Abstract)
    Liu, J. L., 2017. Strain Localization and Strain Weakening in the Continental Middle Crust. Acta Petrologica Sinica, 33(6): 1653–1666 (in Chinese with English Abstract)
    Liu, S. Q., Zhang, B., Zhang, J. J., et al., 2022. Microstructures, Fabrics, and Seismic Properties of Mylonitic Amphibolites: Implications for Strain Localization in a Thickening Anisotropic Middle Crust of the North China Craton, Journal of Earth Science, https://doi.org/10.1007/s12583-021-1480-5
    Liu, Z. C., Ji, J. Q., Sa, X., et al., 2018. Crustal Deformation and Tectonic Levels of Nujiang Gorge since the Miocene. Science China Earth Sciences, 61(1): 93–108. https://doi.org/10.1007/s11430-017-9116-x
    Luan, F. C., Paterson, M. S., 1992. Preparation and Deformation of Synthetic Aggregates of Quartz. Journal of Geophysical Research, 97(B1): 301. https://doi.org/10.1029/91jb01748
    Mainprice, D., Bouchez, J. L., Blumenfeld, P., et al., 1986. Dominant c Slip in Naturally Deformed Quartz: Implications for Dramatic Plastic Softening at High Temperature. Geology, 14(10): 819. https://doi.org/10.1130/0091-7613(1986)14819: dcsind>2.0.co;2 doi: 10.1130/0091-7613(1986)14819:dcsind>2.0.co;2
    Mancktelow, N. S., 2002. Finite-Element Modelling of Shear Zone Development in Viscoelastic Materials and Its Implications for Localisation of Partial Melting. Journal of Structural Geology, 24(6/7): 1045–1053. https://doi.org/10.1016/S0191-8141(01)00090-6
    Mancktelow, N. S., 2008. Tectonic Pressure: Theoretical Concepts and Modelled Examples. Lithos, 103(1/2): 149–177. https://doi.org/10.101 6/j.lithos.2007.09.013 doi: 10.1016/j.lithos.2007.09.013
    Mancktelow, N. S., Pennacchioni, G., 2004. The Influence of Grain Boundary Fluids on the Microstructure of Quartz-Feldspar Mylonites. Journal of Structural Geology, 26(1): 47–69. https://doi.org/10.1016/S0191-8141(03)00081-6
    Mancktelow, N. S., Pennacchioni, G., 2005. The Control of Precursor Brittle Fracture and Fluid-Rock Interaction on the Development of Single and Paired Ductile Shear Zones. Journal of Structural Geology, 27(4): 645–661. https://doi.org/10.1016/j.jsg.2004.12.001
    Mancktelow, N. S., Pennacchioni, G., 2013. Late Magmatic Healed Fractures in Granitoids and Their Influence on Subsequent Solid-State Deformation. Journal of Structural Geology, 57: 81–96. https://doi.org/10.1016/j.jsg.2013.09.006
    Mancktelow, N., Pennacchioni, G., 2020. Intermittent Fracturing in the Middle Continental Crust as Evidence for Transient Switching of Principal Stress Axes Associated with the Subduction Zone Earthquake Cycle. Geology, 48(11): 1072–1076. https://doi.org/10.1130/g47625.1
    Mansard, N., Raimbourg, H., Augier, R., et al., 2018. Large-Scale Strain Localization Induced by Phase Nucleation in Mid-Crustal Granitoids of the South Armorican Massif. Tectonophysics, 745: 46–65. https://doi.org/10.1016/j.tecto.2018.07.022
    Martelat, J. -E., Schulmann, K., Lardeaux, J. -M., et al., 1999. Granulite Microfabrics and Deformation Mechanisms in Southern Madagascar. Journal of Structural Geology, 21(6): 671–687 doi: 10.1016/S0191-8141(99)00052-8
    Martelat, J. E., Schulmann, K., Lardeaux, J. M., et al., 1999. Granulite Microfabrics and Deformation Mechanisms in Southern Madagascar. Journal of Structural Geology, 21(6): 671–687. https://doi.org/10.1016/S0191-8141(99)00052-8
    Menegon, L., Pennacchioni, G., 2009. Local Shear Zone Pattern and Bulk Deformation in the Gran Paradiso Metagranite (NW Italian Alps). International Journal of Earth Sciences, 99(8): 1805–1825
    Menegon, L., Pennacchioni, G., 2010. Local Shear Zone Pattern and Bulk Deformation in the Gran Paradiso Metagranite (NW Italian Alps). International Journal of Earth Sciences, 99(8): 1805–1825. https://doi.org/10.1007/s00531-009-0485-6
    Menegon, L., Pennacchioni, G., Malaspina, N., et al., 2017. Earthquakes as Precursors of Ductile Shear Zones in the Dry and Strong Lower Crust. Geochemistry, Geophysics, Geosystems, 18(12): 4356–4374. https://doi.org/10.1002/2017gc007189
    Menegon, L., Pennacchioni, G., Malaspina, N., et al., 2017. Earthquakes as Precursors of Ductile Shear Zones in the Dry and Strong Lower Crust. Geochemistry, Geophysics, Geosystems, 18(12): 4356–4374 doi: 10.1002/2017GC007189
    Menegon, L., Pennacchioni, G., Spiess, R., 2008. Dissolution-Precipitation Creep of K-Feldspar in Mid-Crustal Granite Mylonites. Journal of Structural Geology, 30(5): 565–579. https://doi.org/10.1016/j.jsg.2008.02.001
    Menegon, L., Pennacchioni, G., Spiess, R., 2008. Dissolution-Precipitation Creep of K-Feldspar in Mid-Crustal Granite Mylonites. Journal of Structural Geology, 30(5): 565–579 doi: 10.1016/j.jsg.2008.02.001
    Miranda, E. A., Hirth, G., John, B. E., 2016. Microstructural Evidence for the Transition from Dislocation Creep to Dislocation-Accommodated Grain Boundary Sliding in Naturally Deformed Plagioclase. Journal of Structural Geology, 92: 30–45. https://doi.org/10.1016/j.jsg.2016.09.002
    Miranda, E. A., Hirth, G., John, B. E., 2016. Microstructural Evidence for the Transition from Dislocation Creep to Dislocation-Accommodated Grain Boundary Sliding in Naturally Deformed Plagioclase. Journal of Structural Geology, 92: 30–45 doi: 10.1016/j.jsg.2016.09.002
    Misra, S., Mandal, N., 2007. Localization of Plastic Zones in Rocks around Rigid Inclusions: Insights from Experimental and Theoretical Models. Journal of Geophysical Research, 112(B9): B09206. https://doi.org/10. 1029/2006jb004328 doi: 10.1029/2006jb004328
    Montardi, Y., Mainprice, D., 1987. A Transmission Electron Microscopic Study of Natural Plastic Deformation of Calcic Plagioclases (an 68–70). Bulletin de Minéralogie, 110(1): 1–14. https://doi.org/10.3406/bu lmi.1987.8022 doi: 10.3406/bulmi.1987.8022
    Morley, C. K., 2007. Variations in Late Cenozoic-Recent Strike-Slip and Oblique-Extensional Geometries, within Indochina: The Influence of Pre-Existing Fabrics. Journal of Structural Geology, 29(1): 36–58. https://doi.org/10.1016/j.jsg.2006.07.003
    Morrow, C., Solum, J., Tembe, S., et al., 2007. Using Drill Cutting Separates to Estimate the Strength of Narrow Shear Zones at SAFOD. Geophysical Research Letters, 34(11): L11301. https://doi.org/10.1029/2007gl029665
    Nevitt, J. M., Pollard, D. D., 2017. Impacts of Off-Fault Plasticity on Fault Slip and Interaction at the Base of the Seismogenic Zone. Geophysical Research Letters, 44(4): 1714–1723
    Nevitt, J. M., Warren, J. M., Pollard, D. D., 2017. Testing Constitutive Equations for Brittle-Ductile Deformation Associated with Faulting in Granitic Rock. Journal of Geophysical Research: Solid Earth, 122(8): 6269–6293. https://doi.org/10.1002/2017jb014000
    Oliot, E., Goncalves, P., Marquer, D., 2010. Role of Plagioclase and Reaction Softening in a Metagranite Shear Zone at Mid-Crustal Conditions (Gotthard Massif, Swiss Central Alps). Journal of Metamorphic Geology, 28(8): 849–871. https://doi.org/10.1111/j.1525-1314.2010.00897.x
    Oliot, E., Goncalves, P., Schulmann, K., et al., 2014. Mid-Crustal Shear Zone Formation in Granitic Rocks: Constraints from Quantitative Textural and Crystallographic Preferred Orientations Analyses. Tectonophysics, 612/613: 63–80. https://doi.org/10.1016/j.tecto.2013.11.032
    Olsen, T. S., Kohlstedt, D. L., 1984. Analysis of Dislocations in some Naturally Deformed Plagioclase Feldspars. Physics and Chemistry of Minerals, 11(4): 153–160. https://doi.org/10.1007/bf00387845
    Olsen, T. S., Kohlstedt, D. L., 1985. Natural Deformation and Recrystallization of Some Intermediate Plagioclase Feldspars. Tectonophysics, 111(1/2): 107–131. https://doi.org/10.1016/0040-1951(85)90067-8
    Oriolo, S., Wemmer, K., Oyhantçabal, P., et al., 2018. Geochronology of Shear Zones―A Review. Earth-Science Reviews, 185: 665–683. https://doi.org/10.1016/j.earscirev.2018.07.007
    Otani, M., Wallis, S., 2006. Quartz Lattice Preferred Orientation Patterns and Static Recrystallization: Natural Examples from the Ryoke Belt, Japan. Geology, 34(7): 561. https://doi.org/10.1130/g22430.1
    Passchier, C. W., Trouw, R. A. J., 2005. Microtectonics, Springer, Berlin
    Pennacchioni, G., 2005. Control of the Geometry of Precursor Brittle Structures on the Type of Ductile Shear Zone in the Adamello Tonalites, Southern Alps (Italy). Journal of Structural Geology, 27(4): 627–644. https://doi.org/10.1016/j.jsg.2004.11.008
    Pennacchioni, G., Mancktelow, N. S., 2018. Small-Scale Ductile Shear Zones: Neither Extending, nor Thickening, nor Narrowing. Earth-Science Reviews, 184: 1–12. https://doi.org/10.1016/j.earscirev.201 8.06.004 doi: 10.1016/j.earscirev.2018.06.004
    Pennacchioni, G., Zucchi, E., 2013. High Temperature Fracturing and Ductile Deformation during Cooling of a Pluton: The Lake Edison Granodiorite (Sierra Nevada Batholith, California). Journal of Structural Geology, 50: 54–81. https://doi.org/10.1016/j.jsg.2012.06.001
    Platt, J. P., 2015. Rheology of Two-Phase Systems: A Microphysical and Observational Approach. Journal of Structural Geology, 77: 213–227. https://doi.org/10.1016/j.jsg.2015.05.003
    Popp, R. K., Virgo, D., Yoder, H. S., et al., 1995. An Experimental Study of Phase Equilibria and Fe Oxy-Component in Kaersutitic Amphibole; Implications for the fH2 and Alpha aH2O in the Upper Mantle. American Mineralogist, 80(5/6): 534–548. https://doi.org/10.2138/am-1995-5-613
    Précigout, J., Prigent, C., Palasse, L., et al., 2017. Water Pumping in Mantle Shear Zones. Nature Communications, 8(1): 15736. https://doi.org/10. 1038/ncomms15736 doi: 10.1038/ncomms15736
    Précigout, J., Stünitz, H., 2016. Evidence of Phase Nucleation during Olivine Diffusion Creep: A New Perspective for Mantle Strain Localisation. Earth and Planetary Science Letters, 455: 94–105. https://doi.org/10.1016/j.epsl.2016.09.029
    Ratschbacher, L., Merle, O., Davy, P., et al., 1991. Lateral Extrusion in the Eastern Alps, Part 1: Boundary Conditions and Experiments Scaled for Gravity. Tectonics, 10(2): 245–256. https://doi.org/10.1029/90tc02622
    Ridolfi, F., Renzulli, A., 2012. Calcic Amphiboles in Calc-Alkaline and Alkaline Magmas: Thermobarometric and Chemometric Empirical Equations Valid up to 1 130 ℃ and 2.2 GPa. Contributions to Mineralogy and Petrology, 163(5): 877–895. https://doi.org/10.1007/s00410-011-0704-6
    Rosenberg, C. L., 2004. Shear Zones and Magma Ascent: A Model Based on a Review of the Tertiary Magmatism in the Alps. Tectonics, 23(3): TC3002. https://doi.org/10.1029/2003tc001526
    Schmid, S. M., Casey, M., 1986. Complete Fabric Analysis of some Commonly Observed Quartz C-Axis Patterns. Mineral and Rock Deformation: Laboratory Studies. American Geophysical Union, Washington, D. C. https://doi.org/10.1029/gm036p0263
    Schmid, S. M., Pfiffner, O. A., Froitzheim, N., et al., 1996. Geophysical-Geological Transect and Tectonic Evolution of the Swiss-Italian Alps. Tectonics, 15(5): 1036–1064. https://doi.org/10.1029/96tc00433
    Schmidt, M. W., 1992. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 110(2): 304–310. https://doi.org/10.1007/bf00310745
    Scholz, C. H., 1980. Shear Heating and the State of Stress on Faults. Journal of Geophysical Research: Solid Earth, 85(B11): 6174–6184 doi: 10.1029/JB085iB11p06174
    Scholz, C. H., 1989. Mechanics of Faulting. Annual Review of Earth and Planetary Sciences, 17: 309–334. https://doi.org/10.1146/annurev.ea.1 7.050189.001521 doi: 10.1146/annurev.ea.17.050189.001521
    Searle, M. P., Yeh, M. W., Lin, T. H., et al., 2010. Structural Constraints on the Timing of Left-Lateral Shear along the Red River Shear Zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. Geosphere, 6(4): 316–338. https://doi.org/10.1130/ges00580.1
    Sibson, R. H., 1977. Fault Rocks and Fault Mechanisms. Journal of the Geological Society, 133(3): 191–213. https://doi.org/10.1144/gsjgs.13 3.3.0191 doi: 10.1144/gsjgs.133.3.0191
    Spruzeniece, L., Piazolo, S., 2015. Strain Localization in Brittle-Ductile Shear Zones: Fluid-Abundant vs. Fluid-Limited Conditions (an Example from Wyangala Area, Australia). Solid Earth, 6(3): 881–901. https://doi.org/10.5194/se-6-881-2015
    Stein, E., Dietl, C., 2001. Hornblende Thermobarometry of Granitoids from the Central Odenwald (Germany) and Their Implications for the Geotectonic Development of the Odenwald. Mineralogy and Petrology, 72(1): 185–207. https://doi.org/10.1007/s007100170033
    Stipp, M., 2003. The Recrystallized Grain Size Piezometer for Quartz. Geophysical Research Letters, 30(21): 2088. https://doi.org/10.1029/2 003gl018444 doi: 10.1029/2003gl018444
    Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002. The Eastern Tonale Fault Zone: A 'Natural Laboratory' for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700 ℃. Journal of Structural Geology, 24(12): 1861–1884. https://doi.org/10.1016/s0191-8141(02)00035-4
    Stünitz, H., Fitz Gerald, J. D., Tullis, J., 2003. Dislocation Generation, Slip Systems, and Dynamic Recrystallization in Experimentally Deformed Plagioclase Single Crystals. Tectonophysics, 372(3/4): 215–233. https://doi.org/10.1016/s0040-1951(03)00241-5
    Stünitz, H., Gerald, J. D. F., 1993. Deformation of Granitoids at Low Metamorphic Grade. Ⅱ: Granular Flow in Albite-Rich Mylonites. Tectonophysics, 221(3/4): 299–324. https://doi.org/10.1016/0040-1951(93)90164-f
    Tang, Y., Wang, D. B., Liao, S. Y., et al., 2020. Fabrics and 40Ar/39Ar Ages of Metamorphic Rocks in the Gaoligong Tectonic Belt: Implications for Cenozoic Metamorphism and Deformation in the SE Tibetan Plateau. Journal of Asian Earth Sciences, 192: 104270. https://doi.org/10.1016/j.jseaes.2020.104270
    Tapponnier, P., Lacassin, R., Leloup, P. H., et al., 1990. The Ailao Shan/Red River Metamorphic Belt: Tertiary Left-Lateral Shear between Indochina and South China. Nature, 343(6257): 431–437. https://doi.org/10.1038/343431a0
    Tapponnier, P., Molnar, P., 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82: 2905–2930. https://doi.org/10.1 029/jb082i020p02905 doi: 10.1029/jb082i020p02905
    Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611. https://doi.org/10.1130/0091-7613(1982)10611: petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2
    Toy, V. G., Prior, D. J., Norris, R. J., 2008. Quartz Fabrics in the Alpine Fault Mylonites: Influence of Pre-Existing Preferred Orientations on Fabric Development during Progressive Uplift. Journal of Structural Geology, 30(5): 602–621. https://doi.org/10.1016/j.jsg.2008.01.001
    Tribe, I. R., D'Lemos, R. S., 1996. Significance of a Hiatus in Down-Temperature Fabric Development within Syn-Tectonic Quartz Diorite Complexes, Channel Islands, UK. Journal of the Geological Society, 153(1): 127–138. https://doi.org/10.1144/gsjgs.153.1.0127
    Tullis, J., Wenk, H. R., 1994. Effect of Muscovite on the Strength and Lattice Preferred Orientations of Experimentally Deformed Quartz Aggregates. Materials Science and Engineering: A, 175(1/2): 209–220. https://doi.org/10.1016/0921-5093(94)91060-x
    Tullis, J., Yund, R. A., 1987. Transition from Cataclastic Flow to Dislocation Creep of Feldspar: Mechanisms and Microstructures. Geology, 15(7): 606. https://doi.org/10.1130/0091-7613(1987)15606:tfcftd>2.0.co;2 doi: 10.1130/0091-7613(1987)15606:tfcftd>2.0.co;2
    Tullis, J., Yund, R. A., 1991. Diffusion Creep in Feldspar Aggregates: Experimental Evidence. Journal of Structural Geology, 13(9): 987–1000. https://doi.org/10.1016/0191-8141(91)90051-j
    Twiss, R. J., 1977. Theory and Applicability of a Recrystallized Grain Size Paleopiezometer. Pure and Applied Geophysics, 115: 227–244 doi: 10.1007/BF01637105
    Twiss, R. J., 1980. Static Theory of Size Variations with Stress for Subgrains and Dynamically Recrystallized Grains, U. S. G. S. Open-file Report, 665–683
    Vannucchi, P., 2019. Scaly Fabric and Slip within Fault Zones. Geosphere, 15(2): 342–356. https://doi.org/10.1130/ges01651.1
    Vauchez, A., Egydio-Silva, M., Babinski, M., et al., 2007. Deformation of a Pervasively Molten Middle Crust: Insights from the Neoproterozoic Ribeira-Araçuaí Orogen (SE Brazil). Terra Nova, 19(4): 278–286. https://doi.org/10.1111/j.1365-3121.2007.00747.x
    Wang, W., Song, Z., Tang, Y., et al., 2020. The Ailao Shan-Red River Shear Zone Revisited: Timing and Tectonic Implications. GSA Bulletin, 132(5/6): 1165–1182. https://doi.org/10.1130/b35220.1
    Wang, Y. J., Fan, W. M., Zhang, Y. H., et al., 2006. Kinematics and 40Ar/39Ar Geochronology of the Gaoligong and Chongshan Shear Systems, Western Yunnan, China: Implications for Early Oligocene Tectonic Extrusion of SE Asia. Tectonophysics, 418(3/4): 235–254. https://doi.org/10.1016/j.tecto.2006.02.005
    Wehrens, P., Berger, A., Peters, M., et al., 2016. Deformation at the Frictional-Viscous Transition: Evidence for Cycles of Fluid-Assisted Embrittlement and Ductile Deformation in the Granitoid Crust. Tectonophysics, 693: 66–84. https://doi.org/10.1016/j.tecto.2016.10.022
    White, S. H., Knipe, R. J., 1978. Transformation- and Reaction-Enhanced Ductility in Rocks. Journal of the Geological Society, 135(5): 513–516. https://doi.org/10.1144/gsjgs.135.5.0513
    Wibberley, C. A. J., Yielding, G., di Toro, G., 2008. Recent Advances in the Understanding of Fault Zone Internal Structure: A Review. Geological Society, London, Special Publications, 299(1): 5–33. https://doi.org/10.1144/sp299.2
    Wintsch, R. P., Christoffersen, R., Kronenberg, A. K., 1995. Fluid-Rock Reaction Weakening of Fault Zones. Journal of Geophysical Research, 100: 13021–13032. https://doi.org/10.1029/94jb02622
    Wintsch, R. P., Yi, K., 2002. Dissolution and Replacement Creep: A Significant Deformation Mechanism in Mid-Crustal Rocks. Journal of Structural Geology, 24(6/7): 1179–1193. https://doi.org/10.1016/s019 1-8141(01)00100-6 doi: 10.1016/s0191-8141(01)00100-6
    Wirth, R., Voll, G., 1987. Cellular Intergrowth between Quartz and Sodium-Rich Plagioclase (Myrmekite)—An Analogue of Discontinuous Precipitation in Metal Alloys. Journal of Materials Science, 22(6): 1913–1918. https://doi.org/10.1007/bf01132916
    Wise, D. U., Dunn, D. E., Engelder, J. T., et al., 1984. Fault-Related Rocks: Suggestions for Terminology. Geology, 12(7): 391. https://doi.org/10.1 130/0091-7613(1984)12391:frsft>2.0.co;2 doi: 10.1130/0091-7613(1984)12391:frsft>2.0.co;2
    Xia, H. R., Liu, J. L., 2011. The Crystallographic Preferred Orientation of Quartz and Its Applications. Geological Bulletin of China, 30(1): 58–70 (in Chinese with English Abstract)
    Xu, Y. G., Yang, Q. J., Lan, J. B., et al., 2012. Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area, Western Yunnan: Constraints from Zircon U-Pb Ages and Hf Isotopes. Journal of Asian Earth Sciences, 53: 151–175. https://doi.org/10.1016/j.jseaes.2011.06.018
    Xu, Z. Q., Wang, Q., Cai, Z. H., et al., 2015. Kinematics of the Tengchong Terrane in SE Tibet from the Late Eocene to Early Miocene: Insights from Coeval Mid-Crustal Detachments and Strike-Slip Shear Zones. Tectonophysics, 665: 127–148. https://doi.org/10.1016/j.tecto.201 5.0 9.033 doi: 10.1016/j.tecto.2015.09.033
    Yamasaki, T., Wright, T. J., Houseman, G. A., 2014. Weak Ductile Shear Zone beneath a Major Strike-Slip Fault: Inferences from Earthquake Cycle Model Constrained by Geodetic Observations of the Western North Anatolian Fault Zone. Journal of Geophysical Research: Solid Earth, 119(4): 3678–3699. https://doi.org/10.1002/2013jb010347
    Zhang, B., Chai, Z., Yin, C. Y., et al., 2017. Intra-Continental Transpression and Gneiss Doming in an Obliquely Convergent Regime in SE Asia. Journal of Structural Geology, 97: 48–70. https://doi.org/10.1016/j.jsg. 2017.02.010 doi: 10.1016/j.jsg.2017.02.010
    Zhang, B., Zhang, J. J., Chang, Z. F., et al., 2012. The Biluoxueshan Transpressive Deformation Zone Monitored by Synkinematic Plutons, around the Eastern Himalayan Syntaxis. Tectonophysics, 574/575: 158–180. https://doi.org/10.1016/j.tecto.2012.08.017
    Zhang, B., Zhang, J. J., Zhong, D. L., et al., 2012. Polystage Deformation of the Gaoligong Metamorphic Zone: Structures, 40Ar/39Ar Mica Ages, and Tectonic Implications. Journal of Structural Geology, 37: 1–18. https://doi.org/10.1016/j.jsg.2012.02.007
    Zhang, J. Y., Peng, T. P., Fan, W. M., et al., 2018. Petrogenesis of the Early Cretaceous Granitoids and Its Mafic Enclaves in the Northern Tengchong Terrane, Southern Margin of the Tibetan Plateau and Its Tectonic Implications. Lithos, 318/319: 283–298. https://doi.org/10.10 16/j.lithos.2018.08.017 doi: 10.1016/j.lithos.2018.08.017
    Zhong, D. L., Ding, L., 1996. Discussion on the Uplift Process and Mechanism of the Tibetan Plateau. Science China Earth Science, 26(4): 289–29
    Zhong, D. L., Tapponnier, P., Wu, H. W., et al., 1990. Large-Scale Strike Slip Fault: The Major Structure of Intracontinental Deformation after Collision. Chinese Science Bulletin, 35(4): 304–309 (in Chinese with English Abstract)
    Zhong, D. L., Tapponnier, P., Wu, H. W., et al., 1990. Large-Scale Strike Slip Fault: The Major Structure Of Intracontinental Deformation After Collision. Science Bulletin, 4: 304–309 (in Chinese with English Abstract)
    Zhu, R. Z., Lai, S. C., Qin, J. F., et al., 2017. Late Early-Cretaceous Quartz Diorite-Granodiorite-Monzogranite Association from the Gaoligong Belt, Southeastern Tibet Plateau: Chemical Variations and Geodynamic Implications. Lithos, 288/289: 311–325. https://doi.org/10.1016/j.lithos.2017.07.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(254) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return