Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 5
Oct 2022
Turn off MathJax
Article Contents
Yuanyang Yu, Keqing Zong, Yu Yuan, Reiner Klemd, Xin-Shui Wang, Jingliang Guo, Rong Xu, Zhaochu Hu, Yongsheng Liu. Crustal Contamination of the Mantle-Derived Liuyuan Basalts: Implications for the Permian Evolution of the Southern Central Asian Orogenic Belt. Journal of Earth Science, 2022, 33(5): 1081-1094. doi: 10.1007/s12583-022-1706-1
Citation: Yuanyang Yu, Keqing Zong, Yu Yuan, Reiner Klemd, Xin-Shui Wang, Jingliang Guo, Rong Xu, Zhaochu Hu, Yongsheng Liu. Crustal Contamination of the Mantle-Derived Liuyuan Basalts: Implications for the Permian Evolution of the Southern Central Asian Orogenic Belt. Journal of Earth Science, 2022, 33(5): 1081-1094. doi: 10.1007/s12583-022-1706-1

Crustal Contamination of the Mantle-Derived Liuyuan Basalts: Implications for the Permian Evolution of the Southern Central Asian Orogenic Belt

doi: 10.1007/s12583-022-1706-1
More Information
  • Corresponding author: Keqing Zong, kqzong@hotmail.com
  • Received Date: 09 Apr 2022
  • Accepted Date: 23 Jun 2022
  • Available Online: 19 Oct 2022
  • Issue Publish Date: 30 Oct 2022
  • The Permian basalts in the Central Asian Orogenic Belt (CAOB) are crucial for constraining the closure of the Paleo-Asian Ocean. However, the origin of these basalts is still under discussion. Here, we present comprehensive bulk-rock geochemical, Sr-Nd-Pb-Hf isotopic, and zircon U-Pb-Lu-Hf isotopic data of the Liuyuan basalts and coexisting gabbros, which are located in the Beishan Orogen in the southern CAOB, to constrain their emplacement setting and tectonic implications. Our new gabbro ages of ca. 288–294 Ma are interpreted to represent the formation time of the Liuyuan basaltic belt. The Liuyuan basalts show MORB-like rare earth element (REE) patterns and bulk-rock εHf(t) and εNd(t) values of 11.0–15.4 and 4.6–9.2, respectively, suggesting an origination mainly from a depleted mantle source. However, positive Pb anomalies, Nb-Ta depletions, and high Th/Yb ratios as well as evolved Sr-Nd-Pb-Hf isotopic compositions of some samples indicate variable continental crustal contribution. According to the covariation of Pb anomalies (Pb*=2×PbN/(CeN+PrN)) with Sr-Nd-Pb-Hf isotopic compositions, we speculate that parent magma of the Liuyuan basalt was contaminated by continental crustal materials during the eruption rather than having been generated from an enriched mantle source. As revealed by mixing modelling, the Liuyuan basaltic magmas would require a minor (< 10%) upper continental crustal assimilation to explain the enriched trace elemental and radiogenic Sr-Nd-Pb-Hf isotopic signatures. Consequently, the Liuyuan basaltic belt is believed to have been generated in a continental extensional environment instead of an oceanic setting and does not constitute a Permian ophiolitic suture zone as previously suggested, since the Paleo-Asian Ocean was already closed in the southern Beishan Orogen in the Early Permian.

     

  • Electronic Supplementary Materials: Supplementary materials (Fig. S1, Tables S1–S7) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1706-1.
  • loading
  • Allègre, C. J., Dupré, B., Richard, P., et al., 1982. Subcontinental Versus Suboceanic Mantle, II. NDSRPB Isotopic Comparison of Continental Tholeiites with Mid-Ocean Ridge Tholeiites, and the Structure of the Continental Lithosphere. Earth and Planetary Science Letters, 57(1): 25–34. https://doi.org/10.1016/0012-821x(82)90170-4
    Alongkot, F., Chidchanok, K., Toshiaki, T., et al., 2021. Petrochemistry and Zircon U-Pb Geochronology of Felsic Xenoliths in Late Cenozoic Gem-Related Basalt from Bo Phloi Gem Field, Kanchanaburi, Western Thailand. Journal of Earth Science, 32(4): 1035–1052. https://doi.org/10.1007/s12583-020-1347-1
    Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Ao, S. J., Xiao, W. J., Han, C. M., et al., 2012. Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China: Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4): 606–625. https://doi.org/10.1017/s0016756811000884
    Ao, S. J., Xiao, W. J., Han, C. M., et al., 2010. Geochronology and Geochemistry of Early Permian Mafic-Ultramafic Complexes in the Beishan Area, Xinjiang, NW China: Implications for Late Paleozoic Tectonic Evolution of the Southern Altaids. Gondwana Research, 18(2/3): 466–478. https://doi.org/10.1016/j.gr.2010.01.004
    Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745
    Cao, S. N., Wang, B., 2021. Age, Origin and Geological Implications of Early Paleozoic Marine Bentonites, Northern Yili Block of Central Asian Orogenic Belt. Earth Science, 46(8): 2804–2818 (in Chinese with English Abstract)
    Campbell, I. H., Griffiths, R. W., 1990. Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters, 99(1/2): 79–93. https://doi.org/10.1016/0012-821x(90)90072-6
    Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1–36. https://doi.org/10.1144/sp318.1
    Chen, X. H., Dong, S. W., Shi, W., et al., 2022. Construction of the Continental Asia in Phanerozoic: A Review. Acta Geologica Sinica-English Edition, 96(1): 26–51. https://doi.org/10.1111/1755-6724.14867
    Chen, S., Guo, Z. J., Qi, J. F., et al., 2016. Early Permian Volcano-Sedimentary Successions, Beishan, NW China: Peperites Demonstrate an Evolving Rift Basin. Journal of Volcanology and Geothermal Research, 309: 31–44. https://doi.org/10.1016/j.jvolgeores.2015.11.004
    Cheng, Y., Xiao, Q. H., Li, T. D., et al., 2021. An Intra-Oceanic Subduction System Influenced by Ridge Subduction in the Diyanmiao Subduction Accretionary Complex of the Xar Moron Area, Eastern Margin of the Central Asian Orogenic Belt. Journal of Earth Science, 32(1): 253–266. https://doi.org/10.1007/s12583-021-1404-4
    Chesley, J. T., Ruiz, J., 1998. Crust-Mantle Interaction in Large Igneous Provinces: Implications from the Re-Os Isotope Systematics of the Columbia River Flood Basalts. Earth and Planetary Science Letters, 154(1/2/3/4): 1–11. https://doi.org/10.1016/s0012-821x(97)00176-3
    Cleven, N., Lin, S. F., Guilmette, C., et al., 2015. Petrogenesis and Implications for Tectonic Setting of Cambrian Suprasubduction-Zone Ophiolitic Rocks in the Central Beishan Orogenic Collage, Northwest China. Journal of Asian Earth Sciences, 113: 369–390. https://doi.org/10.1016/j.jseaes.2014.10.038
    Donnelly, K. E., Goldstein, S. L., Langmuir, C. H., et al., 2004. Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 226(3/4): 347–366. https://doi.org/10.1016/j.epsl.2004.07.019
    Farmer, G. L., 2003. Continental Basaltic Rocks. Treatise on Geochemistry, 3: 659
    Feng, L. M., Lin, S. F., Davis, D. W., et al., 2018. Dunhuang Tectonic Belt in Northwestern China as a Part of the Central Asian Orogenic Belt: Structural and U-Pb Geochronological Evidence. Tectonophysics, 747/748: 281–297. https://doi.org/10.1016/j.tecto.2018.09.008
    Gale, A., Dalton, C. A., Langmuir, C. H., et al., 2013. The Mean Composition of Ocean Ridge Basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518. https://doi.org/10.1029/2012gc004334
    Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959–1975. https://doi.org/10.1016/s001 6-7037(98)00121-5 doi: 10.1016/s0016-7037(98)00121-5
    Glazner, A. F., Farmer, G. L., 1992. Production of Isotopic Variability in Continental Basalts by Cryptic Crustal Contamination. Science, 255(5040): 72–74. https://doi.org/10.1126/science.255.5040.72
    He, Z. Y., Sun, L. X., Mao, L., et al., 2015. Zircon U-Pb and Hf Isotopic Study of Gneiss and Granodiorite from the Southern Beishan Orogenic Collage: Mesoproterozoic Magmatism and Crustal Growth. Chinese Science Bulletin, 60: 389–399. https://doi.org/10.1360/n972014-00898
    He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014a. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190/191: 485–499. https://doi.org/10.1016/j.lithos.2013.12.023
    He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014b. Metamorphic P-T-t Evolution of Mafic HP Granulites in the Northeastern Segment of the Tarim Craton (Dunhuang Block): Evidence for Early Paleozoic Continental Subduction. Lithos, 196/197: 1–13. https://doi.org/10.1016/j.lithos.2014.02.020
    Heinonen, J. S., Spera, F. J., Bohrson, W. A., 2022. Thermodynamic Limits for Assimilation of Silicate Crust in Primitive Magmas. Geology, 50(1): 81–85. https://doi.org/10.1130/g49139.1
    Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219–229. https://doi.org/10.1038/385219a0
    Hofmann, A. W., 2007. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Treatise on Geochemistry. Elsevier, Amsterdam, 1–44. https://doi.org/10.1016/b0-08-043751-6/02 123-x doi: 10.1016/b0-08-043751-6/02123-x
    Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1/2): 33–45. https://doi.org/10.1016/0012-821x(86)90038-5
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012a. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50–57. https://doi.org/10.1016/j.sab.2012.09.007
    Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093. https://doi.org/10.1039/b804760j
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012b. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
    Jackson, M. G., Hart, S. R., Koppers, A. A. P., et al., 2007. The Return of Subducted Continental Crust in Samoan Lavas. Nature, 448(7154): 684–687. https://doi.org/10.1038/nature06048
    Jahn, B. M., Wu, F. Y., Hong, D. W., 2000. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 109(1): 5–20. https://doi.org/10.1007/bf02719146
    Jiang, C. Y., Xia, M. Z., Yu, X., et al., 2007. Liuyuan Trachybasalt Belt in the Northeastern Tarim Plate: Products of Asthenosphere Mantle Decompressional Melting. Acta Petrologica Sinica, 23(7): 1765–1778 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-0569.2007.07.022
    Jung, S., Pfänder, J. A., Brauns, M., et al., 2011. Crustal Contamination and Mantle Source Characteristics in Continental Intra-Plate Volcanic Rocks: Pb, Hf and Os Isotopes from Central European Volcanic Province Basalts. Geochimica et Cosmochimica Acta, 75(10): 2664–2683. https://doi.org/10.1016/j.gca.2011.02.017
    Kröner, A., 2007. Chapter 5.2 the Ancient Gneiss Complex of Swaziland and Environs: Record of Early Archean Crustal Evolution in Southern Africa. Developments in Precambrian Geology, 15: 465–480. https://doi.org/10.1016/s0166-2635(07)15052-0
    Lee, C. T., 2014. Physics and Chemistry of Deep Continental Crust Recycling. Treatise on Geochemistry (Second Edition), 4: 423–456. https://doi.org/10.1016/b978-0-08-095975-7.00314-4
    Li, J., Wu, C., Chen, X. H., et al., 2022. Tectonic Evolution of the Beishan Orogen in Central Asia: Subduction, Accretion, and Continent-Continent Collision during the Closure of the Paleo-Asian Ocean. GSA Bulletin, online. https://doi.org/10.1130/b36451.1
    Liu, S. N., Zhou, L. Y., Wang, Y., 2022. Missing Adakitic Granite and Syn-Subduction Mafic Dikes within Permian Volcanic Belts of the Southern Margin of the CAOB? Comment on "Permian Oceanic Slab Subduction in the Southernmost Central Asian Orogenic Belt: Evidence from Adakite and High-Mg Diorite in the Southern Beishan". Lithos, 412/413: 106025. https://doi.org/10.1016/j.lithos.2021.106025
    Liu, X. C., Chen, B. L., Jahn, B. M., et al., 2011. Early Paleozoic (Ca. 465 Ma) Eclogites from Beishan (NW China) and Their Bearing on the Tectonic Evolution of the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42(4): 715–731. https://doi.org/10.1016/j.jseaes.2010.10.017
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008a. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008b. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133–153. https://doi.org/10.1016/j.chemgeo.2007.10.016
    Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4: 70
    Ma, Q., Zheng, J. P., Griffin, W. L., et al., 2012. Triassic "Adakitic" Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust. Lithos, 149: 159–173. https://doi.org/10.1016/j.lithos.2012.04.017
    Mantle, G. W., Collins, W. J., 2008. Quantifying Crustal Thickness Variations in Evolving Orogens: Correlation between Arc Basalt Composition and Moho Depth. Geology, 36(1): 87–90. https://doi.org/10.1130/g24095a.1
    Mao, Q. G., Xiao, W. J., Windley, B. F., et al., 2012. The Liuyuan Complex in the Beishan, NW China: A Carboniferous–Permian Ophiolitic Fore-Arc Sliver in the Southern Altaids. Geological Magazine, 149(3): 483–506. https://doi.org/10.1017/s0016756811000811
    McBride, J. S., Lambert, D. D., Nicholls, I. A., et al., 2001. Osmium Isotopic Evidence for Crust-Mantle Interaction in the Genesis of Continental Intraplate Basalts from the Newer Volcanics Province, Southeastern Australia. Journal of Petrology, 42(6): 1197–1218. https://doi.org/10.1093/petrology/42.6.1197
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    O'Hara, M. J., Herzberg, C., 2002. Interpretation of Trace Element and Isotope Features of Basalts: Relevance of Field Relations, Petrology, Major Element Data, Phase Equilibria, and Magma Chamber Modeling in Basalt Petrogenesis. Geochimica et Cosmochimica Acta, 66(12): 2167–2191. https://doi.org/10.1016/s0016-7037(02)00852-9
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
    Pearce, J. A., 2003. Supra-Subduction Zone Ophiolites: The Search for Modern Analogues. Special Paper of the Geological Society of America, 373: 269–293
    Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23: 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343
    Qin, K. Z., Su, B. X., Sakyi, P. A., et al., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma Mantle Plume. American Journal of Science, 311(3): 237–260. https://doi.org/10.2475/03.2011.03
    Qu, J. F., Xiao, W. J., Windley, B. F., et al., 2011. Ordovician Eclogites from the Chinese Beishan: Implications for the Tectonic Evolution of the Southern Altaids. Journal of Metamorphic Geology, 29(8): 803–820. https://doi.org/10.1111/j.1525-1314.2011.00942.x
    Reiners, P. W., Nelson, B. K., Ghiorso, M. S., 1995. Assimilation of Felsic Crust by Basaltic Magma: Thermal Limits and Extents of Crustal Contamination of Mantle-Derived Magmas. Geology, 23(6): 563. https://doi.org/10.1130/0091-7613(1995)0230563:aofcbb>2.3.co;2 doi: 10.1130/0091-7613(1995)0230563:aofcbb>2.3.co;2
    Rudnick, R., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4
    Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267–309. https://doi.org/10.1029/95rg01302
    Saktura, W. M., Buckman, S., Nutman, A. P., et al., 2017. Continental Origin of the Gubaoquan Eclogite and Implications for Evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China. Lithos, 294/295: 20–38. https://doi.org/10.1016/j.lithos.2017.10.004
    Song, D. F., Xiao, W. J., Han, C. M., et al., 2013. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227: 368–388. https://doi.org/10.1016/j.precamres.2012.06.011
    Song, D. F., Xiao, W. J., Windley, B. F., et al., 2015. A Paleozoic Japan-Type Subduction-Accretion System in the Beishan Orogenic Collage, Southern Central Asian Orogenic Belt. Lithos, 224/225: 195–213. https://doi.org/10.1016/j.lithos.2015.03.005
    Su, B. X., Qin, K. Z., Santosh, M., et al., 2013. The Early Permian Mafic-Ultramafic Complexes in the Beishan Terrane, NW China: Alaskan-Type Intrusives or Rift Cumulates? Journal of Asian Earth Sciences, 66: 175–187. https://doi.org/10.1016/j.jseaes.2012.12.039
    Su, B. X., Qin, K. Z., Sun, H., et al., 2012. Subduction-Induced Mantle Heterogeneity beneath Eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes. Lithos, 134/135: 41–51. https://doi.org/10.1016/j.lithos.2011.12.011
    Wang, Q., Wyman, D. A., Zhao, Z. H., et al., 2007. Petrogenesis of Carboniferous Adakites and Nb-Enriched Arc Basalts in the Alataw Area, Northern Tianshan Range (Western China): Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt. Chemical Geology, 236(1/2): 42–64. https://doi.org/10.1016/j.chemgeo.2006.08.013
    Wang, S. J., Li, S. C., Li, W. J., et al., 2020. Tectonic Evolution of Southeast Central Asian Orogenic Belt: Evidence from Geochronological Data and Paleontology of the Early Paleozoic Deposits in Inner Mongolia. Journal of Earth Science, 31(4): 743–756. https://doi.org/10.1007/s12583-020-1326-6
    Wang, T., Huang, H. ., Song, P., et al., 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326–2344 (in Chinese with English Abstract)
    Wang, Y., Luo, Z. H., Santosh, M., et al., 2017. The Liuyuan Volcanic Belt in NW China Revisited: Evidence for Permian Rifting Associated with the Assembly of Continental Blocks in the Central Asian Orogenic Belt. Geological Magazine, 154(2): 265–285. https://doi.org/10.1017/s0016756815001077
    White, W. M., 2010. Oceanic Island Basalts and Mantle Plumes: The Geochemical Perspective. Annual Review of Earth and Planetary Sciences, 38: 133–160. https://doi.org/10.1146/annurev-earth-040809-152450
    White, W. M., 2015. Isotopes, DUPAL, LLSVPS, and Anekantavada. Chemical Geology, 419: 10–28. https://doi.org/10.1016/j.chemgeo.20109.026
    White, W. M., Hofmann, A. W., 1982. Sr and Nd Isotope Geochemistry of Oceanic Basalts and Mantle Evolution. Nature, 296(5860): 821–825. https://doi.org/10.1038/296821a0
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022
    Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53–72. https://doi.org/10.1016/j.epsl.2004.12.005
    Workman, R. K., Hart, S. R., Jackson, M., et al., 2004. Recycled Metasomatized Lithosphere as the Origin of the Enriched Mantle II (EM2) End-Member: Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4): Q04008. https://doi.org/10.1029/2003gc000623
    Wu, C., Yin, A., Zuza, A. V., et al., 2016. Pre-Cenozoic Geologic History of the Central and Northern Tibetan Plateau and the Role of Wilson Cycles in Constructing the Tethyan Orogenic System. Lithosphere, 8(3): 254–292. https://doi.org/10.1130/l494.1
    Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553–1594. https://doi.org/10.2475/10.2010.12
    Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94–128. https://doi.org/10.1016/j.earscirev.2017.09.020
    Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189–1217. https://doi.org/10.1007/s00531-008-0407-z
    Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477–507. https://doi.org/10.1146/annurev-eart h-060614-105254 doi: 10.1146/annurev-earth-060614-105254
    Xu, W., Xu, X. Y., Niu, Y. Z., et al., 2019. Geochronology and Petrogenesis of the Permian Marine Basalt in the Southern Beishan Region and Their Tectonic Implications. Acta Geologica Sinica, 93(8): 1928–1953. https://doi.org/10.19762/j.cnki.dizhixuebao.2019167
    Xu, W., Xu, X. Y., Niu, Y. Z., et al., 2018. Geochronology, Petrogenesis and Tectonic Implications of Early Permian A-Type Rhyolite from Southern Beishan Orogen, NW China. Acta Petrologica Sinica, 34(10): 3011–3033. https://doi.org/1000-0569/2018/034(10)-3011-33
    Xue, S. C., Li, C. S., Qin, K. Z., et al., 2016. A Non-Plume Model for the Permian Protracted (266–286 Ma) Basaltic Magmatism in the Beishan-Tianshan Region, Xinjiang, Western China. Lithos, 256/257: 243–249. https://doi.org/10.1016/j.lithos.2016.04.018
    Yuan, Y., Zong, K. Q., Cawood, P. A., et al., 2019. Implication of Mesoproterozoic (∼1.4 Ga) Magmatism within Microcontinents along the Southern Central Asian Orogenic Belt. Precambrian Research, 327: 314–326. https://doi.org/10.1016/j.precamres.2019.03.014
    Yuan, Y., Zong, K. Q., He, Z. Y., et al., 2015. Geochemical and Geochronological Evidence for a Former Early Neoproterozoic Microcontinent in the South Beishan Orogenic Belt, Southernmost Central Asian Orogenic Belt. Precambrian Research, 266: 409–424. https://doi.org/10.1016/j.precamres.2015.05.034
    Zeng, G., Chen, L. H., Hofmann, A. W., et al., 2011. Crust Recycling in the Sources of Two Parallel Volcanic Chains in Shandong, North China. Earth and Planetary Science Letters, 302(3/4): 359–368. https://doi.org/10.1016/j.epsl.2010.12.026
    Zhang, W., Hu, Z. C., 2020. Estimation of Isotopic Reference Values for Pure Materials and Geological Reference Materials. Atomic Spectroscopy, 41(3): 93–102. https://doi.org/10.46770/as.2020.03.001
    Zhang, W., Hu, Z. C., Liu, Y. S., 2020. Iso-Compass: New Freeware Software for Isotopic Data Reduction of LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(6): 1087–1096. https://doi.org/10.1039/d0ja00084a
    Zhang, W., Pease, V., Wu, T. R., et al., 2012a. Discovery of an Adakite-Like Pluton near Dongqiyishan (Beishan, NW China)—Its Age and Tectonic Significance. Lithos, 142/143: 148–160. https://doi.org/10.1016/j.lithos.2012.02.021
    Zhang, W., Wu, T. R., Zheng, R. G., et al., 2012b. Post-Collisional Southeastern Beishan Granites: Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and Their Implications for Tectonic Evolution. Journal of Asian Earth Sciences, 58: 51–63. https://doi.org/10.1016/j.jseaes.20107.004
    Zhang, Y. Y., Dostal, J., Zhao, Z. H., et al., 2011. Geochronology, Geochemistry and Petrogenesis of Mafic and Ultramafic Rocks from Southern Beishan Area, NW China: Implications for Crust-Mantle Interaction. Gondwana Research, 20(4): 816–830. https://doi.org/10.10 16/j.gr.2011.03.008 doi: 10.1016/j.gr.2011.03.008
    Zhang, Y. Y., Yuan, C., Sun, M., et al., 2017. Arc Magmatism Associated with Steep Subduction: Insights from Trace Element and Sr-Nd-Hf-B Isotope Systematics. Journal of Geophysical Research: Solid Earth, 122(3): 1816–1834. https://doi.org/10.1002/2016jb013289
    Zhang, Y. Y., Yuan, C., Sun, M., et al., 2015. Permian Doleritic Dikes in the Beishan Orogenic Belt, NW China: Asthenosphere-Lithosphere Interaction in Response to Slab Break-off. Lithos, 233: 174–192. https://doi.org/10.1016/j.lithos.2015.04.001
    Zhao, Z. H., Guo, Z. J., Han, B. F., et al., 2006. Comparative Study on Permian Basalts from Eastern Xinjiang-Beishan Area of Gansu Province and Its Tectonic Implications. Acta Petrologica Sinica, 22(5): 1279–1293 (in Chinese with English Abstract)
    Zheng, R. G., Li, J. Y., Zhang, J., et al., 2020. Permian Oceanic Slab Subduction in the Southmost of Central Asian Orogenic Belt: Evidence from Adakite and High-Mg Diorite in the Southern Beishan. Lithos, 358/359: 105406. https://doi.org/10.1016/j.lithos.2020.105406
    Zheng, R. G., Wu, T. R., Zhang, W., et al., 2014. Geochronology and Geochemistry of Late Paleozoic Magmatic Rocks in the Yinwaxia Area, Beishan: Implications for Rift Magmatism in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 91: 39–55. https://doi.org/10.1016/j.jseaes.2014.04.022
    Zhou, M. F., Lesher, C. M., Yang, Z. X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3/4): 233–257. https://doi.org/10.1016/j.chemgeo.2004.05.005
    Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425
    Zong, K. Q., Zhang, Z. M., He, Z. Y., et al., 2012. Early Palaeozoic High-Pressure Granulites from the Dunhuang Block, Northeastern Tarim Craton: Constraints on Continental Collision in the Southern Central Asian Orogenic Belt. Journal of Metamorphic Geology, 30(8): 753–768. https://doi.org/10.1111/j.1525-1314.2012.00997.x
    Zuo, G. C., Zhang, S. L., He, G. Q., et al., 1991. Plate Tectonic Characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China. Tectonophysics, 188(3/4): 385–392. https://doi.org/10.1016/0040-1951(91)90466-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(179) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return