Citation: | Lei Gong, Xianzhi Gao, Futao Qu, Yongshu Zhang, Guangya Zhang, Jun Zhu. Reservoir Quality and Controlling Mechanism of the Upper Paleogene Fine-Grained Sandstones in Lacustrine Basin in the Hinterlands of Northern Qaidam Basin, NW China. Journal of Earth Science, 2023, 34(3): 806-823. doi: 10.1007/s12583-022-1701-6 |
The Upper Paleogene lacustrine fine-grained sandstones in the hinterlands of the northern Qaidam Basin mainly contain two sweet spot intervals. Fracture/fault, microfacies, petrology, pore features, diagenesis, etc., were innovatively combined to confirm the controlling factors on the reservoir quality of shallow delta-lacustrine fine-grained sandstones. The diagenesis of the original lake/surface/meteoric freshwater and acidic fluids related to the faults and unconformity occurred in an open geochemical system. Comprehensive analysis shows that the Upper Paleogene fine-grained sandstones were primarily formed in the early diagenetic B substage to the middle diagenetic A substage. Reservoir quality was controlled by fault systems, microfacies, burial-thermal history, diagenesis, hydrocarbon charging events (HCE), and abnormally high pressure. Shallow and deep double fault systems are the pathways for fluid flow and hydrocarbon migration. Sandstones developed in the high energy settings such as overwater (ODC) and underwater distributary channels (UDC) provide the material foundation for reservoirs. Moderate burial depth (3 000–4 000 m), moderate geothermal field (2.7–3.2 ℃/100 m), and late HCE (later than E3) represent the important factors to protect and improve pore volume. Meteoric freshwater with high concentrations of CO2 and organic acids from thermal decarboxylation are the main fluids leading to the dissolution and reformation of feldspar, rock fragments, calcite and anhydrite cements. Abnormally high pressure caused by the undercompaction in a large set of argillaceous rocks is the key to form high-quality reservoirs. Abnormal pressure zones reduced and inhibited the damage of compaction and quartz overgrowth to reservoir pores, allowing them to be better preserved. A reservoir quality evaluation model with bidirectional migration pathways, rich in clay minerals, poor in cements, superimposed dissolution and abnormally high pressure was proposed for the ODC/UDC fine-grained sandstones. This model will facilitate the future development of fine-grained sandstone reservoirs both in the Upper Paleogene of the Qaidam Basin and elsewhere.
Bao, J., Wang, Y. D., Song, C. H., et al., 2017. Cenozoic Sediment Flux in the Qaidam Basin, Northern Tibetan Plateau, and Implications with Regional Tectonics and Climate. Global and Planetary Change, 155: 56–69. https://doi.org/10.1016/j.gloplacha.2017.03.006 |
Barth, T., Bjørlykke, K., 1993. Organic Acids from Source Rock Maturation: Generation Potentials, Transport Mechanisms and Relevance for Mineral Diagenesis. Applied Geochemistry, 8(4): 325–337. https://doi.org/10.1016/0883-2927(93)90002-x |
Baruch, E. T., Kennedy, M. J., Löhr, S. C., et al., 2015. Feldspar Dissolution-Enhanced Porosity in Paleoproterozoic Shale Reservoir Facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bulletin, 99(9): 1745–1770. https://doi.org/10.1306/04061514181 |
Bentley, R. W., 2002. Global Oil & Gas Depletion: An Overview. Energy Policy, 30(3): 189–205. https://doi.org/10.1016/s0301-4215(01)00144-6 |
Bethke, C. M., Altaner, S. P., 1986. Layer-by-Layer Mechanism of Smectite Illitization and Application to a New Rate Law. Clays and Clay Minerals, 34(2): 136–145. https://doi.org/10.1346/ccmn.1986.0340204 |
Bjørlykke, K., 1993. Fluid Flow in Sedimentary Basins. Sedimentary Geology, 86(1/2): 137–158. https://doi.org/10.1016/0037-0738(93)90137-t |
Bjørlykke, K., Gran, K., 1994. Salinity Variations in North Sea Formation Waters: Implications for Large-Scale Fluid Movements. Marine and Petroleum Geology, 11(1): 5–9. https://doi.org/10.1016/0264-8172(94)90003-5 |
Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer during Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193–2214. https://doi.org/10.1306/04301211139 |
Cai, J. G., Du, J. Z., Chen, Z. W., et al., 2018. Hydrothermal Experiments Reveal the Influence of Organic Matter on Smectite Illitization. Clays and Clay Minerals, 66(1): 28–42. https://doi.org/10.1346/ccmn.2017.064084 |
Cao, J. J., Luo, J. L., Madina, M., et al., 2021. Influence Mechanism of Micro-Heterogeneity on Conglomerate Reservoir Densification: A Case Study of Upper Permian Wutonggou Formation in DN8 Area of Dongdaohaizi Sag, Junggar Basin. Earth Science, 46(10): 3435–3452. https://doi.org/10.3799/dqkx.2020.388 (in Chinese with English Abstract) |
Cao, Y. C., Xi, K. L., Zhu, R. K., et al., 2015. Microscopic Pore Throat Characteristics of Tight Sandstone Reservoirs in Fuyu Layer of the Fourth Member of Quantou Formation in Southern Songliao Basin. Journal of China University of Petroleum (Edition of Natural Science), 39(5): 7–17 (in Chinese with English Abstract) doi: 10.3969/j.issn.1673-5005.2015.05.002 |
Chen, J., Zhang, Y. M., Shi, J. A., et al., 2012. Diagenesis of Paleogene-Neogene Sandstone Reservoirs in Lenghu-Maxian Area, Northern Qaidam Basin. Lithologic Reservoirs, 24(2): 21–25 (in Chinese with English Abstract) doi: 10.3969/j.issn.1673-8926.2012.02.005 |
Chen, S. Y., Zhang, S., Wang, Y. S., et al., 2016. Lithofacies Types and Reservoirs of Paleogene Fine-Grained Sedimentary Rocks Dongying Sag, Bohai Bay Basin, China. Petroleum Exploration and Development, 43(2): 218–229. https://doi.org/10.1016/s1876-3804(16)30025-8 |
Dera, G., Brigaud, B., Monna, F., et al., 2011. Climatic Ups and Downs in a Disturbed Jurassic World. Geology, 39(3): 215–218. https://doi.org/10.1130/g31579.1 |
Dias, R. F., Freeman, K. H., Lewan, M. D., et al., 2002. δ13C of Low-Molecular-Weight Organic Acids Generated by the Hydrous Pyrolysis of Oil-Prone Source Rocks. Geochimica et Cosmochimica Acta, 66(15): 2755–2769. https://doi.org/10.1016/s0016-7037(02)00871-2 |
Du, J. Z., Cai, J. G., Chao, Q., et al., 2021. Variations and Geological Significance of Solid Acidity during Smectite Illitization. Applied Clay Science, 204: 106035. https://doi.org/10.1016/j.clay.2021.106035 |
Du, J. Z., Cai, J. G., Chen, Z. W., et al., 2019. A Contrastive Study of Effects of Different Organic Matter on the Smectite Illitization in Hydrothermal Experiments. Applied Clay Science, 168: 249–259. https://doi.org/10.1016/j.clay.2018.11.016 |
Du, Y. L., Fang, W. X., Lu, J., 2020. Characteristics of Diagenetic Temperature-Pressure-Oxygen Fugacity of Gabbro-Diabase and Tendency of Geothermal Evolution of Magma Diagenesis in Sareke, Xinjiang. Acta Petrologica Sinica, 36(2): 484–508 (in Chinese with English Abstract) doi: 10.18654/1000-0569/2020.02.10 |
El-Ghali, M. A. K., El Khoriby, E., Mansurbeg, H., et al., 2013. Distribution of Carbonate Cements within Depositional Facies and Sequence Stratigraphic Framework of Shoreface and Deltaic Arenites, Lower Miocene, the Gulf of Suez Rift, Egypt. Marine and Petroleum Geology, 45: 267–280. https://doi.org/10.1016/j.marpetgeo.2013.04.019 |
El-Ghali, M. A. K., Tajori, K. G., Mansurbeg, H., 2006. The Influence of Transgression and Regression on the Spatial and Temporal Distribution of Diagenetic Kaolin in the Upper Ordovician Glaciogenic Sandstones within a Sequence Stratigraphic Framework, Murzuq Basin, SW Libya. Journal of Geochemical Exploration, 89(1/2/3): 87–91. https://doi.org/10.1016/j.gexplo.2005.11.030 |
Feng, J. L., Cao, J., Hu, K., et al., 2013. Dissolution and Its Impacts on Reservoir Formation in Moderately to Deeply Buried Strata of Mixed Siliciclastic-Carbonate Sediments, Northwestern Qaidam Basin, Northwest China. Marine and Petroleum Geology, 39(1): 124–137. https://doi.org/10.1016/j.marpetgeo.2012.09.002 |
Feng, Y. W., Chen, Y., Zhao, Z. Y., 2021. Migration of Natural Gas Controlled by Faults of Majiagou Formation in Central Ordos Basin: Evidence from Fluid Inclusions. Earth Science, 46(10): 3601–3614. https://doi.org/10.3799/dqkx.2020.384 (in Chinese with English Abstract) |
Folk, R. L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin. 4–11 |
França, A. B., Araújo, L. M., Maynard, J. B., et al., 2003. Secondary Porosity Formed by Deep Meteoric Leaching: Botucatu Eolianite, Southern South America. AAPG Bulletin, 87(7): 1073–1082. https://doi.org/10.1306/02260301071 |
Fu, S. T., Wang, Z. L., Zhang, Y. S., et al., 2015. Origin of Carbonate Cements in Reservoir Rocks and Its Petroleum Geologic Significance: Eboliang Structure Belt, Northern Margin of Qaidam Basin. Acta Sedimentologica Sinica, 33(5): 991–999 (in Chinese with English Abstract) |
Gao, D., Hu, M. Y., Li A. P., et al., 2021. High-Frequency Sequence and Microfacies and Their Impacts on Favorable Reservoir of Longwang-miao Formation in Central Sichuan Basin. Earth Science, 46(10): 3520–3534. https://doi.org/10.3799/dqkx.2020.382 (in Chinese with English Abstract) |
Giles, M. R., de Boer, R. B., 1990. Origin and Significance of Redistri-butional Secondary Porosity. Marine and Petroleum Geology, 7(4): 378–397. https://doi.org/10.1016/0264-8172(90)90016-a |
Gluyas, J. G., Garland, C. R., Oxtoby, N. H., et al., 2000. Quartz Cement: The Miller's Tale. In: Worden, R. H., Morad, S., eds., Quartz Cementation in Sandstones, vol. 29. International Association of Sedimentologists, Blackwell Science, Oxford. 199–219 |
Gluyas, J. G., Robinson, A. G., Primmer, T. P., 1997a. Rotliegend Sandstone Diagenesis: A Tale of Two Waters. Geofluids Ⅱ, Belfast. 291–294 |
Gluyas, J., Jolley, L., Primmer, T., 1997b. Element Mobility during Diagenesis: Sulphate Cementation of Rotliegend Sandstones, Southern North Sea. Marine and Petroleum Geology, 14(7/8): 1001–1011. https://doi.org/10.1016/S0264-8172(97)00038-x |
Guo, J. J., Sun, G. Q., Men, H. J., et al., 2018. Genetic Analysis of Anomalously High Porosity Zones in deeply Buried Reservoirs in the West Part of Northern Edge of Qaidam Basin, NW China. Acta Sedimentologica Sinica, 36(4): 777–786 (in Chinese with English Abstract) |
Guo, P., Liu, C. Y., Huang, L., et al., 2017. Genesis of the Late Eocene Bedded Halite in the Qaidam Basin and Its Implication for Paleoclimate in East Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 487: 364–380. https://doi.org/10.1016/j.palaeo.2017.09.023 |
Guo, P., Liu, C. Y., Yu, M. L., et al., 2018. Paleosalinity Evolution of the Paleogene Perennial Qaidam Lake on the Tibetan Plateau: Climatic vs. Tectonic Control. International Journal of Earth Sciences, 107: 1641–1656. https://doi.org/10.1007/s00531-017-1564-8 |
Harrison, W. J., Summa, L. L., 1991. Paleohydrology of the Gulf of Mexico Basin. American Journal of Science, 291(2): 109–176. https://doi.org/10.2475/ajs.291.2.109 |
Hower, J., Eslinger, E. V., Hower, M. E., et al., 1976. Mechanism of Burial Metamorphism of Argillaceous Sediment: 1. Mineralogical and Chemi-cal Evidence. Geological Society of America Bulletin, 87(5): 725–737. https://doi.org/10.1130/0016-7606(1976)87725:mobmoa>2.0.co;2 doi: 10.1130/0016-7606(1976)87725:mobmoa>2.0.co;2 |
Jia, Y. Y., Shi, J. A., Shen, Y. S., et al., 2013. Research of Structural Reservoir in No. 5 Unit of Lenghu Area. Journal of Southwest Petroleum University (Science & Technology Edition), 35(4): 43–50 (in Chinese with English Abstract) doi: 10.3863/j.issn.1674-5086.2013.04.006 |
Jin, Z. J., Zhu, D. Y., Hu, W. X., et al., 2009. Mesogenetic Dissolution of the Middle Ordovician Limestone in the Tahe Oilfield of Tarim Basin, NW China. Marine and Petroleum Geology, 26(6): 753–763. https://doi.org/10.1016/j.marpetgeo.2008.08.005 |
Knauss, K. G., Copenhaver, S. A., Braun, R. L., et al., 1997. Hydrous Pyrolysis of New Albany and Phosphoria Shales: Production Kinetics of Carboxylic Acids and Light Hydrocarbons and Interactions between the Inorganic and Organic Chemical Systems. Organic Geochemistry, 27(7/8): 477–496. https://doi.org/10.1016/s0146-6380(97)00081-8 |
Lai, J., Wang, G. W., Chai, Y., et al., 2017. Deep Burial Diagenesis and Reservoir Quality Evolution of High-Temperature, High-Pressure Sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen Area, Kuqa Depression, Tarim Basin of China. AAPG Bulletin, 101(6): 829–862. https://doi.org/10.1306/08231614008 |
Li, L. L., Wu, C. D., Fan, C. F., et al., 2017. Carbon and Oxygen Isotopic Constraints on Paleoclimate and Paleoelevation of the Southwestern Qaidam Basin, Northern Tibetan Plateau. Geoscience Frontiers, 8(5): 1175–1186. https://doi.org/10.1016/j.gsf.2016.12.001 |
Li, W. W., Cao, J., Shi, C. H., et al., 2020. Shale Oil in Saline Lacustrine Systems: A Perspective of Complex Lithologies of Fine-Grained Rocks. Marine and Petroleum Geology, 116: 104351. https://doi.org/10.1016/j.marpetgeo.2020.104351 |
Liao, J. H., Wu, K. Q., Er, C., 2022. Deep Reservoir Characteristics and Effective Reservoir Control Factors in Baiyun Sag of Pearl River Mouth Basin. Earth Science, 47(7): 2454–2467. https://doi.org/10.3799/dqkx.2022.017 (in Chinese with English Abstract) |
Liu, X., Zhu, S. F., Du, J. J., et al., 2017. Sedimentary Characteristics of the Jurassic in Western North Margin of Qaidam Basin. Journal of Palaeogeography, 19(4): 595–608 (in Chinese with English Abstract) |
Luo, L., Gao, X. Z., Gluyas, J., et al., 2019. Reservoir Quality Prediction of Deeply Buried Tight Sandstones in Extensively Faulted Region: A Case from the Middle–Upper Jurassic Shishugou Group in Central Junggar Basin, NW China. Journal of Petroleum Science and Engineering, 175: 22–45. https://doi.org/10.1016/j.petrol.2018.12.027 |
Luo, L., Gao, X., Meng, W., et al., 2018. The Origin and Alteration of Calcite Cement in Tight Sandstones of the Jurassic Shishugou Group, Fukang Sag, Junggar Basin, NW China: Implications for Fluid-Rock Interactions and Porosity Evolution. Australian Journal of Earth Sciences, 65(3): 427–445. https://doi.org/10.1080/08120099.2018.1437773 |
Ma, D. D., Yuan, L., Chen, Y., et al., 2018. Geological Conditions of Natural Gas, Resource Potential and Exploration Direction in the Northern Margin of Qaidam Basin. Natural Gas Geoscience, 29(10): 1486–1496 (in Chinese with English Abstract) doi: 10.11764/j.issn.1672-1926.2018.09.009 |
Maast, T. E., Jahren, J., Bjørlykke, K., 2011. Diagenetic Controls on Reservoir Quality in Middle to Upper Jurassic Sandstones in the South Viking Graben, North Sea. AAPG Bulletin, 95(11): 1937–1958. https://doi.org/10.1306/03071110122 |
MacQuaker, J. H. S., Taylor, K. G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587–603. https://doi.org/10.1306/08201311176 |
Pagani, M., Zachos, J. C., Freeman, K. H., et al., 2005. Marked Decline in Atmospheric Carbon Dioxide Concentrations during the Paleogene. Science, 309(5734): 600–603. https://doi.org/10.1126/science.1110063 |
Pan, S. L., Jiang, Y., Zhu, W. J., et al., 2021. Sedimentary-Diagenetic Characteristics of the Upper Section of the Lower Ganchaigou Formation in Lenghu No. 7 Region, North Qaidam Basin. Natural Gas Geoscience, 32(3): 393–404 (in Chinese with English Abstract) |
Pan, Y. S., Huang, Z. L., Li, T. J., et al., 2021. Pore Structure Characteristics and Evaluation of Lacustrine Mixed Fine-Grained Sedimentary Rocks: A Case Study of the Lucaogou Formation in the Malang Sag, Santanghu Basin, Western China. Journal of Petroleum Science and Engineering, 201: 108545. https://doi.org/10.1016/j.petrol.2021.108545 |
Pantopoulos, G., Orita, G. K. L., Armelenti, G., et al., 2021. Depositional Conditions at the Aptian Pre-salt Margins: Evidence from Quantitative Petrography and Textural Analysis of the Mucuri Member, Espirito Santo Basin, Brazil. Petroleum Geoscience, 27(4): petgeo2020-112. https://doi.org/10.1144/petgeo2020-112 |
Peng, J., Zeng, Y., Yang, Y. M., et al., 2022. Discussion on Classification and Naming Scheme of Fine-Grained Sedimentary Rocks. Petroleum Exploration and Development, 49(1): 121–132. https://doi.org/10.1016/s1876-3804(22)60009-0 |
Qin, S., Shi, W. Z., Wang, R., et al., 2022. Characteristics of Tight Sandstone Reservoirs and Their Controlling Factors of He-1 Member in Hangjinqi Block, Ordos Basin. Earth Science, 47(5): 1604–1618. https://doi.org/10.3799/dqkx.2022.007 (in Chinese with English Abstract) |
Qing, Y. H., Lyu, Z. X., Zhao, F., et al., 2020. Formation Mechanism of Authigenic Laumonites in Tight Sandstone of Member 1 of the Middlie Jurassic Shaximiao Formation in the Northeastern Central Sichuan Basin. Bulletin of Mineralogy Petrology and Geochemistry, 39(3): 536–547 (in Chinese with English Abstract) |
Ren, C. Q., Gao, X. Z., Zhang, Y. S., et al., 2019. Controlling Factors of Reservoir Quality in Low-Permeability Reservoir within a Sequence Stratigraphic Framework: A Case Study of the Lower Jurassic Sandstones in the Northern Margin of the Qaidam Basin, China. Australian Journal of Earth Sciences, 66(4): 589–596. https://doi.org/10.1080/08120099.2019.1562981 |
Shahzad, K., Betzler, C., Qayyum, F., 2019. Controls on the Paleogene Carbonate Platform Growth under Greenhouse Climate Conditions (Offshore Indus Basin). Marine and Petroleum Geology, 101: 519–539. https://doi.org/10.1016/j.marpetgeo.2018.12.025 |
Song, B. W., Zhang, K. X., Lu, J. F., et al., 2013. The Middle Eocene to Early Miocene Integrated Sedimentary Record in the Qaidam Basin and Its Implications for Paleoclimate and Early Tibetan Plateau Uplift. Canadian Journal of Earth Sciences, 50(2): 183–196. https://doi.org/10.1139/cjes-2012-0048 |
Sun, G. Q., Lü, J. W., Zhao, M. J., et al., 2015. Diagenesis and Sedimentary Environment of Miocene Series in Eboliang Ⅲ Area. Acta Sedimen-tologica Sinica, 33(2): 337–347 (in Chinese with English Abstract) |
Surdam, R. C., Boese, S. W., Crossey, L. J., 1984. The Chemistry of Secondary Porosity. In: McDonald, D. A., Surdam, R. C., eds., Clastic Diagenesis. American Association of Petroleum Geologists. AAPG Memoir, 37: 127–149. |
Surdam, R. C., Crossey, L. J., Hagen, E. S., et al., 1989. Organic-Inorganic Interactions and Sandstone Diagenesis. AAPG Bulletin, 73(1): 1–23. https://doi.org/10.1306/703c9ad7-1707-11d7-8645000102c1865d |
Takashima, R., Nishi, H., Huber, B., et al., 2006. Greenhouse World and the Mesozoic Ocean. Oceanography, 19(4): 82–92. https://doi.org/10.5670/oceanog.2006.07 |
Taylor, T. R., Land, L., 1996. Association of Allochthonous Waters and Reservoir Enhancement in Deeply Buried Miocene Sandstones: Picaroon Field, Corsair Trend, Offshore Texas. In: Crossey, L. J., Loucks, R., Totten, M. W., eds., Siliciclastic Diagenesis and Fluid Flow: Concepts and Applications, vol. 55. SEPM Special Publication, Tulsa. 37–48 |
Wang, F., Chen, R., Yu, W., et al., 2021. Characteristics of Lacustrine Deepwater Fine-Grained Lithofacies and Source-Reservoir Combination of Tight Oil in the Triassic Chang 7 Member in Ordos Basin, China. Journal of Petroleum Science and Engineering, 202: 108429. https://doi.org/10.1016/j.petrol.2021.108429 |
Wang, G. W., Chang, X. C., Yin, W., et al., 2017. Impact of Diagenesis on Reservoir Quality and Heterogeneity of the Upper Triassic Chang 8 Tight Oil Sandstones in the Zhenjing Area, Ordos Basin, China. Marine and Petroleum Geology, 83: 84–96. https://doi.org/10.1016/j.marpetgeo.2017.03.008 |
Wang, J. G., Zhang, D. W., Yuan, J. Y., et al., 2019. Characteristics of Reservoir Genesis and Oil-Gas Accumulation in Lacustrine Carbonate in Yingxi Area of Qaidam Basin. Journal of China University of Mining & Technology, 48(1): 99–109 (in Chinese with English Abstract) |
Wang, J., Cao, Y. C., Liu, K. Y., et al., 2019. Fractal Characteristics of the Pore Structures of Fine-Grained, Mixed Sedimentary Rocks from the Jimsar Sag, Junggar Basin: Implications for Lacustrine Tight Oil Accumulations. Journal of Petroleum Science and Engineering, 182: 106363. https://doi.org/10.1016/j.petrol.2019.106363 |
Wang, Y. Q., Wang, L., Momohara, A., et al., 2020. The Paleogene Atmospheric CO2 Concentrations Reconstructed Using Stomatal Analysis of Fossil Metasequoia Needles. Palaeoworld, 29(4): 744–751. https://doi.org/10.1016/j.palwor.2020.03.002 |
Wang, Y. T., Sun, G. Q., Zhang, S. C., et al., 2021. Characteristics and Genesis of Carbonate Cement in Abdomen Sandstone in Northern Margin of Qaidam Basin. Natural Gas Geoscience, 32(7): 1037–1046 (in Chinese with English Abstract) |
Wang, Z. K., Cao, Y. C., Swennen, R., et al., 2022. Meteoric Freshwater Leaching and Its Significance to Reservoir Quality in a Buried Hill of Lower-Middle Jurassic Fluvial Sandstones: A Case Study from the Huanghua Depression, Bohai Bay Basin, China. Journal of Petroleum Science and Engineering, 210: 109834. https://doi.org/10.1016/j.petrol.2021.109834 |
Wardlaw, N. C., Taylor, R. P., 1976. Mercury Capillary Pressure Curves and the Intepretation of Pore Structure and Capillary Behaviour in Reservoir Rocks. Bulletin of Canadian Petroleum Geology, 24(2): 225–262. https://doi.org/10.35767/gscpgbull.24.2.225 |
Worden, R. H., Morad, S., 2003. Clay Mineral Cements in Sandstones. In: Anjos, S. M. C., Deros, L. F., Silva, C. M. A., eds., Chlorite Authigenesis and Porosity Preservation in the Upper Cretaceous Marine Sandstones of the Santos Basin, Offshore Eastern Brazil. Wiley-Blackwell, Oxford. 291–316 |
Xie, X. J., Xiong, L. Q., Bai, H. Q., et al., 2022. Characteristics of Favorable Reservoir and Its Distribution Prediction in Middle-Deep Layers in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(5): 1635–1651. https://doi.org/10.3799/dqkx.2021.244 (in Chinese with English Abstract) |
Yan, Q., Zhang, Y. F., Fu, H., et al., 2018. High Pressure Mercury Injection and Scanning Electron Microscopy Applied to Characterize Micro- and Nano-Scale Pore Throats in Tight Sandstone Reservoirs: A Case Study of the Fourth Member of Shahejie Formation in Yi176 Block, Zhanhua Sag, Bohai Bay Basin. Petroleum Geology & Experiment, 40(2): 280–287 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201802020.htm |
Ye, S. J., Yang, Y. T., Zhang, L., 2021. Characteristics and Distribution of "Sweet Spot" Reservoirs in the Third and Fifth Members of Upper Triassic Xujiahe Formation, Western Sichuan Depression, Sichuan Basin. Oil & Gas Geology, 42(4): 829–840 (in Chinese with English Abstract) |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Ying, F. X., He, D. B., Long, Y. M., et al., 2003. Petroleum and Natural Gas Industry Standards of the People's Republic of China: SY/T5477-2003 The Division of Diagenetic Stages in Clastic Rocks. Petroleum Industry Press, Beijing. 32–41 (in Chinese) |
Yuan, G. H., Cao, Y. C., Gluyas, J., et al., 2015a. Feldspar Dissolution, Authigenic Clays, and Quartz Cements in Open and Closed Sandstone Geochemical Systems during Diagenesis: Typical Examples from Two Sags in Bohai Bay Basin, East China. AAPG Bulletin, 99(11): 2121–2154. https://doi.org/10.1306/07101514004 |
Yuan, G. H., Gluyas, J., Cao, Y. C., et al., 2015b. Diagenesis and Reservoir Quality Evolution of the Eocene Sandstones in the Northern Dongying Sag, Bohai Bay Basin, East China. Marine and Petroleum Geology, 62: 77–89. https://doi.org/10.1016/j.marpetgeo.2015.01.006 |
Yuan, G. H., Cao, Y. C., Yang, T., et al., 2013. Porosity Enhancement Potential through Mineral Dissolution by Organic Acids in the Diagenetic Process of Clastic Reservoir. Earth Science Frontiers, 20(5): 207–219 (in Chinese with English Abstract) |
Yuan, G. H., Cao, Y. C., Zhang, Y. C., et al., 2017. Diagenesis and Reservoir Quality of Sandstones with Ancient "Deep" Incursion of Meteoric Freshwater—An Example in the Nanpu Sag, Bohai Bay Basin, East China. Marine and Petroleum Geology, 82: 444–464. https://doi.org/10.1016/j.marpetgeo.2017.02.027 |
Yuan, J. Y., Huang, C. G., Zhao, F., et al., 2015. Carbon and Oxygen Isotopic Compositions, and Palaeoenvironmental Significance of Saline Lacustrine Dolomite from the Qaidam Basin, Western China. Journal of Petroleum Science and Engineering, 135: 596–607. https://doi.org/10.1016/j.petrol.2015.10.024 |
Zhang, M. M., Li, Z., 2018. The Lithofacies and Reservoir Characteristics of the Fine-Grained Sedimentary Rocks of the Permian Lucaogou Formation at the Northern Foot of Bogda Mountains, Junggar Basin (NW China). Journal of Petroleum Science and Engineering, 170: 21–39. https://doi.org/10.1016/j.petrol.2018.06.007 |
Zhang, P. H., Lee, Y. I., Zhang, J. L., 2020. Diagenetic Controls on the Reservoir Quality of Tight Oil-Bearing Sandstones in the Upper Triassic Yanchang Formation, Ordos Basin, North-Central China. Journal of Petroleum Geology, 43(2): 225–244. https://doi.org/10.1111/jpg.12759 |
Zhang, S. M., Cao, Y. C., Liu, K. Y., et al., 2019. Characterization of Lacustrine Mixed Fine-Grained Sedimentary Rocks Using Coupled Chemostratigraphic-Petrographic Analysis: A Case Study from a Tight Oil Reservoir in the Jimusar Sag, Junggar Basin. Marine and Petroleum Geology, 99: 453–472. https://doi.org/10.1016/j.marpetgeo.2018.10.039 |
Zhang, S. M., Zhang, X. J., Zhang, T. J., et al., 2021. Analysis of the Basic Characteristics and Controlling Factors of Fine-Grained Clastic Rock Reservoirs: A Case Study of the Cenozoic in the Mangya Area, Western Qaidam Basin. Acta Sedimentologica Sinica. https://doi.org/10.14027/j.issn.1000-0550.2021.101 (in Chinese with English Abstract) |
Zhang, W., Jian, X., Fu, L., et al., 2018. Reservoir Characterization and Hydrocarbon Accumulation in Late Cenozoic Lacustrine Mixed Carbonate-Siliciclastic Fine-Grained Deposits of the Northwestern Qaidam Basin, NW China. Marine and Petroleum Geology, 98: 675–686. https://doi.org/10.1016/j.marpetgeo.2018.09.008 |
Zhang, X. L., Gao, Z. Q., Fan, T. L., et al., 2020. Element Geochemical Characteristics, Provenance Attributes, and Paleosedimentary Environment of the Paleogene Strata in the Lenghu Area, Northwestern Qaidam Basin. Journal of Petroleum Science and Engineering, 195: 107750. https://doi.org/10.1016/j.petrol.2020.107750 |
Zhao, J. H., Jin, Z. J., Jin, Z. K., et al., 2017. Mineral Types and Organic Matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for Pore Systems, Diagenetic Pathways, and Reservoir Quality in Fine-Grained Sedimentary Rocks. Marine and Petroleum Geology, 86: 655–674. https://doi.org/10.1016/j.marpetgeo.2017.06.031 |
Zhu, Q., Qiao, X. Y., Zhang, L., 2020. Application of High Pressure Mercury Injection in Pore-Throat Distribution Characterization and Early Productivity Evaluation in Tight Gas Reservoir. Rock and Mineral Analysis, 39(3): 373–383 (in Chinese with English Abstract) http://www.researchgate.net/publication/343444163_Application_of_High-pressure_Mercury_Injection_in_Pore-throat_Distribution_Characterization_and_Early_Productivity_Evaluation_of_Tight_Gas_Reservoirs/download |
Zou, N. N., Zhang, D. Q., Long, G. H., et al., 2015. Sedimentary System Evolution of Tertiary Reservoirs in Northern Qaidam Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 42(2): 149–158 (in Chinese with English Abstract) |