Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 5
Oct 2022
Turn off MathJax
Article Contents
Xin-Shui Wang, Fei Yang, Reiner Klemd, Tuo Jiang, Jun Gao. Zircon Ages of Metasedimentary Rocks in the Wuwamen Ophiolitic Mélange, Chinese South Tianshan: Implications for the Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt. Journal of Earth Science, 2022, 33(5): 1059-1071. doi: 10.1007/s12583-022-1695-0
Citation: Xin-Shui Wang, Fei Yang, Reiner Klemd, Tuo Jiang, Jun Gao. Zircon Ages of Metasedimentary Rocks in the Wuwamen Ophiolitic Mélange, Chinese South Tianshan: Implications for the Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt. Journal of Earth Science, 2022, 33(5): 1059-1071. doi: 10.1007/s12583-022-1695-0

Zircon Ages of Metasedimentary Rocks in the Wuwamen Ophiolitic Mélange, Chinese South Tianshan: Implications for the Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt

doi: 10.1007/s12583-022-1695-0
More Information
  • Corresponding author: Xin-Shui Wang, wangxinshui@cug.edu.cn
  • Received Date: 20 Jan 2022
  • Accepted Date: 03 Jun 2022
  • Issue Publish Date: 30 Oct 2022
  • High-temperature and high-pressure (high-grade) metamorphic complexes of variable ages are common in the Central Asian orogenic belt (CAOB), and their precise geochronology and origin are essential to unravel the orogenic architecture and crust-production rate of the CAOB. Hereby it is essential to differentiate between pre-orogenic Precambrian basement and Paleozoic arc-accretionary complexes. This study provides precise in situ zircon U-Pb ages for the metasedimentary rocks in the Wuwamen ophiolitic mélange, which is traditionally thought to represent the pre-orogenic basement of the southwestern CAOB. A meta-sandstone from the meta-flysch sequence revealed a widespread ca. 1.8 Ga high-grade metamorphic overprint similar to that of the underlying orthogneisses and, thus, was interpreted to represent pre-orogenic basement fragments that occur as tectonic blocks in the Paleozoic ophiolitic mélange. In contrast, a schist from the mélange matrix is characterized by a ca. 333 Ma high-grade metamorphic overprint, indicating that the northward subduction of the South Tianshan Ocean was still active at this time. The thrust-imbricated high-grade metamorphic rocks of contrasting origins in an accretionary complex have important implications for the understanding the accretionary history and crustal growth of the CAOB. Furthermore, the strongly deformed ophiolitic mélange was intruded by an undeformed granite dyke with an emplacement age younger than ca. 294 Ma, thus providing a minimum age limit for the final closure of the South Tianshan Ocean.

     

  • Electronic Supplementary Material: Supplementary material (Table S1) is available in the online version of this article at https://doi.org/10.1007/s12583-022-1695-0.
  • loading
  • Abrajevitch, A., van der Voo, R., Levashova, N. M., et al., 2007. Paleomagnetic Constraints on the Paleogeography and Oroclinal Bending of the Devonian Volcanic Arc in Kazakhstan. Tectonophysics, 441(1): 67–84. http://doi.org/10.1016/j.tecto.2007.04.008
    Abuduxun, N., Xiao, W. J., Windley, B. F., et al., 2021. Terminal Suturing between the Tarim Craton and the Yili-Central Tianshan Arc: Insights from Mélange-Ocean Plate Stratigraphy, Detrital Zircon Ages, and Provenance of the South Tianshan Accretionary Complex. Tectonics, 40(7): e2021tc006705. https://doi.org/10.1029/2021tc006705
    Alexeiev, D. V., Biske, Y. S., Wang, B., et al., 2015. Tectono-Stratigraphic Framework and Palaeozoic Evolution of the Chinese South Tianshan. Geotectonics, 49(2): 93–122. https://doi.org/10.1134/s0016852115020028
    Cao, S. N., Wang, B., 2021. Age, Origin and Geological Implications of Early Paleozoic Marine Bentonites, Northern Yili Block of Central Asian Orogenic Belt. Earth Science, 46(8): 2804–2818 (in Chinese with English Abstract)
    Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1–36. https://doi.org/10.1144/sp318.1
    Cheng, Y., Xiao, Q. H., Li, T. D., et al., 2021. An Intra-Oceanic Subduction System Influenced by Ridge Subduction in the Diyanmiao Subduction Accretionary Complex of the Xar Moron Area, Eastern Margin of the Central Asian Orogenic Belt. Journal of Earth Science, 32(1): 253–266. https://doi.org/10.1007/s12583-021-1404-4
    Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469
    Dolgopolova, A., Seltmann, R., Konopelko, D., et al., 2017. Geodynamic Evolution of the Western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP Geochronology and Sr-Nd-Pb-Hf Isotope Mapping of Granitoids. Gondwana Research, 47: 76–109. https://doi.org/10.1016/j.gr.2016.10.022
    Ernst, W. G., 2010. Subduction-Zone Metamorphism, Calc-Alkaline Magmatism, and Convergent-Margin Crustal Evolution. Gondwana Research, 18(1): 8–16. https://doi.org/10.1016/j.gr.2009.05.010
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0
    Gao, J., Klemd, R., 2003. Formation of HP-LT Rocks and Their Tectonic Implications in the Western Tianshan Orogen, NW China: Geochemical and Age Constraints. Lithos, 66(1/2): 1–22. https://doi.org/10.1016/s0024-4937(02)00153-6
    Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1/2/3/4): 118–131. https://doi.org/10.1016/j.tecto.2011.01.001
    Gao, J., Klemd, R., Zhu, M. T., et al., 2018. Large-Scale Porphyry-Type Mineralization in the Central Asian Metallogenic Domain: A Review. Journal of Asian Earth Sciences, 165: 7–36. https://doi.org/10.1016/j.jseaes.2017.10.002
    Gao, J., Li, M. S., Xiao, X. C., et al., 1998. Paleozoic Tectonic Evolution of the Tianshan Orogen, Northwestern China. Tectonophysics, 287(1/2/3/4): 213–231. https://doi.org/10.1016/s0040-1951(98)80070-x
    Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221–1238. https://doi.org/10.1007/s00531-008-0370-8
    Gao, J., Wang, X. S., Klemd, R., et al., 2015. Record of Assembly and Breakup of Rodinia in the Southwestern Altaids: Evidence from Neoproterozoic Magmatism in the Chinese Western Tianshan Orogen. Journal of Asian Earth Sciences, 113: 173–193. https://doi.org/10.1016/j.jseaes.2015.02.002
    Ge, R. F., Zhu, W. B., Wilde, S. A., 2016. Mid-Neoproterozoic (ca. 830–800 Ma) Metamorphic P-T Paths Link Tarim to the Circum-Rodinia Subduction-Accretion System. Tectonics, 35(6): 1465–1488. https://doi.org/10.1002/2016tc004177
    Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2014. Archean Magmatism and Crustal Evolution in the Northern Tarim Craton: Insights from Zircon U-Pb-Hf-O Isotopes and Geochemistry of ∼2.7 Ga Orthogneiss and Amphibolite in the Korla Complex. Precambrian Research, 252: 145–165. https://doi.org/10.1016/j.precamres.2014.07.019
    Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2012. The Paleozoic Northern Margin of the Tarim Craton: Passive or Active? Lithos, 142/143: 1–15. https://doi.org/10.1016/j.lithos.2012.02.010
    Gu, P. Y., Ji, W. H., Chen, R. M., et al., 2020. Petrogenesis of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution. Earth Science, 45(9): 3268–3281 (in Chinese with English Abstract)
    Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3/4): 74–93. https://doi.org/10.1016/j.earscirev.2011.09.001
    Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129–152. https://doi.org/10.1016/j.earscirev.2017.09.012
    He, Z. Y., Wang, B., Zhong, L. L., et al., 2018. Crustal Evolution of the Central Tianshan Block: Insights from Zircon U-Pb Isotopic and Structural Data from Meta-Sedimentary and Meta-Igneous Rocks along the Wulasitai-Wulanmoren Shear Zone. Precambrian Research, 314: 111–128. https://doi.org/10.1016/j.precamres.2018.06.003
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627–630. https://doi.org/10.1130/0091-7613(2000)28627:reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2
    Jiang, T., Gao, J., Klemd, R., et al., 2014. Paleozoic Ophiolitic Mélanges from the South Tianshan Orogen, NW China: Geological, Geochemical and Geochronological Implications for the Geodynamic Setting. Tectonophysics, 612/613: 106–127. https://doi.org/10.1016/j.tecto.2013.11.038
    Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., et al., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos, 212/213/214/215: 397–414. https://doi.org/10.1016/j.lithos.2014.11.021
    Klemd, R., Bröcker, M., Hacker, B. R., et al., 2005. New Age Constraints on the Metamorphic Evolution of the High-Pressure/Low-Temperature Belt in the Western Tianshan Mountains, NW China. The Journal of Geology, 113(2): 157–168. https://doi.org/10.1086/427666
    Klemd, R., Gao, J., Li, J. L., et al., 2015. Metamorphic Evolution of (Ultra)-High-Pressure Subduction-Related Transient Crust in the South Tianshan Orogen (Central Asian Orogenic Belt): Geodynamic Implications. Gondwana Research, 28(1): 1–25. https://doi.org/10.1016/j.gr.2014.11.008
    Klemd, R., John, T., Scherer, E. E., et al., 2011. Changes in Dip of Subducted Slabs at Depth: Petrological and Geochronological Evidence from HP-UHP Rocks (Tianshan, NW-China). Earth and Planetary Science Letters, 310(1/2): 9–20. https://doi.org/10.1016/j.epsl.2011.07.022
    Konopelko, D., Seltmann, R., Mamadjanov, Y., et al., 2017. A Geotraverse across Two Paleo-Subduction Zones in Tien Shan, Tajikistan. Gondwana Research, 47: 110–130. https://doi.org/10.1016/j.gr.2016.09.010
    Kovach, V., Degtyarev, K., Tretyakov, A., et al., 2017. Sources and Provenance of the Neoproterozoic Placer Deposits of the Northern Kazakhstan: Implication for Continental Growth of the Western Central Asian Orogenic Belt. Gondwana Research, 47: 28–43. https://doi.org/10.1016/j.gr.2016.09.012
    Kröner, A., Alexeiev, D. V., Hegner, E., et al., 2012. Zircon and Muscovite Ages, Geochemistry, and Nd-Hf Isotopes for the Aktyuz Metamorphic Terrane: Evidence for an Early Ordovician Collisional Belt in the Northern Tianshan of Kyrgyzstan. Gondwana Research, 21(4): 901–927. https://doi.org/10.1016/j.gr.2011.05.010
    Kröner, A., Alexeiev, D. V., Kovach, V. P., et al., 2017. Zircon Ages, Geochemistry and Nd Isotopic Systematics for the Palaeoproterozoic 2.3–1.8 Ga Kuilyu Complex, East Kyrgyzstan-the Oldest Continental Basement Fragment in the Tianshan Orogenic Belt. Journal of Asian Earth Sciences, 135: 122–135. https://doi.org/10.1016/j.jseaes.2016.12.022
    Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103–125. https://doi.org/10.1016/j.gr.2012.12.023
    Kröner, A., Windley, B. F., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 200: 181–209. https://doi.org/10.1130/2007.1200(11)
    Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501–547. https://doi.org/10.1016/j.gr.2013.01.004
    Kusky, T., Wang, J. P., Wang, L., et al., 2020. Mélanges through Time: Life Cycle of the World's Largest Archean Mélange Compared with Mesozoic and Paleozoic Subduction-Accretion-Collision Mélanges. Earth-Science Reviews, 209: 103303. https://doi.org/10.1016/j.earscirev.2020.103303
    Lang, M. D., Cheng, Z. G., Zhang, Z. C., et al., 2020. Hisingerite in Trachydacite from Tarim: Implications for Voluminous Felsic Rocks in Transitional Large Igneous Province. Journal of Earth Science, 31(5): 875–883. https://doi.org/10.1007/s12583-020-1330-x
    Li, J. L., Gao, J., Wang, X. S., 2016. A Subduction Channel Model for Exhumation of Oceanic-Type High-Pressure to Ultrahigh-Pressure Eclogite-Facies Metamorphic Rocks in SW Tianshan, China. Science China Earth Sciences, 59(12): 2339–2354. https://doi.org/10.1007/s11430-016-5103-7
    Li, J. L., John, T., Gao, J., et al., 2017. Subduction Channel Fluid-Rock Interaction and Mass Transfer: Constraints from a Retrograde Vein in Blueschist (SW Tianshan, China). Chemical Geology, 456: 28–42. https://doi.org/10.1016/j.chemgeo.2017.03.003
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Long, L. L., Gao, J., Klemd, R., et al., 2011. Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen: Implications for Continental Growth in the Southwestern Central Asian Orogenic Belt. Lithos, 126(3/4): 321–340. https://doi.org/10.1016/j.lithos.2011.07.015
    Long, X. P., Sun, M., Yuan, C., et al., 2007. Detrital Zircon Age and Hf Isotopic Studies for Metasedimentary Rocks from the Chinese Altai: Implications for the Early Paleozoic Tectonic Evolution of the Central Asian Orogenic Belt. Tectonics, 26(5): TC5015. https://doi.org/10.1029/2007tc002128
    Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94–107. https://doi.org/10.1016/j.precamres.2007.04.025
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 1–70
    Ma, X. X., Shu, L. S., Santosh, M., et al., 2012. Detrital Zircon U-Pb Geochronology and Hf Isotope Data from Central Tianshan Suggesting a Link with the Tarim Block: Implications on Proterozoic Supercontinent History. Precambrian Research, 206/207: 1–16. https://doi.org/10.1016/j.precamres.2012.02.015
    Rojas-Agramonte, Y., Kröner, A., Alexeiev, D. V., et al., 2014. Detrital and Igneous Zircon Ages for Supracrustal Rocks of the Kyrgyz Tianshan and Palaeogeographic Implications. Gondwana Research, 26(3/4): 957–974. https://doi.org/10.1016/j.gr.2013.09.005
    Rubatto, D., 2017. Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261–295. https://doi.org/10.2138/rmg.2017.83.9
    Safonova, I., Maruyama, S., Kojima, S., et al., 2016. Recognizing OIB and MORB in Accretionary Complexes: A New Approach Based on Ocean Plate Stratigraphy, Petrology and Geochemistry. Gondwana Research, 33: 92–114. https://doi.org/10.1016/j.gr.2015.06.013
    Safonova, I., Seltmann, R., Kröner, A., et al., 2011. A New Concept of Continental Construction in the Central Asian Orogenic Belt. Episodes, 34(3): 186–196. https://doi.org/10.18814/epiiugs/2011/v34i3/005
    Salnikova, E. B., Kozakov, I. K., Kotov, A. B., et al., 2001. Age of Palaeozoic Granites and Metamorphism in the Tuvino-Mongolian Massif of the Central Asian Mobile Belt: Loss of a Precambrian Microcontinent. Precambrian Research, 110(1/2/3/4): 143–164. https://doi.org/10.1016/s0301-9268(01)00185-1
    Scholl, D. W., von Huene, R., 2007. Crustal Recycling at Modern Subduction Zones Applied to the Past—Issues of Growth and Preservation of Continental Basement Crust, Mantle Geochemistry, and Supercontinent Reconstruction. Geological Society of America Memoirs, 200: 9–32. https://doi.org/10.1130/2007.1200(02)
    Sengör, A. M. C., Natal'in, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24: 263–337. https://doi.org/10.1146/annurev.earth.24.1.263
    Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0
    Şengör, A. M. C., Natal'in, B. A., Sunal, G., et al., 2018. The Tectonics of the Altaids: Crustal Growth during the Construction of the Continental Lithosphere of Central Asia between ∼750 and ∼130 Ma Ago. Annual Review of Earth and Planetary Sciences, 46: 439–494. https://doi.org/10.1146/annurev-earth-060313-054826
    Song, D. F., Xiao, W. J., Han, C. M., et al., 2013. Provenance of Metasedimentary Rocks from the Beishan Orogenic Collage, Southern Altaids: Constraints from Detrital Zircon U-Pb and Hf Isotopic Data. Gondwana Research, 24(3/4): 1127–1151. https://doi.org/10.1016/j.gr.2013.02.002
    Song, D. F., Xiao, W. J., Han, C. M., et al., 2014. Polyphase Deformation of a Paleozoic Forearc-Arc Complex in the Beishan Orogen, NW China. Tectonophysics, 632: 224–243. https://doi.org/10.1016/j.tecto.2014.06.030
    Song, D. F., Xiao, W. J., Windley, B. F., et al., 2016. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt. Tectonophysics, 688: 135–147. https://doi.org/10.1016/j.tecto.2016.09.012
    Su, W., Gao, J., Klemd, R., et al., 2010. U-Pb Zircon Geochronology of Tianshan Eclogites in NW China: Implication for the Collision between the Yili and Tarim Blocks of the Southwestern Altaids. European Journal of Mineralogy, 22(4): 473–478. https://doi.org/10.1127/0935-1221/2010/0022-2040
    Tan, Z., Agard, P., Monié, P., et al., 2019. Architecture and P-T-Deformation-Time Evolution of the Chinese SW-Tianshan HP/UHP Complex: Implications for Subduction Dynamics. Earth-Science Reviews, 197: 102894. https://doi.org/10.1016/j.earscirev.2019.102894
    Vervoort, J. D., Kemp, A. I. S., 2016. Clarifying the Zircon Hf Isotope Record of Crust-Mantle Evolution. Chemical Geology, 425: 65–75. https://doi.org/10.1016/j.chemgeo.2016.01.023
    Wan, B., Li, S. H., Xiao, W. J., et al., 2018. Where and When did the Paleo-Asian Ocean Form? Precambrian Research, 317: 241–252. https://doi.org/10.1016/j.precamres.2018.09.003
    Wan, B., Wang, X. S., Liu, X. J., et al., 2021. Long-Lived Seamount Subduction in Ancient Orogens: Evidence from the Paleozoic South Tianshan. Geology, 49(5): 531–535. https://doi.org/10.1130/g48547.1
    Wan, B., Xiao, W. J., Windley, B. F., et al., 2017. Contrasting Ore Styles and Their Role in Understanding the Evolution of the Altaids. Ore Geology Reviews, 80: 910–922. https://doi.org/10.1016/j.oregeorev.2016.08.025
    Wang, B., Liu, H. S., Shu, L. S., et al., 2014. Early Neoproterozoic Crustal Evolution in Northern Yili Block: Insights from Migmatite, Orthogneiss and Leucogranite of the Wenquan Metamorphic Complex in the NW Chinese Tianshan. Precambrian Research, 242: 58–81. https://doi.org/10.1016/j.precamres.2013.12.006
    Wang, B., Zhai, Y. Z., Kapp, P., et al., 2018. Accretionary Tectonics of Back-Arc Oceanic Basins in the South Tianshan: Insights from Structural, Geochronological, and Geochemical Studies of the Wuwamen Ophiolite Mélange. GSA Bulletin, 130(1/2): 284–306. https://doi.org/10.1130/b31397.1
    Wang, H., Chen, H. X., Zhang, Q. W. L., et al., 2017. Tectonic Mélange Records the Silurian–Devonian Subduction-Metamorphic Process of the Southern Dunhuang Terrane, Southernmost Central Asian Orogenic Belt. Geology, 45(5): 427–430. https://doi.org/10.1130/g38834.1
    Wang, T., Huang, H., Song, P., et al., 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326–2344 (in Chinese with English Abstract)
    Wang, X. S., Gao, J., Klemd, R., et al., 2014. Geochemistry and Geochronology of the Precambrian High-Grade Metamorphic Complex in the Southern Central Tianshan Ophiolitic Mélange, NW China. Precambrian Research, 254: 129–148. https://doi.org/10.1016/j.precamres.2014.08.017
    Wang, X. S., Gao, J., Klemd, R., et al., 2017. The Central Tianshan Block: A Microcontinent with a Neoarchean–Paleoproterozoic Basement in the Southwestern Central Asian Orogenic Belt. Precambrian Research, 295: 130–150. https://doi.org/10.1016/j.precamres.2017.03.030
    Wang, X. S., Jiang, T., Gao, J., et al., 2019. Contrasting Migmatites in the Southern Chinese Central Tianshan: Petrogenesis and Geological Implications. Acta Petrologica Sinica, 35(10): 3233–3261 (in Chinese with English Abstract) doi: 10.18654/1000-0569/2019.10.16
    Wang, X. S., Klemd, R., Gao, J., et al., 2018a. Final Assembly of the Southwestern Central Asian Orogenic Belt as Constrained by the Evolution of the South Tianshan Orogen: Links with Gondwana and Pangea. Journal of Geophysical Research: Solid Earth, 123(9): 7361–7388. https://doi.org/10.1029/2018jb015689
    Wang, X. S., Zhang, X., Gao, J., et al., 2018b. A Slab Break-off Model for the Submarine Volcanic-Hosted Iron Mineralization in the Chinese Western Tianshan: Insights from Paleozoic Subduction-Related to Post-Collisional Magmatism. Ore Geology Reviews, 92: 144–160. https://doi.org/10.1016/j.oregeorev.2017.11.015
    Wang, X. S., Klemd, R., Gao, J., et al., 2020. Three Episodes of Precambrian Mafic Magmatism in the Southern Central Tianshan Block (NW China): Insight into an Evolving Geodynamic Model. Precambrian Research, 351: 105961. https://doi.org/10.1016/j.precamres.2020.105961
    Wang, X. S., Klemd, R., Gao, J., et al., 2021. Early Devonian Tectonic Conversion from Contraction to Extension in the Chinese Western Tianshan: A Response to Slab Rollback. GSA Bulletin, 133(7–8): 1613–1633. 10.1130/b35760.1 doi: 10.1130/B35760.1
    Wang, X. S., Klemd, R., Li, J. L., et al., 2022. Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt: Insights from the Wuwamen Accretionary Complex of the Chinese South Tianshan. Tectonics, 41(2): e2021tc006965. https://doi.org/10.1029/2021tc006965
    Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia: A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4): 303–341. https://doi.org/10.1016/j.earscirev.2012.04.001
    Xia, B., Zhang, L. F., Bader, T., 2014. Zircon U-Pb Ages and Hf Isotopic Analyses of Migmatite from the 'Paired Metamorphic Belt' in Chinese SW Tianshan: Constraints on Partial Melting Associated with Orogeny. Lithos, 192/193/194/195: 158–179. https://doi.org/10.1016/j.lithos.2014.02.003
    Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316–1341. https://doi.org/10.1016/j.gr.2012.01.012
    Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477–507. https://doi.org/10.1146/annurev-earth-060614-105254
    Xue, Z. H., Lin, W., Chu, Y., et al., 2022. An Intracontinental Orogen Exhumed by Basement-Slice Imbrication in the Longmenshan Thrust Belt of the Eastern Tibetan Plateau. GSA Bulletin, 134(1/2): 15–38. https://doi.org/10.1130/b35826.1
    Yang, J. S., Xu, X. Z., Li, T. F., et al., 2011. U-Pb Ages of Zircons from Ophiolite and Related Rocks in the Kumishi Region at the Southern Margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic Oceanic Basin. Acta Petrologica Sinica, 27(1): 77–95 (in Chinese with English Abstract)
    Yang, T. N., Wang, Y., Li, J. Y., et al., 2007. Vertical and Horizontal Strain Partitioning of the Central Tianshan (NW China): Evidence from Structures and 40Ar/39Ar Geochronology. Journal of Structural Geology, 29(10): 1605–1621. https://doi.org/10.1016/j.jsg.2007.08.002
    Yang, X., Xu, X. H., Deng, S., et al., 2020. Proto-Tethys Tectonic Evolution from Ordovician to Devonian in Southwestern Margin of Tarim Block, NW China. Earth Science, 45(11): 4153–4175 (in Chinese with English Abstract)
    Zeh, A., Gerdes, A., Klemd, R., et al., 2008. U-Pb and Lu-Hf Isotope Record of Detrital Zircon Grains from the Limpopo Belt-Evidence for Crustal Recycling at the Hadean to Early-Archean Transition. Geochimica et Cosmochimica Acta, 72(21): 5304–5329. https://doi.org/10.1016/j.gca.2008.07.033
    Zhang, C. L., Li, H. K., Santosh, M., et al., 2012. Precambrian Evolution and Cratonization of the Tarim Block, NW China: Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt. Journal of Asian Earth Sciences, 47: 5–20. https://doi.org/10.1016/j.jseaes.2011.05.018
    Zhang, L., Zhang, L. F., Xia, B., et al., 2018. Metamorphic P-T Path and Zircon U-Pb Dating of HP Mafic Granulites in the Yushugou Granulite-Peridotite Complex, Chinese South Tianshan, NW China. Journal of Asian Earth Sciences, 153: 346–364. https://doi.org/10.1016/j.jseaes.2017.05.034
    Zhong, L. L., Wang, B., Shu, L. S., et al., 2015. Structural Overprints of Early Paleozoic Arc-Related Intrusive Rocks in the Chinese Central Tianshan: Implications for Paleozoic Accretionary Tectonics in SW Central Asian Orogenic Belts. Journal of Asian Earth Sciences, 113: 194–217. https://doi.org/10.1016/j.jseaes.2014.12.003
    Zhou, X., Zheng, J. P., Li, Y. B., et al., 2019. Neoproterozoic Sedimentary Rocks Track the Location of the Lhasa Block during the Rodinia Breakup. Precambrian Research, 320: 63–77. https://doi.org/10.1016/j.precamres.2018.10.005
    Zhu, X. Y., Wang, B., Sun, Z. C., et al., 2020. Detrital Zircon Ages of the Mesoproterozoic Metasedimentary Rocks in the Southern Yili Block: Implications for Tectonic Affinities of the Microcontinents in SW Central Asian Orogenic Belt. Precambrian Research, 350: 105926. https://doi.org/10.1016/j.precamres.2020.105926
    Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32–48. https://doi.org/10.1016/j.precamres.2016.12.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(422) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return