Citation: | Hisham A. Gahlan, Mokhles K. Azer, Paul D. Asimow, Mansour H. Al-Hashim. Geochemistry, Petrogenesis and Alteration of Rare-Metal-Bearing Granitoids and Mineralized Silexite of the Al-Ghurayyah Stock, Arabian Shield, Saudi Arabia. Journal of Earth Science, 2023, 34(5): 1488-1510. doi: 10.1007/s12583-022-1708-z |
New data are presented for the rare-metal bearing A-type granitoids of the Al-Ghurayyah stock in the northwestern segment of the Arabian Shield, a composite pluton intruding metamorphosed volcano-sedimentary successions of the Silasia Formation. Metals in the granitoids are variably enriched, with up to 1 990 μg/g Zn, 7 680 μg/g Zr, 2 316 μg/g Nb, 232 μg/g Ta, 485 μg/g Hf, 670 μg/g Th, 137 μg/g U and 1 647 μg/g total rare earth elements (REE). The silexite is highly mineralized and yields higher maximum concentrations of several metals than the granitoids, including up to 1 860 μg/g Y, 9 400 μg/g Zr, 878 μg/g Hf, 1 000 μg/g Th, and 2 029 μg/g total REE. The Al-Ghurayyah stock has been assigned to an intraplate setting. Lithospheric delamination led to generation of mantle melts that supplied heat to melt the juvenile crust of the ANS. The fluorine and rare-metal enriched parental magma evolved by fractional crystallization. The quartz-rich silexite, distinct in character from ordinary hydrothermal vein quartz, is inferred to be co-genetic with the granitoids on the basis of their similar REE patterns; it is interpreted as a small volume of residual magma enriched in SiO2, volatiles, and trace metals. Mineralization took place both at the magmatic stage and later during a hydrothermal stage that concentrated these elements to economic grades.
Abdallah, S. E., Azer, M. K., Al Shammari, A. S., 2020. The Petrological and Geochemical Evolution of Ediacaran Rare-Metal Bearing A-Type Granites from the Jabal Aja Complex, Northern Arabian Shield, Saudi Arabia. Acta Geologica Sinica (English Edition), 94(3): 743–762 (in Chinese with English Abstract) doi: 10.1111/1755-6724.13825 |
Abdel-Karim, A. A. M., El-Shafei, S. A., Azer, M. K., 2021. The Neoproterozoic Ophiolitic Ultramafic Rocks in Eastern Desert of Egypt: Implications for Petrogenesis and Metasomatic Processes. International Geology Review, 63(2): 208–232. https://doi.org/10.1080/00206814.2019.1708816 |
Abuamarah, B. A., 2020. Genesis and Petrology of Postcollisional Rare-Metal-Bearing Granites in the Arabian Shield: A Case Study of Aja Ring Complex, Northern Saudi Arabia. The Journal of Geology, 128(2): 131–156. https://doi.org/10.1086/707236 |
Abuamarah, B. A., Azer, M. K., Asimow, P. D., et al., 2021. Geochemistry and Petrogenesis of Late Ediacaran Rare-Metal Albite Granites of the Arabian-Nubian Shield. Acta Geologica Sinica-English Edition, 95(2): 459–480. https://doi.org/10.1111/1755-6724.14379 |
Abuamarah, B. A., Azer, M. K., Asimow, P. D., et al., 2021. Petrogenesis of the Post-Collisional Rare-Metal-Bearing Ad-Dayheen Granite Intrusion, Central Arabian Shield. Lithos, 384/385: 105956. https://doi.org/10.1016/j.lithos.2020.105956 |
Abuamarah, B. A., Azer, M. K., Seddik, A. M. A., et al., 2022. Magmatic and Post-Magmatic Evolution of Post-Collisional Rare-Metal Bearing Granite: The Neoproterozoic Homrit Akarem Granitic Intrusion, South Eastern Desert of Egypt, Arabian-Nubian Shield. Geochemistry, 82(1): 125840. https://doi.org/10.1016/j.chemer.2021.125840 |
Aleinikoff, J. N., Stoeser, D. B., 1988. Zircon Morphology and U-Pb Geochronology of Seven Metaluminous and Peralkaline Post-Orogenic Granite Complexes of the Arabian Shield, Kingdom of Saudi Arabia (No. 88-604). US Geological Survey |
Ali, K. A., Azer, M. K., Gahlan, H. A., et al., 2010. Age Constraints on the Formation and Emplacement of Neoproterozoic Ophiolites along the Allaqi-Heiani Suture, South Eastern Desert of Egypt. Gondwana Research, 18(4): 583–595. https://doi.org/10.1016/j.gr.2010.03.002 |
Ali, K. A., Jeon, H., Andresen, A., et al., 2014. U-Pb Zircon Geochronology and Nd–Hf–O Isotopic Systematics of the Neoproterozoic Hadb Adh Dayheen Ring Complex, Central Arabian Shield, Saudi Arabia. Lithos, 206/207: 348–360. https://doi.org/10.1016/j.lithos.2014.07.030 |
Al-Saleh, A. M., Al-Omari, F. H., 2021. The Qutn Granite, a Hotspot-Related A-Type Granite from the Northeastern Arabian Shield? Arabian Journal of Geosciences, 14(9): 1–45. https://doi.org/10.1007/s12517-021-06706-2 |
Aseri, A. A., 2020. Rare-Metal Alkaline Granite from the Arabian Shield, Saudi Arabia: [Dissertation]. University of Western Ontario, Ontario |
Azer, M. K., Stern, R. J., Kimura, J. I., 2010. Origin of a Late Neoproterozoic (605 ± 13 Ma) Intrusive Carbonate–Albitite Complex in Southern Sinai, Egypt. International Journal of Earth Sciences, 99(2): 245–267. https://doi.org/10.1007/s00531-008-0385-1 |
Azer, M. K., Asimow, P. D., Wilde, S. A., 2021. Volcanism during the Post-Accretionary Stage of the Arabian-Nubian Shield. The Geology of the Arabian-Nubian Shield. Springer International Publishing, Cham. |
Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8 |
Beus, A. A., 1982. Metallogeny of Precambrian Rare-Metal Granitoids. Revista Brasileira de Geociencias, 12: 410–413 |
Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007 |
Černý, P., Goad, B. E., Hawthorne, F., et al., 1986. Fractionation Trends of the Nb- and Ta-Bearing Oxide Minerals in the Greer Lake Pegmatitic Granite and Its Pegmatite Aureole, Southeastern Manitoba. American Mineralogist, 71(3/4): 501–517 |
Chevychelov, V. Y., Zaraisky, G. P., Borisovskii, S. E., et al., 2005. Effect of Melt Composition and Temperature on the Partitioning of Ta, Nb, Mn, and F between Granitic (Alkaline) Melt and Fluorine-Bearing Aqueous Fluid: Fractionation of Ta and Nb and Conditions of ore Formation in Rare-Metal Granites. Petrology, 13(4): 305 |
Clark, M. D., 1987. Explanatory Notes to the Geologic Map of the Al Bada Quadrangle, Sheet 28A, Kingdom of Saudi Arabia, 46 |
de la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 29(1/2/3/4): 183–210. https://doi.org/10.1016/0009-2541(80)90020-0 |
Deer, W. A., Howie, R. A., Zussman, J., 1992. An Introduction to the Rock Forming Minerals. Second Edition, Longman Scientific and Technical, London, 696 |
Drysdall, A. R., Douch, C. J., 1986. NBTHZR Mineralization in Microgranite—Microsyenite at Jabal Tawlah, Midyan Region, Kingdom of Saudi Arabia. Journal of African Earth Sciences, 4: 275–288. https://doi.org/10.1016/s0899-5362(86)80089-6 |
Drysdall, A. R., Jackson, N. J., Ramsay, C. R., 1985. Rare-Element Mineralization Related to Alkali Granites of the Hijaz Region, with Representative Geochemical Data. Open file Report, DGMR-OF-05-12, Jiddah, Kingdom of Saudi Arabia, 40 |
Drysdall, A. R., Jackson, N. J., Ramsay, C. R., et al., 1984. Rare Element Mineralization Related to Precambrian Alkali Granites in the Arabian Shield. Economic Geology, 79(6): 1366–1377. https://doi.org/10.2113/gsecongeo.79.6.1366 |
du Bray, E. A., 1986. Specialized Granitoids in the Southeastern Arabian Shield—Case History of a Regional Assessment. Journal of African Earth Sciences (1983), 4: 169–176. https://doi.org/10.1016/s0899-5362(86)80077-x |
Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-z |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 |
Elliott, J. E., Al-Yazidi, S., Al-Eissa, H., et al., 1999. Exploration of the Ghurayyah Radioactive Granite, Kingdom of Saudi Arabia. Saudi Geological Survey Technical Report (OpenFile Report 2001-7) |
Evensen, N. M., Hamilton, P. J., O'Nions, R. K., 1978. Rare-Earth Abundances in Chondritic Meteorites. Geochimica et Cosmochimica Acta, 42(8): 1199–1212. https://doi.org/10.1016/0016-7037(78)90114-x |
Eyal, M., Litvinovsky, B., Jahn, B. M., et al., 2010. Origin and Evolution of Post-Collisional Magmatism: Coeval Neoproterozoic Calc-Alkaline and Alkaline Suites of the Sinai Peninsula. Chemical Geology, 269(3/4): 153–179. https://doi.org/10.1016/j.chemgeo.2009.09.010 |
Farahat, E. S., Azer, M. K., 2011. Post-Collisional Magmatism in the Northern Arabian-Nubian Shield: The Geotectonic Evolution of the Alkaline Suite at Gebel Tarbush Area, South Sinai, Egypt. Geochemistry, 71(3): 247–266. https://doi.org/10.1016/j.chemer.2011.06.003 |
Fiege, A., Simon, A., Linsler, S. A., et al., 2018. Experimental Constraints on the Effect of Phosphorous and Boron on Nb and Ta Ore Formation. Ore Geology Reviews, 94: 383–395. https://doi.org/10.1016/j.oregeore v.2018.02.007 doi: 10.1016/j.oregeorev.2018.02.007 |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033 |
Gahlan, H. A., Asimow, P. D., Azer, M. K., et al., 2021. Geochemistry and Mineralogy of the Jebel Aja Igneous Intrusion and the Associated Exotic Pegmatites, Arabian Shield, Saudi Arabia. Lithos, 400/401: 106395. https://doi.org/10.1016/j.lithos.2021.106395 |
Gahlan, H. A., Azer, M. K., Al-Hashim, M. H., et al., 2022. Highly Evolved Rare-Metal Bearing Granite Overprinted by Alkali Metasomatism in the Arabian Shield: A Case Study from the Jabal Tawlah Granites. Journal of African Earth Sciences, 192: 104556. https://doi.org/10.1016/j.jafrearsci.2022.104556 |
Hanson, G. N., 1978. The Application of Trace Elements to the Petrogenesis of Igneous Rocks of Granitic Composition. Earth and Planetary Science Letters, 38(1): 26–43. https://doi.org/10.1016/0012-821x(78)90124-3 |
Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67–81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 |
Hawthorne, F. C., Oberti, R., Harlow, G. E., et al., 2012. Nomenclature of the Amphibole Supergroup. American Mineralogist, 97(11/12): 2031–2048. https://doi.org/10.2138/am.2012.4276 |
Hedge, C. E., 1984. Precambrian Geochronology of Part of Northwestern Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources: Jiddah, Saudi Arabia. USGS-OF-84-381 |
Holtz, F., Behrens, H., Dingwell, D. B., et al., 1992. Water Solubility in Aluminosilicate Melts of Haplogranite Composition at 2 Kbar. Chemical Geology, 96(3/4): 289–302. https://doi.org/10.1016/0009-2541(92)90060-i |
Jackson, N. J., 1986. Mineralization Associated with Felsic Plutonic Rocks in the Arabian Shield. Journal of African Earth Sciences (1983), 4: 213–227. https://doi.org/10.1016/s0899-5362(86)80083-5 |
Jackson, N. J., Douch, C. J., 1986. Jabal Hamra REE-Mineralized Silexite, Hijaz Region, Kingdom of Saudi Arabia. Journal of African Earth Sciences (1983), 4: 269–274. https://doi.org/10.1016/s0899-5362(86)80088-4 |
Johnson, P. R., 2006. Explanatory Notes to the Map of Proterozoic Geology of Western Saudi Arabia. Saudi Geological Survey Technical Report SGS-TR-2006-4, 62 |
Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian–Ediacaran History of the Arabian–Nubian Shield: A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3): 167–232. https://doi.org/10.1016/j.jafrearsci.2011.07.003 |
Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208–235. https://doi.org/10.1016/j.lithos.2014.06.012 |
Liégeois, J. P., Black, R., 1987. Alkaline Magmatism Subsequent to Collision in the Pan-African Belt of the Adrar des Iforas (Mali). Geological Society, London, Special Publications, 30(1): 381–401. https://doi.org/10.1144/gsl.sp.1987.030.01.18 |
Liégeois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids. The Use of Sliding Normalization. Lithos, 45(1/2/3/4): 1–28. https://doi.org/10.1016/s0024-4937(98)00023-1 |
Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth's Crust. Contributions to Mineralogy and Petrology, 128(2): 213–227. https://doi.org/10.1007/s004100050304 |
London, D., 1992. The Application of Experimental Petrology to the Genesis and Crystallization of Granitic Pegmatites. Canadian Mineralogist, 30(3): 499–540 (in Chinese with English Abstract) |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 |
Manning, D. A. C., 1981. The Effect of Fluorine on Liquidus Phase Relationships in the System Qz-Ab-or with Excess Water at 1 Kb. Contributions to Mineralogy and Petrology, 76(2): 206–215. https://doi.org/10.1007/bf00371960 |
McKay, G. A., 2018. Partitioning of Rare Earth Elements between Major Silicate Minerals and Basaltic Melts. Reviews in Mineralogy and Geochemistry, 21: 45–78 |
McNeil, A. G., Linnen, R. L., Flemming, R. L., 2020. Solubility of Wodginite, Titanowodginite, Microlite, Pyrochlore, Columbite-(Mn) and Tantalite-(Mn) in Flux-Rich Haplogranitic Melts between 700° and 850 ℃ and 200MPa. Lithos, 352/353: 105239. https://doi.org/10.1016/j.lithos.2019.105239 |
Miller, C., Stoddard, E. F., Bradfish, L. J., et al., 1981. Composition of Plutonic Muscovite; Genetic Implications. Canadian Mineralogist, 19(1): 25–34 |
Moghazi, A. K M., Iaccheri, L. M., Bakhsh, R. A., et al., 2015. Sources of Rare-Metal-Bearing A-Type Granites from Jabel Sayed Complex, Northern Arabian Shield, Saudi Arabia. Journal of Asian Earth Sciences, 107: 244–258. https://doi.org/10.1016/j.jseaes.2015.04.042 |
Moghazi, A. M., Harbi, H. M., Ali, K. A., 2011. Geochemistry of the Late Neoproterozoic Hadb Adh Dayheen Ring Complex, Central Arabian Shield: Implications for the Origin of Rare-Metal-Bearing Post-Orogenic A-Type Granites. Journal of Asian Earth Sciences, 42(6): 1324–1340. https://doi.org/10.1016/j.jseaes.2011.07.018 |
Moussa, H. E., Asimow, P. D., Azer, M. K., et al., 2021. Magmatic and Hydrothermal Evolution of Highly-Fractionated Rare-Metal Granites at Gabal Nuweibi, Eastern Desert, Egypt. Lithos, 400/401: 106405. https://doi.org/10.1016/j.lithos.2021.106405 |
Muller, A., Seltmann, R., 1999. The Genetic Significance of Snowball Quartz in High Fractionated tin Granites of the Krušne Hory/Erzgebirge. Mineral Deposits: Processes to Processing, 1: 409–412 |
Pfänder, J. A., Münker, C., Stracke, A., et al., 2007. Nb/Ta and Zr/Hf in Ocean Island Basalts—Implications for Crust-Mantle Differentiation and the Fate of Niobium. Earth and Planetary Science Letters, 254(1/2): 158–172. https://doi.org/10.1016/j.epsl.2006.11.027 |
Pollard, P. J., 1989. Geologic Characteristics and Genetic Problems Associated with the Development of Granite-Hosted Deposits of Tantalum and Niobium. Lanthanides, Tantalum and Niobium. Springer, Berlin, Heidelberg, 240–256. |
Putnis, A., 2009. Mineral Replacement Reactions. Reviews in Mineralogy and Geochemistry, 70(1): 87–124. https://doi.org/10.2138/rmg.2009.70.3 |
Ramsay, C. R., 1982. Geology and Mineral Resource Potential of Pan-African Granitoid Rocks, Northern Midyan Region, Saudi Arabia. Saudi Arabian Deputy Ministry for Petroleum and Mineral Resources, Open-File Report DGMR-OF-02-11 |
Ramsay, C. R., 1986. Specialized Felsic Plutonic Rocks of the Arabian Shield and Their Precursors. Journal of African Earth Sciences, 4: 153–168. https://doi.org/10.1016/s0899-5362(86)80076-8 |
Ramsay, C. R., Odell, J., Drysdall, A. R., 1986. Felsic Plutonic Rocks of the Midyan Region, Kingdom of Saudi Arabia—Ⅱ. Pilot Study in Chemical Classification of Arabian Granitoids. Journal of African Earth Sciences, 4: 79–85. https://doi.org/10.1016/s0899-5362(86)80069-0 |
Roda, E., Keller, P., Pesquera, A., et al., 2007. Micas of the Muscovite–Lepidolite Series from Karibib Pegmatites, Namibia. Mineralogical Magazine, 71(1): 41–62. https://doi.org/10.1180/minmag.2007.071.1.41 |
Sami, M., Ntaflos, T., Farahat, E. S., et al., 2017. Mineralogical, Geochemical and Sr-Nd Isotopes Characteristics of Fluorite-Bearing Granites in the Northern Arabian-Nubian Shield, Egypt: Constraints on Petrogenesis and Evolution of Their Associated Rare Metal Mineralization. Ore Geology Reviews, 88: 1–22. https://doi.org/10.1016/j.oregeorev.2017.04.015 |
Schwartz, M. O., 1992. Geochemical Criteria for Distinguishing Magmatic and Metasomatic Albite-Enrichment in Granitoids—Examples from the Ta-Li Granite Yichun (China) and the Sn-W Deposit Tikus (Indonesia). Mineralium Deposita, 27(2): 101–108. https://doi.org/10.1007/bf00197092. |
Seddik, A. M. A., Darwish, M. H., Azer, M. K., et al., 2020. Assessment of Magmatic Versus Post-Magmatic Processes in the Mueilha Rare-Metal Granite, Eastern Desert of Egypt, Arabian-Nubian Shield. Lithos, 366/367: 105542. https://doi.org/10.1016/j.lithos.2020.105542 |
Stepanov, A. S., Hermann, J., 2013. Fractionation of Nb and Ta by Biotite and Phengite: Implications for the "Missing Nb Paradox". Geology, 41(3): 303–306 doi: 10.1130/G33781.1 |
Stern, R. J., 1994. Arc Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22: 319–351. https://doi.org/10.1146/annurev.ea.22.050194.001535 |
Stern, R. J., Ali, K. A., Liegeois, J. P., et al., 2010. Distribution and Significance of Pre-Neoproterozoic Zircons in Juvenile Neoproterozoic Igneous Rocks of the Arabian-Nubian Shield. American Journal of Science, 310(9): 791–811. https://doi.org/10.2475/09.2010.02 |
Stern, R. J., Johnson, P., 2010. Continental Lithosphere of the Arabian Plate: A Geologic, Petrologic, and Geophysical Synthesis. Earth-Science Reviews, 101(1/2): 29–67. https://doi.org/10.1016/j.earscire v.2010.01.002 doi: 10.1016/j.earscirev.2010.01.002 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Sylvester, P. J., 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261–280. https://doi.org/10.1086/629302 |
Tang, Y., Zhang, H., Rao, B., 2016. The Effect of Phosphorus on Manganocolumbite and Mangaotantalite Solubility in Peralkaline to Peraluminous Granitic Melts. American Mineralogist, 101(2): 415–422. https://doi.org/10.2138/am-2016-5424 |
Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151–179. https://doi.org/10.1016/0024-4937(92)90029-x |
van Lichtervelde, M., Holtz, F., Melcher, F., 2018. The Effect of Disequilibrium Crystallization on Nb-Ta Fractionation in Pegmatites: Constraints from Crystallization Experiments of Tantalite-Tapiolite. American Mineralogist, 103(9): 1401–1416. https://doi.org/10.2138/a m-2018-6441 doi: 10.2138/am-2018-6441 |
Van Lichtervelde, M., Salvi, S., Beziat, D., et al., 2007. Textural Features and Chemical Evolution in Tantalum Oxides: Magmatic Versus Hydrothermal Origins for Ta Mineralization in the Tanco Lower Pegmatite, Manitoba, Canada. Economic Geology, 102(2): 257–276. https://doi.org/10.2113/gsecongeo.102.2.257 |
Vance, J. A., 1969. On Synneusis. Contributions to Mineralogy and Petrology, 24(1): 7–29. https://doi.org/10.1007/bf00398750 |
Vonopartis, L. C., Kinnaird, J. A., Nex, P. A. M., et al., 2021. African A-Type Granites: A Geochemical Review on Metallogenic Potential. Lithos, 396/397: 106229. https://doi.org/10.1016/j.lithos.2021.106229 |
Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202 |
Winkler, H. G. F., Boese, M., Marcopoulos, T., 1975. Low Temperature Granite Melts. Neues Jahrbuchfür Mineralogie. Monatshefte, 6: 245–268 |
Winter, J. D., 2014. Principles of Igneous and Metamorphic Petrology (Vol. 2). Pearson Education, Harlow |
Winter, J. D., 2001. An Introduction to Igneous and Metamorphic Petrology. Prentice Hall Inc. Upper Saddle River, 697 |