Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Muhammad Yousuf Jat Baloch, Chunli Su, Shakeel Ahmed Talpur, Javed Iqbal, Kulvinder Bajwa. Arsenic Removal from Groundwater Using Iron Pyrite: Influence Factors and Removal Mechanism. Journal of Earth Science, 2023, 34(3): 857-867. doi: 10.1007/s12583-022-1698-x
Citation: Muhammad Yousuf Jat Baloch, Chunli Su, Shakeel Ahmed Talpur, Javed Iqbal, Kulvinder Bajwa. Arsenic Removal from Groundwater Using Iron Pyrite: Influence Factors and Removal Mechanism. Journal of Earth Science, 2023, 34(3): 857-867. doi: 10.1007/s12583-022-1698-x

Arsenic Removal from Groundwater Using Iron Pyrite: Influence Factors and Removal Mechanism

doi: 10.1007/s12583-022-1698-x
More Information
  • Corresponding author: Chunli Su, chl.su@cug.edu.cn
  • Received Date: 27 Jan 2022
  • Accepted Date: 07 Jun 2022
  • Issue Publish Date: 30 Jun 2023
  • Iron pyrite has been reported as a kind of potential material for arsenic (As) removal from the groundwater because it exhibits a strong attraction in groundwater for both arsenite and arsenate species. In this study, batch adsorption experiments were carried out to determine the optimum conditions for As adsorption by the iron pyrite adsorbent, including the initial concentration, adsorbent dosage ratio, pH, temperature and stirring rate. Precisely characterization methods were employed to identify the mechanism of As removal. Maximum removal efficiency for As(Ⅲ) was observed 93% at pH = 7, and for As(Ⅴ) was 95% observed at pH = 5. Langmuir model resulted in the maximum adsorption capacity (qm) for As(Ⅲ) and As(Ⅴ) were 571.7 and 671.1 μg/g, respectively, as well as the experiments were found to be favorable as separation factor RL < 1. The value of "n" 2.68 and 2.47 for As(Ⅲ) and As(Ⅴ) obtained by Freundlich model (n > 1) indicates favorable adsorption. The pseudo-first and second-order kinetic models also fitted well. The addition of oxalate on the adsorbent surface plays an important role for the recycling of Fe(Ⅱ)/Fe(Ⅲ) to minimize the arsenic concentration. Specific surface area, ion exchange mechanism and structure of adsorbent confirmed that addition of oxalate could enhance the surface area of adsorbent.

     

  • loading
  • Alarcón-Herrera, M. T., Gutiérrez, M., 2022. Geogenic Arsenic in Groundwater: Challenges, Gaps, and Future Directions. Current Opinion in Environmental Science & Health, 27: 100349. https://doi.org/10.1016/j.coesh.2022.100349
    Anawar, H. M. J. T., 2012. Arsenic Speciation in Environmental Samples by Hydride Generation and Electrothermal Atomic Absorption Spectro-metry. Talanta, 88: 30–42. https://doi.org/10.1016/j.talanta.2011.11.068
    Anirudhan, T. S., Jalajamony, S., 2010. Cellulose-Based Anion Exchanger with Tertiary Amine Functionality for the Extraction of Arsenic(Ⅴ) from Aqueous Media. Journal of Environmental Management, 91(11): 2201–2207. https://doi.org/10.1016/j.jenvman.2010.05.019
    Aredes, S., Klein, B., Pawlik, M., 2013. The Removal of Arsenic from Water Using Natural Iron Oxide Minerals. Journal of Cleaner Production, 60: 71–76. https://doi.org/10.1016/j.jclepro.2012.10.035
    Berg, Z. K., Rodriguez, B., Davis, J., et al., 2019. Association between Occupational Exposure to Pesticides and Cardiovascular Disease Incidence: The Kuakini Honolulu Heart Program. Journal of the American Heart Association, 8(19): e012569. https://doi.org/10.1161/jaha.119.012569
    Boonkaewwan, S., Sonthiphand, P., Chotpantarat, S., 2021. Mechanisms of Arsenic Contamination Associated with Hydrochemical Characteristics in Coastal Alluvial Aquifers Using Multivariate Statistical Technique and Hydrogeochemical Modeling: A Case Study in Rayong Province, Eastern Thailand. Environmental Geochemistry and Health, 43(1): 537–566. https://doi.org/10.1007/s10653-020-00728-7
    Bose, P., Sharma, A., 2002. Role of Iron in Controlling Speciation and Mobilization of Arsenic in Subsurface Environment. Water Research, 36(19): 4916–4926. https://doi.org/10.1016/s0043-1354(02)00203-8
    Bostick, B. C., Fendorf, S., 2003. Arsenite Sorption on Troilite (FeS) and Pyrite (FeS2). Geochimica et Cosmochimica Acta, 67(5): 909–921. https://doi.org/10.1016/s0016-7037(02)01170-5
    Bulut, G., Yenial, Ü., Emiroğlu, E., et al., 2014. Arsenic Removal from Aqueous Solution Using Pyrite. Journal of Cleaner Production, 84: 526–532. https://doi.org/10.1016/j.jclepro.2013.08.018
    Butcher, D. J., 2007. Environmental Applications of Arsenic Speciation Using Atomic Spectrometry Detection. Applied Spectroscopy Reviews, 42(1): 1–22. https://doi.org/10.1080/05704920600939398
    Cao, W. G., Gao, Z. P., Guo, H. M., et al., 2022. Increases in Groundwater Arsenic Concentrations and Risk under Decadal Groundwater Withdrawal in the Lower Reaches of the Yellow River Basin, Henan Province, China. Environmental Pollution, 296: 118741. https://doi.org/10.1016/j.envpol.2021.118741
    Chen, R. H., Chai, L. Y., Li, Q. Z., et al., 2013. Preparation and Characterization of Magnetic Fe3O4/CNT Nanoparticles by RPO Method to Enhance the Efficient Removal of Cr(Ⅵ). Environmental Science and Pollution Research International, 20(10): 7175–7185. https://doi.org/10.1007/s11356-013-1671-4
    Chen, W. F., Parette, R., Zou, J. Y., et al., 2007. Arsenic Removal by Iron-Modified Activated Carbon. Water Research, 41(9): 1851–1858. https://doi.org/10.1016/j.watres.2007.01.052
    Cundy, A. B., Hopkinson, L., Whitby, R. L. D., 2008. Use of Iron-Based Technologies in Contaminated Land and Groundwater Remediation: A Review. Science of the Total Environment, 400(1/2/3): 42–51. https://doi.org/10.1016/j.scitotenv.2008.07.002
    Cuong, D. V., Wu, P. C., Liou, S. Y. H., et al., 2022. An Integrated Active Biochar Filter and Capacitive Deionization System for High-Performance Removal of Arsenic from Groundwater. Journal of Hazardous Materials, 423: 127084. https://doi.org/10.1016/j.jhazmat.2021.127084
    Das, B., Mondal, N. K., 2012. Calcareous Soil as a New Adsorbent to Remove Lead from Aqueous Solution: Equilibrium, Kinetic and Thermodynamic Study. Universal Journal of Environmental Research and Technology, 1(4): 515–530 http://ir.inflibnet.ac.in:8080/jspui/bitstream/10603/121350/15/15_chapter%207.pdf
    Daus, B., Wennrich, R., Weiss, H., 2004. Sorption Materials for Arsenic Removal from Water: A Comparative Study. Water Research, 38(12): 2948–2954. https://doi.org/10.1016/j.watres.2004.04.003
    Deng, S., Zhang, G. S., Chen, S. W., et al., 2016. Rapid and Effective Preparation of a HPEI Modified Biosorbent Based on Cellulose Fiber with a Microwave Irradiation Method for Enhanced Arsenic Removal in Water. Journal of Materials Chemistry A, 4(41): 15851–15860. https://doi.org/10.1039/c6ta06051j
    Dilpazeer, F., Munir, M., Baloch, M. Y. J., et al., 2023. A Comprehensive Review of the Latest Advancements in Controlling Arsenic Conta-minants in Groundwater. Water, 15(3): 478. https://doi.org/10.3390/w15030478
    Dos Santos, H. H., Demarchi, C. A., Rodrigues, C. A., et al., 2011. Adsorption of As(Ⅲ) on Chitosan-Fe-Crosslinked Complex (Ch-Fe). Chemosphere, 82(2): 278–283. https://doi.org/10.1016/j.chemosphere.2010.09.033
    Fu, D., Kurniawan, T. A., Lin, L., et al., 2021. Arsenic Removal in Aqueous Solutions Using FeS2. Journal of Environmental Management, 286: 112246. https://doi.org/10.1016/j.jenvman.2021.112246
    Fulladosa, E., Murat, J. C., Martínez, M., et al., 2004. Effect of pH on Arsenate and Arsenite Toxicity to Luminescent Bacteria (Vibrio Fischeri). Archives of Environmental Contamination and Toxicology, 46(2): 176–182. https://doi.org/10.1007/s00244-003-2291-7
    Guan, X. H., Du, J. S., Meng, X. G., et al., 2012. Application of Titanium Dioxide in Arsenic Removal from Water: A Review. Journal of Hazardous Materials, 215/216: 1–16. https://doi.org/10.1016/j.jhazmat.2012.02.069
    Gupta, A., Yunus, M., Sankararamakrishnan, N., 2012. Zerovalent Iron Encapsulated Chitosan Nanospheres—A Novel Adsorbent for the Removal of Total Inorganic Arsenic from Aqueous Systems. Chemosphere, 86(2): 150–155. https://doi.org/10.1016/j.chemosphere.2011.10.003
    Han, D. S., Song, J. K., Batchelor, B., et al., 2013. Removal of Arsenite (As(Ⅲ)) and Arsenate (As(Ⅴ)) by Synthetic Pyrite (FeS2): Synthesis, Effect of Contact Time, and Sorption/Desorption Envelopes. Journal of Colloid and Interface Science, 392: 311–318. https://doi.org/10.1016/j.jcis.2012.09.084
    Han, J. T., Fyfe, W. S., 2000. Arsenic Removal from Water by Iron-Sulphide Minerals. Chinese Science Bulletin, 45(15): 1430–1434. https://doi.org/10.1007/bf02886253
    He, R. Z., Peng, Z. Y., Lyu, H. H., et al., 2018. Synthesis and Characterization of an Iron-Impregnated Biochar for Aqueous Arsenic Removal. Science of the Total Environment, 612: 1177–1186. https://doi.org/10.1016/j.scitotenv.2017.09.016
    Hu, X., Ding, Z. H., Zimmerman, A. R., et al., 2015. Batch and Column Sorption of Arsenic Onto Iron-Impregnated Biochar Synthesized through Hydrolysis. Water Research, 68: 206–216. https://doi.org/10.1016/j.watres.2014.10.009
    Jat Baloch, M. Y., Mangi, S. H., 2019. Treatment of Synthetic Greywater by Using Banana, Orange and Sapodilla Peels as a Low Cost Activated Carbon. Journal of Materials and Environmental Science, 10(10): 966–986 http://doc.paperpass.com/foreign/rgArti2019132350431.html
    Jat Baloch, M. Y., Talpur, S. A., Talpur, H. A., et al., 2020. Effects of Arsenic Toxicity on the Environment and Its Remediation Techniques: A Review. Journal of Water and Environment Technology, 18(5): 275–289. https://doi.org/10.2965/jwet.19-130
    Jat Baloch, M. Y., Zhang, W. J., Chai, J. F., et al., 2021. Shallow Groundwater Quality Assessment and Its Suitability Analysis for Drinking and Irrigation Purposes. Water, 13(23): 3361. https://doi.org/10.3390/w13233361
    Jat Baloch, M. Y., Zhang, W. J., Zhang, D. Y., et al., 2022a. Evolution Mechanism of Arsenic Enrichment in Groundwater and Associated Health Risks in Southern Punjab, Pakistan. International Journal of Environmental Research and Public Health, 19(20): 13325. https://doi.org/10.3390/ijerph192013325
    Jat Baloch, M., Zhang, W. J., Shoumik, B., et al., 2022b. Hydrogeochemical Mechanism Associated with Land Use Land Cover Indices Using Geospatial, Remote Sensing Techniques, and Health Risks Model. Sustainability, 14(24): 16768. https://doi.org/10.3390/su142416768
    Jia, Y. F., Xu, L. Y., Wang, X., et al., 2007. Infrared Spectroscopic and X-Ray Diffraction Characterization of the Nature of Adsorbed Arsenate on Ferrihydrite. Geochimica et Cosmochimica Acta, 71(7): 1643–1654. https://doi.org/10.1016/j.gca.2006.12.021
    Kanel, S. R., Choi, H., Kim, J. -Y., et al., 2006. Removal of Arsenic (Ⅲ) from Groundwater Using Low-Cost Industrial By-Products-Blast Furnace Slag. Water Quality Research Journal, 41(2): 130–139. https://doi.org/10.2166/wqrj.2006.015
    Kanwal, F., Rehman, R., Mahmud, T., et al., 2012. Isothermal and Thermodynamical Modeling of Chromium (Ⅲ) Adsorption by Composites of Polyaniline with Rice Husk and Saw Dust. Journal of the Chilean Chemical Society, 57(1): 1058–1063. https://doi.org/10.4067/s0717-97072012000100022
    Kim, K. R., Lee, B. T., Kim, K. W., 2012. Arsenic Stabilization in Mine Tailings Using Nano-Sized Magnetite and Zero Valent Iron with the Enhancement of Mobility by Surface Coating. Journal of Geochemical Exploration, 113: 124–129. https://doi.org/10.1016/j.gexplo.2011.07.002
    Kim, K., Moon, J. -T., Kim, S. -H., et al., 2009. Importance of Surface Geologic Condition in Regulating as Concentration of Groundwater in the Alluvial Plain. Chemosphere, 77(4): 478–484. https://doi.org/10.1016/j.chemosphere.2009.07.053
    Kurajica, L., Bošnjak, M. U., Kinsela, A., et al., 2022. Mixing of Arsenic-Rich Groundwater and Surface Water in Drinking Water Distribution Systems: Implications for Contaminants, Disinfection Byproducts and Organic Components. Chemosphere, 292: 133406. https://doi.org/10.1016/j.chemosphere.2021.133406
    Kwon, O.-H., Kim, J.-O., Cho, D.-W., et al., 2016. Adsorption of As(Ⅲ), As(Ⅴ) and Cu(Ⅱ) on Zirconium Oxide Immobilized Alginate Beads in Aqueous Phase. Chemosphere, 160: 126–133. https://doi.org/10.1016/j.chemosphere.2016.06.074
    Lata, S., Samadder, S. R., 2016. Removal of Arsenic from Water Using Nano Adsorbents and Challenges: A Review. Journal of Environmental Manage-ment, 166: 387–406. https://doi.org/10.1016/j.jenvman.2015.10.039
    Lee, S. O., Tran, T., Jung, B. H., et al., 2007. Dissolution of Iron Oxide Using Oxalic Acid. Hydrometallurgy, 87(3/4): 91–99. https://doi.org/10.1016/j.hydromet.2007.02.005
    Li, Y. Y., Liang, J. L., He, X., et al., 2016. Kinetics and Mechanisms of Amorphous FeS2 Induced Cr(Ⅵ) Reduction. Journal of Hazardous Materials, 320: 216–225. https://doi.org/10.1016/j.jhazmat.2016.08.010
    Lopes, G., Guilherme, L. G., Costa, E. S., et al., 2013. Increasing Arsenic Sorption on Red Mud by Phosphogypsum Addition. Journal of Hazardous Materials, 262: 1196–1203. https://doi.org/10.1016/j.jhazmat.2012.06.051
    Malik, A., Batool, S., Farooqi, A., 2022. Advances in Biodegradation and Bioremediation of Arsenic Contamination in the Environment. Biological Approaches to Controlling Pollutants. Elsevier, Amsterdam. 107–120. https://doi.org/10.1016/b978-0-12-824316-9.00007-0
    Mamindy-Pajany, Y., Hurel, C., Marmier, N., et al., 2009. Arsenic Adsorption Onto Hematite and Goethite. Comptes Rendus Chimie, 12(8): 876–881. https://doi.org/10.1016/j.crci.2008.10.012
    Markovski, J. S., Marković, D. D., Đokić, V. R., et al., 2014. Arsenate Adsorption on Waste Eggshell Modified by Goethite, Α-MnO2 and Goethite/α-MnO2. Chemical Engineering Journal, 237: 430–442. https://doi.org/10.1016/j.cej.2013.10.031
    Metcalf, W., 2003. Metcalf and Eddy Wastewater Engineering: Treatment and Reuse. Wastewater Engineering: Treatment and Reuse. Mc Graw Hill, New York, NY
    Mikhaylova, Y., Adam, G., Häussler, L., et al., 2006. Temperature-Dependent FTIR Spectroscopic and Thermoanalytic Studies of Hydrogen Bonding of Hydroxyl (Phenolic Group) Terminated Hyperbranched Aromatic Polyesters. Journal of Molecular Structure, 788(1/2/3): 80–88. https://doi.org/10.1016/j.molstruc.2005.11.020
    Mohan, D., Pittman, C. U. Jr, 2007. Arsenic Removal from Water/Wastewater Using Adsorbents: A Critical Review. Journal of Hazardous Materials, 142(1/2): 1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006
    Navas-Acien, A., Sanchez, T. R., Mann, K., et al., 2019. Arsenic Exposure and Cardiovascular Disease: Evidence Needed to Inform the Dose-Response at Low Levels. Current Epidemiology Reports, 6(2): 81–92. https://doi.org/10.1007/s40471-019-00186-5
    Nordstrom, D. K., 2002. Public Health. Worldwide Occurrences of Arsenic in Ground Water. Science, 296(5576): 2143–2145. https://doi.org/10.1126/science.1072375
    Ntim, S. A., Mitra, S., 2011. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes. Journal of Chemical and Engineering Data, 56(5): 2077–2083. https://doi.org/10.1021/je1010664
    Ociński, D., Jacukowicz-Sobala, I., Kociołek-Balawejder, E., 2016. Alginate Beads Containing Water Treatment Residuals for Arsenic Removal from Water-Formation and Adsorption Studies. Environmental Science and Pollution Research International, 23(24): 24527–24539. https://doi.org/10.1007/s11356-016-6768-0
    Ouédraogo, I. W. K., Pehlivan, E., Tran, H. T., et al., 2015. Synthesis of Iron Oxyhydroxide-Coated Rice Straw (IOC-RS) and Its Application in Arsenic(Ⅴ) Removal from Water. Journal of Water and Health, 13(3): 726–736. https://doi.org/10.2166/wh.2015.242
    Pegu, R., Majumdar, K. J., Talukdar, D. J., et al., 2014. Oxalate Capped Iron Nanomaterial: From Methylene Blue Degradation to Bis(Indolyl)Methane Synthesis. RSC Adv, 4(63): 33446–33456. https://doi.org/10.1039/c4ra04214j
    Pinchoff, J., Monseur, B., Desai, S., et al., 2022. Is Living in a Region with High Groundwater Arsenic Contamination Associated with Adverse Reproductive Health Outcomes? An Analysis Using Nationally Repre-sentative Data from India. International Journal of Hygiene and Environmental Health, 239: 113883. https://doi.org/10.1016/j.ijheh.2021.113883
    Pokhrel, D., Viraraghavan, T., 2008. Arsenic Removal from an Aqueous Solution by Modified A. Niger Biomass: Batch Kinetic and Isotherm Studies. Journal of Hazardous Materials, 150(3): 818–825. https://doi.org/10.1016/j.jhazmat.2007.05.041
    Raju N. J., 2022. Arsenic in the Geo-Environment: A Review of Sources, Geochemical Processes, Toxicity and Removal Technologies. Environmental Research, 203: 111782. https://doi.org/10.1016/j.envres.2021.111782
    Roy, P., Mondal, N. K., Bhattacharya, S., et al., 2013. Removal of Arsenic(Ⅲ) and Arsenic(Ⅴ) on Chemically Modified Low-Cost Adsorbent: Batch and Column Operations. Applied Water Science, 3(1): 293–309. https://doi.org/10.1007/s13201-013-0082-5
    Sarkar, A., Paul, B., 2016. The Global Menace of Arsenic and Its Conventional Remediation—A Critical Review. Chemosphere, 158: 37–49. https://doi.org/10.1016/j.chemosphere.2016.05.043
    Sigdel, A., Park, J., Kwak, H., et al., 2016. Arsenic Removal from Aqueous Solutions by Adsorption Onto Hydrous Iron Oxide-Impregnated Alginate Beads. Journal of Industrial and Engineering Chemistry, 35: 277–286. https://doi.org/10.1016/j.jiec.2016.01.005
    Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517–568. https://doi.org/10.1016/s0883-2927(02)00018-5
    Smith, A. H., Lingas, E. O., Rahman, M., 2000. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bulletin of the World Health Organization, 78(9): 1093–1103 http://www.researchgate.net/profile/Mahfuzar_Rahman/publication/12305245_Smith_AH_Lingas_EO_Rahman_M_Contamination_of_Drinking_Water_by_Arsenic_in_Bangladesh_A_Public_Health_Emergency_Bulletin_of_the_World_Health_Organization_78_1093-1103/links/54f1d23b0cf2b36214acd986.pdf
    Suresh, S., Srivastava, V. C., Mishrab, I. M., 2012. Adsorptive Removal of Aniline by Granular Activated Carbon from Aqueous Solutions with Catechol and Resorcinol. Environmental Technology, 33(7/8/9): 773–781. https://doi.org/10.1080/09593330.2011.592228
    Taleb, K., Rusmirovic, J., Rancic, M., et al., 2016. Efficient Pollutants Removal by Amino-Modified Nanocellulose Impregnated with Iron Oxide. Journal of the Serbian Chemical Society, 81(10): 1199–1213. https://doi.org/10.2298/jsc160529063t
    Tsai, W. T., Chen, H. R., 2010. Removal of Malachite Green from Aqueous Solution Using Low-Cost Chlorella-Based Biomass. Journal of Hazardous Materials, 175(1/2/3): 844–849. https://doi.org/10.1016/j.jhazmat.2009.10.087
    Vaishya, R. C., Gupta, S. K., 2003. Modelling Arsenic(Ⅲ) Adsorption from Water by Sulfate-Modified Iron Oxide-Coated Sand (SMIOCS). Journal of Chemical Technology & Biotechnology, 78(1): 73–80. https://doi.org/10.1002/jctb.745
    Wang, C. H., Liu, X. L., Chen, J. P., et al., 2015. Superior Removal of Arsenic from Water with Zirconium Metal-Organic Framework UiO-66. Scientific Reports, 5: 16613. https://doi.org/10.1038/srep16613
    Wang, J., Xu, W. H., Chen, L., et al., 2014. Preparation and Evaluation of Magnetic Nanoparticles Impregnated Chitosan Beads for Arsenic Removal from Water. Chemical Engineering Journal, 251: 25–34. https://doi.org/10.1016/j.cej.2014.04.061
    Wu, C., Li, H., Ye, Z. H., et al., 2013. Effects of as Levels on Radial Oxygen Loss and as Speciation in Rice. Environmental Science and Pollution Research International, 20(12): 8334–8341. https://doi.org/10.1007/s11356-013-2083-1
    Wu, P. Y., Jia, Y., Jiang, Y. P., et al., 2014. Enhanced Arsenate Removal Performance of Nanostructured Goethite with High Content of Surface Hydroxyl Groups. Journal of Environmental Chemical Engineering, 2(4): 2312–2320. https://doi.org/10.1016/j.jece.2014.10.010
    Xie, X. J., Lu, C., Xu, R., et al., 2022. Arsenic Removal by Manganese-Doped Mesoporous Iron Oxides from Groundwater: Performance and Mechanism. Science of the Total Environment, 806: 150615. https://doi.org/10.1016/j.scitotenv.2021.150615
    Yu, B., Jia, S. Y., Liu, Y., et al., 2013. Mobilization and Re-adsorption of Arsenate on Ferrihydrite and Hematite in the Presence of Oxalate. Journal of Hazardous Materials, 262: 701–708. https://doi.org/10.1016/j.jhazmat.2013.09.010
    Zakhar, R., Derco, J., Čacho, F., 2018. An Overview of Main Arsenic Removal Technologies. Acta Chimica Slovaca, 11(2): 107–113. https://doi.org/10.2478/acs-2018-0016
    Zhang, G. S., Qu, J. H., Liu, H. J., et al., 2007. Preparation and Evaluation of a Novel Fe-Mn Binary Oxide Adsorbent for Effective Arsenite Removal. Water Research, 41(9): 1921–1928. https://doi.org/10.1016/j.watres.2007.02.009
    Zhang, G. S., Liu, H. J., Liu, R. P., et al., 2009. Adsorption Behavior and Mechanism of Arsenate at Fe-Mn Binary Oxide/Water Interface. Journal of Hazardous Materials, 168(2/3): 820–825. https://doi.org/10.1016/j.jhazmat.2009.02.137
    Zhang, Q. B., Song, K., Zhao, J. W., et al., 2009. Hexanedioic Acid Mediated Surface-Ligand-Exchange Process for Transferring NaYF4: Yb/Er (or Yb/Tm) Up-Converting Nanoparticles from Hydrophobic to Hydrophilic. Journal of Colloid and Interface Science, 336(1): 171–175. https://doi.org/10.1016/j.jcis.2009.04.024
    Zhu, H. J., Jia, Y. F., Wu, X., et al., 2009. Removal of Arsenic from Water by Supported Nano Zero-Valent Iron on Activated Carbon. Journal of Hazardous Materials, 172(2/3): 1591–1596. https://doi.org/10.1016/j.jhazmat.2009.08.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(464) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return