Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 5
Oct 2022
Turn off MathJax
Article Contents
Yu Ye, Joseph R. Smyth, Guangchen Chen. Hydration Effect on Equations of State for Minerals in the Peridotite System: Implication for Geotherms in the Mantle. Journal of Earth Science, 2022, 33(5): 1124-1144. doi: 10.1007/s12583-022-1712-3
Citation: Yu Ye, Joseph R. Smyth, Guangchen Chen. Hydration Effect on Equations of State for Minerals in the Peridotite System: Implication for Geotherms in the Mantle. Journal of Earth Science, 2022, 33(5): 1124-1144. doi: 10.1007/s12583-022-1712-3

Hydration Effect on Equations of State for Minerals in the Peridotite System: Implication for Geotherms in the Mantle

doi: 10.1007/s12583-022-1712-3
More Information
  • Corresponding author: Yu Ye, yeyu@cug.edu.cn
  • Received Date: 09 Jun 2022
  • Accepted Date: 01 Aug 2022
  • Available Online: 19 Oct 2022
  • Issue Publish Date: 30 Oct 2022
  • Water in the deep Earth's interior has important and profound impacts on the geodynamical properties at high-temperature (T) and high-pressure (P) conditions. A series of dense hydrous Mg-silicate (DHMS) phases are generated from dehydration of serpentines in subduction slabs below the lithosphere, including phase A, chondrodite, clinohumite, phase E, superhydrous phase B and phase D. On the other hand, olivine and its high-P polymorphs of wadsleyite and ringwoodite are dominant nominally anhydrous minerals (NAMs) in the upper mantle and transition zone, which could contain significant amount of water in the forms of hydroxyl group (OH-) defects. The water solubilities in wadsleyite and ringwoodite are up to about 3 weight percent (wt.%), making the transition zone a most important layer for water storage in the mantle. Hydration can significantly affect the pressure-volume-temperature equations of state (P-V-T EOSs) for the DHMS and NAM phases, including the thermal expansivities and isothermal bulk moduli. In this work, we collected the reported datasets for the DHMS and NAM phases, and reconstruct internally consistent EOSs. Next, we further evaluated the thermodynamic Grüneisen parameters, which are fundamental for constraining the temperature distribution in an isentropic process, such as mantle convection. The adiabatic temperature profiles are computed for these minerals in the geological settings of normal mantle and subduction zone, and our calculation indicates that temperature is the dominant factor in determining the gradient of a geotherm, rather than the mineralogical composition.

     

  • loading
  • Akaogi, M., Navrotsky, A., Yagi, T., et al., 1987. Pyroxene-Garnet Transformation: Thermochemistry and Elasticity of Garnet Solid Solutions, and Application to a Pyrolite Mantle. In: Manghnani, M. H., Syono, Y., eds., High-Pressure Research in Mineral Physics. Terra Scientific Publishing Company, Tokyo. 251–260
    Andrault, D., Bouhifd, M. A., Itié, J. P., et al., 1995. Compression and Amorphization of (Mg, Fe)2SiO4 Olivines: An X-Ray Diffraction Study up to 70 GPa. Physics and Chemistry of Minerals, 22(2): 99–107. https://doi.org/10.1007/bf00202469
    Angel, R. J., 2000. Equations of State. In: Hazen, R. M., Downs, R. T., eds., Reviews in Mineralogy and Geochemistry. Mineralogical Society of American, Washington, D.C. 41: 35–60
    Barron, T. H. K., Collins, J. G., White, G. K., 1980. Thermal Expansion of Solids at Low Temperatures. Advances in Physics, 29(4): 609–730. https://doi.org/10.1080/00018738000101426
    Bell, D. R., Rossman, G. R., 1992. Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 255(5050): 1391–1397. https://doi.org/10.1126/science.255.5050.1391
    Berry, A. J., James, M., 2001. Refinement of Hydrogen Positions in Synthetic Hydroxyl-Clinohumite by Powder Neutron Diffraction. American Mineralogist, 86(1/2): 181–184. https://doi.org/10.2138/am-2001-0120.
    Birch, F., 1947. Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11): 809–824. https://doi.org/10.1103/physrev.71.809
    Boehler, R., Skoropanov, A., O'Mara, D., et al., 1979. Grüneisen Parameter of Quartz, Quartzite, and Fluorite at High Pressures. Journal of Geophysical Research: Solid Earth, 84(B7): 3527–3531. https://doi.org/10.1029/jb084ib07p03527
    Bolfan-Casanova, N., 2005. Water in the Earth's Mantle. Mineralogical Magazine, 69(3): 229–257. https://doi.org/10.1180/0026461056930248
    Brown, J. M., Shankland, T. J., 1981. Thermodynamic Parameters in the Earth as Determined from Seismic Profiles. Geophysical Journal of the Royal Astronomical Society, 66(3): 579–596. https://doi.org/10.1111/j.1365-246x.1981.tb04891.x
    Brown, J. M., McQueen, R. G., 1986. Phase Transitions, Grüneisen Parameter, and Elasticity for Shocked Iron between 77 GPa and 400 GPa. Journal of Geophysical Research: Solid Earth, 91(B7): 7485–7494. https://doi.org/10.1029/jb091ib07p07485
    Catti, M., Ferraris, G., Hull, S., et al., 1995. Static Compression and H Disorder in Brucite, Mg(OH)2, to 11 GPa: A Powder Neutron Diffraction Study. Physics and Chemistry of Minerals, 22(3): 200–206. https://doi.org/10.1007/bf00202300
    Chang, Y. Y., Jacobsen, S. D., Lin, J. F., et al., 2013. Spin Transition of Fe3+ in Al-Bearing Phase D: An Alternative Explanation for Small-Scale Seismic Scatterers in the Mid-Lower Mantle. Earth and Planetary Science Letters, 382: 1–9. https://doi.org/10.1016/j.epsl.2013.08.038
    Crichton, W. A., Ross, N. L., 2000. Equation of State of Phase E. Mineralogical Magazine, 64(3): 561–567. https://doi.org/10.1180/002646100549427
    Crichton, W. A., Ross, N. L., 2002. Equation of State of Dense Hydrous Magnesium Silicate Phase A, Mg7Si2O8(OH)6. American Mineralogist, 87(2/3): 333–338. https://doi.org/10.2138/am-2002-2-316
    Crichton, W. A., Ross, N. L., Gasparik, T., 1999. Equations of State of Magnesium Silicates Anhydrous B and Superhydrous B. Physics and Chemistry of Minerals, 26(7): 570–575. https://doi.org/10.1007/s002690050220
    Cynn, H., Hofmeister, A. M., Burnley, P. C., et al., 1996. Thermodynamic Properties and Hydrogen Speciation from Vibrational Spectra of Dense Hydrous Magnesium Silicates. Physics and Chemistry of Minerals, 23(6): 361–376. https://doi.org/10.1007/bf00199502
    Dorfman, S. M., Prakapenka, V. B., Meng, Y., et al., 2012. Intercomparison of Pressure Standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. Journal of Geophysical Research: Solid Earth, 117(B8): B08210. https://doi.org/10.1029/2012jb009292
    Dorogokupets, P. I., Dymshits, A. M., Sokolova, T. S., et al., 2015. The Equations of State of Forsterite, Wadsleyite, Ringwoodite, Akimotoite, MgSiO3-Perovskite, and Postperovskite and Phase Diagram for the Mg2SiO4 System at Pressures of up to 130 GPa. Russian Geology and Geophysics, 56(1/2): 172–189. https://doi.org/10.1016/j.rgg.2015.01.011
    Downs, R. T., Zha, C. S., Duffy, T. S., et al., 1996. The Equation of State of Forsterite to 17.2 GPa and Effects of Pressure Media. American Mineralogist, 81(1/2): 51–55. https://doi.org/10.2138/am-1996-1-207
    Duffy, T. S., Shu, J. F., Mao, H. K., et al., 1995. Single-Crystal X-Ray Diffraction of Brucite to 14 GPa. Physics and Chemistry of Minerals, 22(5): 277–281. https://doi.org/10.1007/bf00202767
    Fei, Y., 1995. Thermal Expansion. In "Mineral Physics & Crystallography", Ahrens, J. T., ed., AGU Reference Shelf, 2: 29–44
    Fei, Y. W., Mao, H. K., 1993. Static Compression of Mg(OH)2 to 78 GPa at High Temperature and Constraints on the Equation of State of Fluid H2O. Journal of Geophysical Research: Solid Earth, 98(B7): 11875–11884. https://doi.org/10.1029/93jb00701
    Fei, Y. W., Ricolleau, A., Frank, M., et al., 2007. Toward an Internally Consistent Pressure Scale. Proceedings of the National Academy of Sciences of the United States of America, 104(22): 9182–9186. https://doi.org/10.1073/pnas.0609013104
    Finkelstein, G. J., Dera, P. K., Jahn, S., et al., 2014. Phase Transitions and Equation of State of Forsterite to 90 GPa from Single-Crystal X-Ray Diffraction and Molecular Modeling. American Mineralogist, 99(1): 35–43. https://doi.org/10.2138/am.2014.4526
    Friedrich, A., Lager, G. A., Ulmer, P., et al., 2002. High-Pressure Single-Crystal X-Ray and Powder Neutron Study of F, OH/OD-Chondrodite: Compressibility, Structure, and Hydrogen Bonding. American Mineralogist, 87(7): 931–939. https://doi.org/10.2138/am-2002-0716
    Fritzel, T. L. B., Bass, J. D., 1997. Sound Velocities of Clinohumite, and Implications for Water in Earth's Upper Mantle. Geophysical Research Letters, 24(9): 1023–1026. https://doi.org/10.1029/97gl00946
    Frost, D. J., Fei, Y., 1999. Static Compression of the Hydrous Magnesium Silicate Phase D to 30 GPa at Room Temperature. Physics and Chemistry of Minerals, 26(5): 415–418. https://doi.org/10.1007/s002690050202
    Fukui, H., Ohtaka, O., Suzuki, T., et al., 2003. Thermal Expansion of Mg(OH)2 Brucite under High Pressure and Pressure Dependence of Entropy. Physics and Chemistry of Minerals, 30(9): 511–516. https://doi.org/10.1007/s00269-003-0353-z
    Graham, E. K., Schwab, J. A., Sopkin, S. M., et al., 1988. The Pressure and Temperature Dependence of the Elastic Properties of Single-Crystal Fayalite Fe2SiO4. Physics and Chemistry of Minerals, 16(2): 186–198. https://doi.org/10.1007/bf00203203
    Germán, R. J., Quintal, B. M., Tobias, M., et al., 2015. Energy Dissipation of P- and S-waves in Fluid-Saturated Rocks: An Overview Focusing on Hydraulically Connected Fractures. Journal of Earth Science, 26(6): 785–790. https://doi.org/10.1007/s12583-015-0613-0
    Grützner, T., Klemme, S., Rohrbach, A., et al., 2017. The Role of F-Clinohumite in Volatile Recycling Processes in Subduction Zones. Geology, 45(5): 443–446. https://doi.org/10.1130/g38788.1
    Hazen, R. M., 1993. Comparative Compressibilities of Silicate Spinels: Anomalous Behavior of (Mg, Fe)2SiO4. Science, 259(5092): 206–209. https://doi.org/10.1126/science.259.5092.206
    Hazen, R. M., Weinberger, M. B., Yang, H. X., et al., 2000. Comparative High-Pressure Crystal Chemistry of Wadsleyite, Β-(Mg1–xFex)2SiO4, With x=0 and 0.25. American Mineralogist, 85(5/6): 770–777. https://doi.org/10.2138/am-2000-5-617
    He, Y., Sun, S. C., Kim, D. Y., et al., 2022. Superionic Iron Alloys and Their Seismic Velocities in Earth's Inner Core. Nature, 602(7896): 258–262. https://doi.org/10.1038/s41586-021-04361-x
    Hemley, R. J., Mao, H. K., Finger, L. W., et al., 1990. Equation of State of Solid Hydrogen and Deuterium from Single-Crystal X-Ray Diffraction to 26.5 GPa. Physical Review B, Condensed Matter, 42(10): 6458–6470. https://doi.org/10.1103/physrevb.42.6458
    Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal History of the Earth and Its Petrological Expression. Earth and Planetary Science Letters, 292(1/2): 79–88. https://doi.org/10.1016/j.epsl.2010.01.022
    Hirschmann, M., Kohlstedt, D., 2012. Water in Earth's Mantle. Physics Today, 65(3): 40–45. https://doi.org/10.1063/pt.3.1476
    Holl, C. M., Smyth, J. R., Manghnani, M. H., et al., 2006. Crystal Structure and Compression of an Iron-Bearing Phase A to 33 GPa. Physics and Chemistry of Minerals, 33(3): 192–199. https://doi.org/10.1007/s00269-006-0073-2
    Holl, C. M., Smyth, J. R., Jacobsen, S. D., et al., 2008. Effects of Hydration on the Structure and Compressibility of Wadsleyite-(Mg2SiO4). American Mineralogist, 93(4): 598–607. https://doi.org/10.2138/am.2008.2620
    Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
    Huang, H. J., Hu, X. J., Jing, F. Q., et al., 2010. Melting Behavior of Fe-O-S at High Pressure: A Discussion on the Melting Depression Induced by O and S. Journal of Geophysical Research: Solid Earth, 115(B5): B05207. https://doi.org/10.1029/2009jb006514
    Hushur, A., Manghnani, M. H., Smyth, J. R., et al., 2011. Hydrogen Bond Symmetrization and Equation of State of Phase D. Journal of Geophysical Research: Solid Earth, 116(B6): B06203. https://doi.org/10.1029/2010jb008087
    Inoue, T., Yurimoto, H., Kudoh, Y., 1995. Hydrous Modified Spinel, Mg1.75SiH0.5O4: A New Water Reservoir in the Mantle Transition Region. Geophysical Research Letters, 22(2): 117–120. https://doi.org/10.1029/94gl02965
    Inoue, T., Weidner, D. J., Northrup, P. A., et al., 1998. Elastic Properties of Hydrous Ringwoodite (γ-Phase) in Mg2SiO4. Earth and Planetary Science Letters, 160: 107–113 doi: 10.1016/S0012-821X(98)00077-6
    Inoue, T., Tanimoto, Y., Irifune, T., et al., 2004. Thermal Expansion of Wadsleyite, Ringwoodite, Hydrous Wadsleyite and Hydrous Ringwoodite. Physics of the Earth and Planetary Interiors, 143/144: 279–290. https://doi.org/10.1016/j.pepi.2003.07.021
    Inoue, T., Ueda, T., Higo, Y., et al., 2006. High Pressure and High Temperature Stability and the Equation of State of Superhydrous Phase B by in situ X-Ray Diffraction. In: Jacobsen, S. D., van der Lee, S. eds., Earth's Deep Water Cycle. AGU Geophysical Monograph Series, AGU, Washington D.C. 168: 147–157
    Irifune, T., Kubo, N., Isshiki, M., et al., 1998. Phase Transformations in Serpentine and Transportation of Water into the Lower Mantle. Geophysical Research Letters, 25(2): 203–206. https://doi.org/10.1029/97gl03572
    Iwamori, H., McKenzie, D., Takahashi, E., 1995. Melt Generation by Isentropic Mantle Upwelling. Earth and Planetary Science Letters, 134(3/4): 253–266. https://doi.org/10.1016/0012-821x(95)00122-s
    Jackson, J. M., Sinogeikin, S. V., Bass, J. D., 2000. Sound Velocities and Elastic Properties of g-Mg2SiO4 to 873 K by Brillouin Spectroscopy. American Mineralogist, 85(2): 296–303. https://doi.org/10.2138/am-2000-2-306
    Jacobsen, S. D., Smyth, J. R., 2006. Effect of Water on the Sound Velocities of Ringwoodite in the Transition Zone. In: Jacobsen, S. D., van der Lee, S. eds., Earth's Deep Water Cycle. American Geophysical Union, Washington D.C. 131–145
    Jacobsen, S. D., Smyth, J. R., Spetzler, H., et al., 2004. Sound Velocities and Elastic Constants of Iron-Bearing Hydrous Ringwoodite. Physics of the Earth and Planetary Interiors, 143/144: 47–56. https://doi.org/10.1016/j.pepi.2003.07.019
    Jacobsen, S. D., Jiang, F. M., Mao, Z., et al., 2008. Effects of Hydration on the Elastic Properties of Olivine. Geophysical Research Letters, 35(14): L14303. https://doi.org/10.1029/2008gl034398
    Jacobsen, S. D., Jiang, F., Mao, Z., et al., 2009. Correction to "Effects of Hydration on the Elastic Properties of Olivine". Geophysical Research Letters, 36: L12302. https://doi.org/10.1029/2009gl038660
    Jiang, F., Speziale, S., Duffy, T. S., 2006. Single-Crystal Elasticity of Brucite, Mg(OH)2, to 15 GPa by Brillouin Scattering. American Mineralogist, 91(11/12): 1893–1900. https://doi.org/10.2138/am.2006.2215
    Kanzaki, M., 1991. Stability of Hydrous Magnesium Silicates in the Mantle Transition Zone. Physics of the Earth and Planetary Interiors, 66(3/4): 307–312. https://doi.org/10.1016/0031-9201(91)90085-v
    Karato, S. I., 2015. Some Notes on Hydrogen-Related Point Defects and Their Role in the Isotope Exchange and Electrical Conductivity in Olivine. Physics of the Earth and Planetary Interiors, 248: 94–98. https://doi.org/10.1016/j.pepi.2015.08.007
    Katayama, I., Hirose, K., Yurimoto, H., et al., 2003. Water Solubility in Majoritic Garnet in Subducting Oceanic Crust. Geophysical Research Letters, 30(22): 2155. https://doi.org/10.1029/2003gl018127
    Katsura, T., Mayama, N., Shouno, K., et al., 2001. Temperature Derivatives of Elastic Moduli of (Mg0.91Fe0.09)2SiO4 Modified Spinel. Physics of the Earth and Planetary Interiors, 124(3/4): 163–166. https://doi.org/10.1016/s0031-9201(01)00189-3
    Katsura, T., Yokoshi, S., Song, M. S., et al., 2004. Thermal Expansion of Mg2SiO4 Ringwoodite at High Pressures. Journal of Geophysical Research: Solid Earth, 109(B12): B12209. https://doi.org/10.1029/2004jb003094
    Katsura, T., Shatskiy, A., Manthilake, M. A. G. M., et al., 2009. P-V-T Relations of Wadsleyite Determined by in situ X-Ray Diffraction in a Large-Volume High-Pressure Apparatus. Geophysical Research Letters, 36(11): L11307. https://doi.org/10.1029/2009gl038107
    Katsura, T., Yoneda, A., Yamazaki, D., et al., 2010. Adiabatic Temperature Profile in the Mantle. Physics of the Earth and Planetary Interiors, 183(1/2): 212–218. https://doi.org/10.1016/j.pepi.2010.07.001
    Kawamoto, T., Yoshikawa, M., Kumagai, Y., et al., 2013. Mantle Wedge Infiltrated with Saline Fluids from Dehydration and Decarbonation of Subducting Slab. Proceedings of the National Academy of Sciences of the United States of America, 110(24): 9663–9668. https://doi.org/10.1073/pnas.1302040110
    Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the Α, β and γ Phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology, 123(4): 345–357. https://doi.org/10.1007/s004100050161
    Komabayashi, T., Omori, S., 2006. Internally Consistent Thermodynamic Data Set for Dense Hydrous Magnesium Silicates up to 35 GPa, 1 600 ℃: Implications for Water Circulation in the Earth's Deep Mantle. Physics of the Earth and Planetary Interiors, 156(1/2): 89–107. https://doi.org/10.1016/j.pepi.2006.02.002
    Kovács, I., O'Neill, H. St. C., Hermann, J., et al., 2010. Site-Specific Infrared O-H Absorption Coefficients for Water Substitution into Olivine. American Mineralogist, 95(2/3): 292–299. https://doi.org/10.2138/am.2010.3313
    Kroll, H., Kirfel, A., Heinemann, R., et al., 2012. Volume Thermal Expansion and Related Thermophysical Parameters in the Mg, Fe Olivine Solid-Solution Series. European Journal of Mineralogy, 24(6): 935–956. https://doi.org/10.1127/0935-1221/2012/0024-2235
    Kudoh, Y., Takéuchi, Y., 1985. The Crystal Structure of Forsterite Mg2SiO4 under High Pressure up to 149 Kb. Zeitschrift Für Kristallographie-Crystalline Materials, 171(1/2/3/4): 291–302. https://doi.org/10.1524/zkri.1985.171.14.291
    Kudoh, Y., Nagase, T., Ohta, S., et al., 1994. Crystal Structure and Compressibility of Superhydrous Phase B, Mg20Si6H8O36 AIP Conference Proceedings. Colorado Springs, Colorado (USA). AIP Conference Proceedings, 309: 469–472
    Kudoh, Y., Kuribayashi, T., Kagi, H., et al., 2002. High-Pressure Structural Study of Phase-A, Mg7Si2H6O14 Using Synchrotron Radiation. Journal of Physics: Condensed Matter, 14(44): 10491–10495. https://doi.org/10.1088/0953-8984/14/44/321
    Kumar, M., 1995. High Pressure Equation of State for Solids. Physica B: Condensed Matter, 212(4): 391–394. https://doi.org/10.1016/0921-4526(95)00361-c
    Kumar, M., 1996. Application of High Pressure Equation of State for Different Classes of Solids. Physica B: Condensed Matter, 217(1/2): 143–148. https://doi.org/10.1016/0921-4526(95)00448-3
    Kumar, M., 2000. Author's Reply on the Remark of Prieto and Renero on Kumar Equation of State. Physica B: Condensed Matter, 292(1/2): 173–175. https://doi.org/10.1016/s0921-4526(00)00453-1
    Kuribayashi, T., Kudoh, Y., Kagi, H., 2003. Compressibility of Phase A, Mg7Si2H6O14 up to 11.2 GPa. Journal of Mineralogical and Petrological Sciences, 98(6): 215–234. https://doi.org/10.2465/jmps.98.215
    Kuribayashi, T., Kagi, H., Tanaka, M., et al., 2004. High-Pressure Single Crystal X-Ray Diffraction and FT-IR Observation of Natural Chondrodite and Synthetic OH-Chondrodite. Journal of Mineralogical and Petrological Sciences, 99(3): 118–129. https://doi.org/10.2465/jmps.99.118
    Lemaire, C., Kohn, S. C., Brooker, R. A., 2004. The Effect of Silica Activity on the Incorporation Mechanisms of Water in Synthetic Forsterite: A Polarised Infrared Spectroscopic Study. Contributions to Mineralogy and Petrology, 147(1): 48–57. https://doi.org/10.1007/s00410-003-0539-x
    Leng, W., Zhong, S. J., 2008. Viscous Heating, Adiabatic Heating and Energetic Consistency in Compressible Mantle Convection. Geophysical Journal International, 173(2): 693–702. https://doi.org/10.1111/j.1365-246x.2008.03745.x
    Li, B. S., Liebermann, R. C., Weidner, D. J., 2001. P-V-Vp-Vs-T Measurements on Wadsleyite to 7 GPa and 873 K: Implications for the 410-Km Seismic Discontinuity. Journal of Geophysical Research: Solid Earth, 106(B12): 30579–30591. https://doi.org/10.1029/2001jb000317
    Li, B. S., 2004. Compressional and Shear Wave Velocities of Ringwoodite g-Mg2SiO4 to 12 GPa. American Mineralogist, 88(8/9): 1312–1317. https://doi.org/10.2138/am-2003-8-913
    Li, B. S., Liebermann, R. C., Weidner, D. J., 1998. Elastic Moduli of Wadsleyite (β-Mg2SiO4) to 7 Gigapascals and 873 Kelvin. Science, 281(5377): 675–677. https://doi.org/10.1126/science.281.5377.675
    Li, X. Y., Mao, Z., Sun, N. Y., et al., 2016. Elasticity of Single-Crystal Superhydrous Phase B at Simultaneous High Pressure-Temperature Conditions. Geophysical Research Letters, 43(16): 8458–8465. https://doi.org/10.1002/2016gl070027
    Litasov, K. D., Ohtani, E., Ghosh, S., et al., 2007a. Thermal Equation of State of Superhydrous Phase B to 27 GPa and 1 373 K. Physics of the Earth and Planetary Interiors, 164(3/4): 142–160. https://doi.org/10.1016/j.pepi.2007.06.003
    Litasov, K. D., Ohtani, E., Suzuki, A., et al., 2007b. The Compressibility of Fe- and Al-Bearing Phase D to 30GPa. Physics and Chemistry of Minerals, 34(3): 159–167. https://doi.org/10.1007/s00269-006-0136-4
    Litasov, K. D., Ohtani, E., Nishihara, Y., et al., 2008. Thermal Equation of State of Al- and Fe-Bearing Phase D. Journal of Geophysical Research: Solid Earth, 113(B8): B08205. https://doi.org/10.1029/2007jb004937
    Liu, W., Li, B. S., 2006. Thermal Equation of State of (Mg0.9Fe0.1)2SiO4 Olivine. Physics of the Earth and Planetary Interiors, 157(3/4): 188–195. https://doi.org/10.1016/j.pepi.2006.04.003
    Liu, L. G., Okamoto, K., Yang, Y. J., et al., 2004. Elasticity of Single-Crystal Phase D (a Dense Hydrous Magnesium Silicate) by Brillouin Spectroscopy. Solid State Communications, 132(8): 517–520. https://doi.org/10.1016/j.ssc.2004.09.005
    Liu, W., Kung, J., Li, B. S., 2005. Elasticity of San Carlos Olivine to 8 GPa and 1 073 K. Geophysical Research Letters, 32(16): L16301. https://doi.org/10.1029/2005gl023453
    Liu, X., Sui, Z. Y., Fei, H. Z., et al., 2020. IR Features of Hydrous Mg2SiO4-Ringwoodite, Unannealed and Annealed at 200–600 ℃ and 1 Atm, with Implications to Hydrogen Defects and Water-Coupled Cation Disorder. Minerals, 10(6): 499. https://doi.org/10.3390/min10060499
    Liu, D., Pang, Y. W., Ye, Y., et al., 2019. In-situ High-Temperature Vibrational Spectra for Synthetic and Natural Clinohumite: Implications for Dense Hydrous Magnesium Silicates in Subduction Zones. American Mineralogist, 104(1): 53–63. https://doi.org/10.2138/am-2019-6604
    Liu, D., Hirner, S. M., Smyth, J. R., et al., 2021a. Crystal Chemistry and High-Temperature Vibrational Spectra of Humite and Norbergite: Fluorine and Titanium in Humite-Group Minerals. American Mineralogist, 106(7): 1153–1162. https://doi.org/10.2138/am-2021-7538
    Liu, D., Guo, X. Z., Smyth, J. R., et al., 2021b. High-Temperature and High-Pressure Raman Spectra of Fo89Fa11 and Fo58Fa42 Olivines: Iron Effect on Thermodynamic Properties. American Mineralogist, 106(10): 1668–1678. https://doi.org/10.2138/am-2021-7686
    Mainprice, D., le Page, Y., Rodgers, J., et al., 2007. Predicted Elastic Properties of the Hydrous D Phase at Mantle Pressures: Implications for the Anisotropy of Subducted Slabs near 670-Km Discontinuity and in the Lower Mantle. Earth and Planetary Science Letters, 259(3/4): 283–296. https://doi.org/10.1016/j.epsl.2007.04.053
    Manghnani, M. H., Hushur, A., Smyth, J. R., et al., 2013. Compressibility and Structural Stability of Two Variably Hydrated Olivine Samples (Fo97Fa3) to 34 GPa by X-Ray Diffraction and Raman Spectroscopy. American Mineralogist, 98(11/12): 1972–1979. https://doi.org/10.2138/am.2013.4462
    Mao, Z., Jacobsen, S. D., Jiang, F. M., et al., 2008a. Single-Crystal Elasticity of Wadsleyites, β-Mg2SiO4, Containing 0.37wt. %–1.66 wt. % H2O. Earth and Planetary Science Letters, 268(3/4): 540–549. https://doi.org/10.1016/j.epsl.2008.01.023
    Mao, Z., Jacobsen, S. D., Jiang, F., et al., 2008b. Elasticity of Hydrous Wadsleyite to 12 GPa: Implications for Earth's Transition Zone. Geophysical Research Letters, 35(21): L21305. https://doi.org/10.1029/2008gl035618
    Mao, Z., Lin, J. F., Jacobsen, S. D., et al., 2012. Sound Velocities of Hydrous Ringwoodite to 16 GPa and 673 K. Earth and Planetary Science Letters, 331/332: 112–119. https://doi.org/10.1016/j.epsl.2012.03.001
    Meng, Y., Fei, Y., Weidner, D. J., et al., 1994. Hydrostatic Compression of Γ-Mg2SiO4 to Mantle Pressures and 700 K: Thermal Equation of State and Related Thermoelastic Properties. Physics and Chemistry of Minerals, 21(6): 407–412. https://doi.org/10.1007/bf00203299
    Mierdel, K., Keppler, H., Smyth, J. R., et al., 2007. Water Solubility in Aluminous Orthopyroxene and the Origin of Earth's Asthenosphere. Science, 315(5810): 364–368. https://doi.org/10.1126/science.1135422
    Milani, S., Nestola, F., Alvaro, M., et al., 2015. Diamond-Garnet Geobarometry: The Role of Garnet Compressibility and Expansivity. Lithos, 227: 140–147. https://doi.org/10.1016/j.lithos.2015.03.017
    Milani, S., Angel, R. J., Scandolo, L., et al., 2017. Thermo-Elastic Behavior of Grossular Garnet at High Pressures and Temperatures. American Mineralogist, 102: 851–859 doi: 10.2138/am-2017-5855
    Moine, B. N., Bolfan-Casanova, N., Radu, I. B., et al., 2020. Molecular Hydrogen in Minerals as a Clue to Interpret ∂D Variations in the Mantle. Nature Communications, 11: 3604. https://doi.org/10.1038/s41467-020-17442-8
    Mookherjee, M., Karato, S., 2010. Solubility of Water in Pyrope-Rich Garnet at High Pressures and Temperature. Geophysical Research Letters, 37: L03310
    Mosenfelder, J. L., 2006. Hydrogen Incorporation in Olivine from 2–12 GPa. American Mineralogist, 91(2/3): 285–294. https://doi.org/10.2138/am.2006.1943
    Nestola, F., Pasqual, D., Smyth, J. R., et al., 2011. New Accurate Elastic Parameters for the Forsterite-Fayalite Solid Solution. American Mineralogist, 96(11/12): 1742–1747. https://doi.org/10.2138/am.201 1.3829 doi: 10.2138/am.2011.3829
    Ni, H. W., Xu, Z. J., Zhang, Y. X., 2013. Hydroxyl and Molecular H2O Diffusivity in a Haploandesitic Melt. Geochimica et Cosmochimica Acta, 103: 36–48. https://doi.org/10.1016/j.gca.2012.10.052
    Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224–227. https://doi.org/10.1038/ngeo2074
    Ohtani, E., 2005. Water in the Mantle. Elements, 1(1): 25–30. https://doi.org/10.2113/gselements.1.1.25
    Ohtani, E., Toma, M., Litasov, K., et al., 2001. Stability of Dense Hydrous Magnesium Silicate Phases and Water Storage Capacity in the Transition Zone and Lower Mantle. Physics of the Earth and Planetary Interiors, 124(1/2): 105–117. https://doi.org/10.1016/S0031-9201(01)00192-3
    Ohtani, E., Amaike, Y., Kamada, S., et al., 2014. Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 41(23): 8283–8287. https://doi.org/10.1002/2014gl061690
    Pacalo, R. E. G., Weidner, D. J., 1996. Elasticity of Superhydrous B. Physics and Chemistry of Minerals, 23(8): 520–525. https://doi.org/10.1007/bf00242001
    Parise, J. B., Leinenweber, K., Weidner, D. J., et al., 1994. Pressure-Induced H Bonding: Neutron Diffraction Study of Brucite, Mg(OD)2 to 9.3 GPa. American Mineralogist, 77: 1129–1132
    Pawley, A. R., Redfern, S. A. T., Wood, B. J., 1995. Thermal Expansivities and Compressibilities of Hydrous Phases in the System MgO-SiO2-H2O: Talc, Phase A and 10-Å Phase. Contributions to Mineralogy and Petrology, 122(3): 301–307. https://doi.org/10.1007/s004100050129
    Pearson, D. G., Brenker, F. E., Nestola, F., et al., 2014. Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507(7491): 221–224. https://doi.org/10.1038/nature13080
    Phan, H. T., 2009. Elastic Properties of Hydrous Phases in the Deep Mantle: High-Pressure Ultrasonic Wave Velocity Measurements on Clinohumite and Phase A: [Dissertation]. ETH Zürich, Zürich
    Purevjav, N., Okuchi, T., Tomioka, N., et al., 2014. Hydrogen Site Analysis of Hydrous Ringwoodite in Mantle Transition Zone by Pulsed Neutron Diffraction. Geophysical Research Letters, 41(19): 6718–6724. https://doi.org/10.1002/2014gl061448
    Qin, F., Wu, X., Zhang, D. Z., et al., 2017. Thermal Equation of State of Natural Ti-Bearing Clinohumite. Journal of Geophysical Research: Solid Earth, 122(11): 8943–8951. https://doi.org/10.1002/2017jb014827
    Ramakrishnan, J., Boehler, R., Higgins, G. H., et al., 1978. Behavior of Grüneisen's Parameter of some Metals at High Pressures. Journal of Geophysical Research: Solid Earth, 83(B7): 3535–3538. https://doi.org/10.1029/jb083ib07p03535
    Redfern, S. A. T., Wood, B. J., 1992. Thermal Expansion of Brucite, Mg(OH)2. American Mineralogist, 77: 1129–1132
    Ringwood, A. E., Major, A., 1967. High-Pressure Reconnaissance Investigations in the System Mg2SiO4-MgO-H2O. Earth and Planetary Science Letters, 2(2): 130–133. https://doi.org/10.1016/0012-821x(67)90114-8
    Rosa, A. D., Sanchez-Valle, C., Ghosh, S., 2012. Elasticity of Phase D and Implication for the Degree of Hydration of Deep Subducted Slabs. Geophysical Research Letters, 39(6): L06304. https://doi.org/10.1029/2012gl050927
    Rosa, A. D., Sanchez-Valle, C., Wang, J. Y., et al., 2015. Elasticity of Superhydrous Phase B, Seismic Anomalies in Cold Slabs and Implications for Deep Water Transport. Physics of the Earth and Planetary Interiors, 243: 30–43. https://doi.org/10.1016/j.pepi.2015.03.009
    Ross, N. L., Crichton, W. A., 2001. Compression of Synthetic Hydroxylclinohumite [Mg9Si4O16(OH)2]and Hydroxylchondrodite [Mg5Si2O8(OH)2]. American Mineralogist, 86(9): 990–996. https://doi.org/10.2138/am-2001-8-905
    Sanchez-Valle, C., Sinogeikin, S. V., Smyth, J. R., et al., 2006. Single-Crystal Elastic Properties of Dense Hydrous Magnesium Silicate Phase A. American Mineralogist, 91(5/6): 961–964
    Sawamoto, H., Weidner, D. J., Sasaki, S., et al., 1984. Single-Crystal Elastic Properties of the Modified Spinel (Beta) Phase of Magnesium Orthosilicate. Science, 224(4650): 749–751. https://doi.org/10.1126/science.224.4650.749
    Shieh, S. R., Mao, H. K., Hemley, R. J., et al., 2000a. In situ X-Ray Diffraction Studies of Dense Hydrous Magnesium Silicates at Mantle Conditions. Earth and Planetary Science Letters, 177(1/2): 69–80. https://doi.org/10.1016/S0012-821x(00)00033-9
    Shieh, S. R., Mao, H. K., Konzett, J., et al., 2000b. In-situ High Pressure X-Ray Diffraction of Phase E to 15 GPa. American Mineralogist, 85: 765–769 doi: 10.2138/am-2000-5-616
    Shinmei, T., Irifune, T., Tsuchiya, J., et al., 2008. Phase Transition and Compression Behavior of Phase D up to 46 GPa Using Multi-Anvil Apparatus with Sintered Diamond Anvils. High Pressure Research, 28(3): 363–373. https://doi.org/10.1080/08957950802246514
    Sinogeikin, S. V., Bass, J. D., 1999. Single-Crystal Elastic Properties of Chondrodite: Implications for Water in the Upper Mantle. Physics and Chemistry of Minerals, 26(4): 297–303. https://doi.org/10.1007/s002690050189
    Sinogeikin, S. V., Bass, J. D., Kavner, A., et al., 1997. Elasticity of Natural Majorite and Ringwoodite from the Catherwood Meteorite. Geophysical Research Letters, 24(24): 3265–3268. https://doi.org/10.1029/97gl03217
    Sinogeikin, S. V., Katsura, T., Bass, J. D., 1998. Sound Velocities and Elastic Properties of Fe-Bearing Wadsleyite and Ringwoodite. Journal of Geophysical Research: Solid Earth, 103(B9): 20819–20825. https://doi.org/10.1029/98jb01819
    Sinogeikin, S. V., Bass, J. D., Katsura, T., 2003. Single-Crystal Elasticity of Ringwoodite to High Pressures and High Temperatures: Implications for 520 km Seismic Discontinuity. Physics of the Earth and Planetary Interiors, 136(1/2): 41–66. https://doi.org/10.1016/s0031-9201(03)00022-0
    Smyth, J., 1975. High Temperature Crystal Chemistry of Fayalite. American Mineralogist, 60: 1092–1097
    Smyth, J. R., 1994. A Crystallographic Model for Hydrous Wadsleyite: An Ocean in the Earth's Interior? American Mineralogist, 79: 1021–1025
    Smyth, J. R., Hazen, R. M., 1973. The Crystal Structures of Forsterite and Hortonolite at Several Temperatures up to 900 ℃. American Mineralogist, 58: 588–593
    Smyth, J. R., Holl, C. M., Frost, D. J., et al., 2003. Structural Systematics of Hydrous Ringwoodite and Water in Earth's Interior. American Mineralogist, 88(10): 1402–1407. https://doi.org/10.2138/am-2003-1001
    Smyth, J. R., Holl, C. M., Frost, D. J., et al., 2004. High Pressure Crystal Chemistry of Hydrous Ringwoodite and Water in the Earth's Interior. Physics of the Earth and Planetary Interiors, 143/144: 271–278. https://doi.org/10.1016/j.pepi.2003.08.011
    Smyth, J. R., Frost, D. J., Nestola, F., et al., 2006. Olivine Hydration in the Deep Upper Mantle: Effects of Temperature and Silica Activity. Geophysical Research Letters, 33(15): L15301. https://doi.org/10.1029/2006gl026194
    Speziale, S., Zha, C. S., Duffy, T. S., et al., 2001. Quasi-Hydrostatic Compression of Magnesium Oxide to 52 GPa: Implications for the Pressure-Volume-Temperature Equation of State. Journal of Geophysical Research: Solid Earth, 106(B1): 515–528. https://doi.org/10.1029/2000jb900318
    Speziale, S., Duffy, T. S., Angel, R. J., 2004. Single-Crystal Elasticity of Fayalite to 12 GPa. Journal of Geophysical Research: Solid Earth, 109(B12): B12202. https://doi.org/10.1029/2004jb003162
    Stacey, F. D., Davis, P. M., 2008. Physics of the Earth (Fourth Edition). Cambridge University Press, Cambridge, U. K
    Stacey, F. D., Brennan, B. J., Irvine, R. D., 1981. Finite Strain Theories and Comparisons with Seismological Data. Geophysical Surveys, 4(3): 189–232. https://doi.org/10.1007/bf01449185
    Stalder, R., Ulmer, P., 2001. Phase Relations of a Serpentine Composition between 5 and 14 GPa: Significance of Clinohumite and Phase E as Water Carriers into the Transition Zone. Contributions to Mineralogy and Petrology, 140(6): 670–679. https://doi.org/10.1007/s004100000208
    Su, W., You, Z., Cong, B., et al., 2002. Cluster of Water Molecules in Garnet from Ultrahigh-Pressure Eclogite. Geology, 30: 611–614. https://doi.org/10.1130/0091-7613%282002%29030%3c0611%3acowmig%3e2.0.co%3b2
    Suzuki, I., 1975. Thermal Expansion of Periclase and Olivine, and Their Anharmonic Properties. Journal of Physics of the Earth, 23: 145–159. https://doi.org/10.4294/jpe1952.23.145
    Suzuki, I., Oajima, S., Seya, K., 1979. Thermal Expansion of Single-Crystal Manganosite. Journal of Physics of the Earth, 27: 63–69 doi: 10.4294/jpe1952.27.63
    Suzuki, I., Ohtani, E., Kumazawa, M., 1980. Thermal Expansion of Modified Spinel, β-Mg2SiO4. Journal of Physics of the Earth, 27: 53–61
    Suzuki, I., Anderson, O. L., Sumino, Y., 1983. Elastic Properties of a Single-Crystal Forsterite Mg2SiO4, up to 1 200 K. Physics and Chemistry of Minerals, 10(1): 38–46. https://doi.org/10.1007/bf01204324
    Syracuse, E. M., van Keken, P. E., Abers, G. A., 2010. The Global Range of Subduction Zone Thermal Models. Physics of the Earth and Planetary Interiors, 183(1/2): 73–90. https://doi.org/10.1016/j.pepi.2010.02.004
    Trots, D. M., Kurnosov, A., Ballaran, T. B., et al., 2012. High-Temperature Structural Behaviors of Anhydrous Wadsleyite and Forsterite. American Mineralogist, 97: 1582–1590 doi: 10.2138/am.2012.3992
    Tsuchiya, J., 2013. First Principles Prediction of a New High-Pressure Phase of Dense Hydrous Magnesium Silicates in the Lower Mantle. Geophysical Research Letters, 40(17): 4570–4573. https://doi.org/10.1002/grl.50875
    Umemoto, K., Wentzcovitch, R., Hirschmann, M., et al., 2011. First-Principles Investigation of Hydrous Defects and IR Frequencies in Forsterite: The Case for Si Vacancies. American Mineralogist, 96: 1475–1479. https://doi.org/10.2138/am.2011.3720
    Vinet, P., Ferrante J., Smith, J. R., et al., 1986. A Universal Equation of State for Solids. Journal of Physics C: Solid State Physics, 19: L467–L473 doi: 10.1088/0022-3719/19/20/001
    Vinet, P., Ferrante, J., Rose, J. H., et al., 1987. Compressibility of Solids. Journal of Geophysical Research: Solid Earth, 92(B9): 9319–9325. https://doi.org/10.1029/jb092ib09p09319
    Wada, I., Behn, M. D., Shaw, A. M., 2012. Effects of Heterogeneous Hydration in the Incoming Plate, Slab Rehydration, and Mantle Wedge Hydration on Slab-Derived H2O Flux in Subduction Zones. Earth and Planetary Science Letters, 353/354: 60–71. https://doi.org/10.1016/j.epsl.2012.07.025
    Wang, J. Y., Sinogeikin, S. V., Inoue, T., et al., 2006. Elastic Properties of Hydrous Ringwoodite at High-Pressure Conditions. Geophysical Research Letters, 33(14): L14308. https://doi.org/10.1029/2006gl026441
    Webb, S. L., 1989. The Elasticity of the Upper Mantle Orthosilicates Olivine and Garnet to 3 GPa. Physics and Chemistry of Minerals, 16(7): 684–692. https://doi.org/10.1007/bf00223318
    Weidner, D. J., Sawamoto, H., Sasaki, S., et al., 1984. Single-Crystal Elastic Properties of the Spinel Phase of Mg2SiO4. Journal of Geophysical Research: Solid Earth, 89(B9): 7852–7860. https://.org/10.1029/jb089ib09p07852 doi: 10.1029/JB089iB09p07852
    Will, G., Hoffbauer, W., Hinze, E., et al., 1986. The Compressibility of Forsterite up to 300 Kbar Measured with Synchrotron Radiation. Physica B+C, 139/140: 193–197. https://doi.org/10.1016/0378-4363(86)90556-5
    Williams, Q., Hemley, R. J., 2001. Hydrogen in the Deep Earth. Annual Review of Earth and Planetary Sciences, 29: 365–418 doi: 10.1146/annurev.earth.29.1.365
    Wunder, B., 1998. Equilibrium Experiments in the System MgO-SiO2-H2O (MSH): Stability Fields of Clinohumite-OH [Mg9Si4O16(OH)2], Chondrodite-OH [Mg5Si2O8(OH)2]and Phase A (Mg7Si2O8(OH)6). Contributions to Mineralogy and Petrology, 132(2): 111–120. https://doi.org/10.1007/s004100050410
    Xia, X., Weidner, D., Zhao, H., 1998. Equation of State of Brucite: Single-Crystal Brillouin Spectroscopy Study and Polycrystalline Pressure-Volume-Temperature Measurement. American Mineralogist, 83: 68–74. https://doi.org/10.2138/am-1998-0107
    Xue, X., Kanzaki, M., Turner, D., et al., 2017. Hydrogen Incorporation Mechanisms in Forsterite: New Insights from 1H and 29Si NMR Spectroscopy and First-Principles Calculation. American Mineralogist, 102: 519–536. https://doi.org/10.2138/am-2017-5878
    Yang, Y., Wang, Y., Smyth, J. R., et al., 2015. Water Effects on the Anharmonic Properties of Forsterite. American Mineralogist, 100: 2185–2190 doi: 10.2138/am-2015-5241
    Yang, X., Keppler, H., Li, Y., 2016. Molecular Hydrogen in Mantle Minerals. Geochemical Perspectives Letters, 2: 160–168
    Yang, D. P., Wang, W. Z., Wu, Z. Q., 2017. Elasticity of Superhydrous Phase B at the Mantle Temperatures and Pressures: Implications for 800 km Discontinuity and Water Flow into the Lower Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 5026–5037. https://doi.org/10.1002/2017jb014319
    Yang, C., Inoue, T., Kikegawa, T., 2021. P-V-T Equation of State of Hydrous Phase A up to 10.5 GPa. American Mineralogist, 106: 1–6 doi: 10.2138/am-2020-7132
    Ye, Y., 2016. Hydration Effects on Crystal Structures and Equations of State for Silicate Minerals in the Subducting Slabs and Mantle Transition Zone. Science China Earth Sciences, 59(4): 707–719. https://doi.org/10.1007/s11430-015-5260-x
    Ye, Y., Schwering, R. A., Smyth, J., 2009. Effects of Hydration on Thermal Expansion of Forsterite, Wadsleyite, and Ringwoodite at Ambient Pressure. American Mineralogist, 94: 899–904. https://doi.org/10.2138/am.2009.3122
    Ye, Y., Smyth, J. R., Hushur, A., et al., 2010. Crystal Structure of Hydrous Wadsleyite with 2.8% H2O and Compressibility to 60 GPa. American Mineralogist, 95: 1765–1772. https://doi.org/10.2138/am.2010.3533
    Ye, Y., Smyth, J., Frost, D., 2011. Structural Study of the Coherent Dehydration of Wadsleyite. American Mineralogist, 96: 1760–1767. https://doi.org/10.2138/am.2011.3852
    Ye, Y., Brown, D. A., Smyth, J. R., et al., 2012. Compressibility and Thermal Expansion of Hydrous Ringwoodite with 2.5(3) wt. % H2O. American Mineralogist, 97: 57–582
    Ye, Y., Smyth, J. R., Jacobsen, S. D., et al., 2013. Crystal Chemistry, Thermal Expansion, and Raman Spectra of Hydroxyl-Clinohumite: Implications for Water in Earth's Interior. Contributions to Mineralogy and Petrology, 165(3): 563–574. https://doi.org/10.1007/s00410-012-0823-8
    Ye, Y., Jacobsen, S. D., Mao, Z., et al., 2015. Crystal Structure, Thermal Expansivity, and Elasticity of OH-Chondrodite: Trends among Dense Hydrous Magnesium Silicates. Contributions to Mineralogy and Petrology, 169(4): 1–15. https://doi.org/10.1007/s00410-015-1138-3
    Ye, Y., Prakapenka, V., Meng, Y., et al., 2017. Intercomparison of the Gold, Platinum, and MgO Pressure Scales up to 140 GPa and 2 500 K. Journal of Geophysical Research: Solid Earth, 122(5): 3450–3464. https://doi.org/10.1002/2016jb013811
    Ye, Y., Shim, S. H., Prakapenka, V., et al., 2018. Equation of State of Solid Ne Inter-Calibrated with the MgO, Au, Pt, NaCl-B2, and Ruby Pressure Scales up to 130 GPa. High Pressure Research, 38(4): 377–395. https://doi.org/10.1080/08957959.2018.1493477
    Yusa, H., Inoue, T., Ohishi, Y., 2000. Isothermal Compressibility of Hydrous Ringwoodite and Its Relation to the Mantle Discontinuities. Geophysical Research Letters, 27(3): 413–416. https://doi.org/10.1029/1999gl011032
    Zaffiro, G., Angel, R., Alvaro, M., 2019. Constraints on the Equations of State of Stiff Anisotropic Minerals: Rutile, and the Implications for Rutile Elastic Barometry. Mineralogical Magazine, 83: 339–347. https://doi.org/10.1180/mgm.2019.24
    Zha, C. S., Duffy, T. S., Downs, R. T., et al., 1996. Sound Velocity and Elasticity of Single-Crystal Forsterite to 16 GPa. Journal of Geophysical Research: Solid Earth, 101(B8): 17535–17545. https://doi.org/10.1029/96jb01266
    Zha, C. S., Duffy, T. S., Mao, H. W., et al., 1997. Single-Crystal Elasticity of β-Mg2SiO4 to the Pressure of the 410 km Seismic Discontinuity in the Earth's Mantle. Physics of the Earth and Planetary Interiors, 147: E9–E15
    Zha, C. S., Duffy, T. S., Downs, R. T., et al., 1998. Brillouin Scattering and X-Ray Diffraction of San Carlos Olivine: Direct Pressure Determination to 32 GPa. Earth and Planetary Science Letters, 159(1/2): 25–33. https://doi.org/10.1016/s0012-821x(98)00063-6
    Zhang, L., 1998. Single Crystal Hydrostatic Compression of (Mg, Mn, Fe, Co)2SiO4 Olivines. Physics and Chemistry of Minerals, 25(4): 308–312. https://doi.org/10.1007/s002690050119
    Zhang, Y., Stolper, E. M., 1991. Water Diffusion in a Basaltic Melt. Nature, 351: 306–309. https://doi.org/10.1038/351306a0
    Zhang, J. S., Hu, Y., Shelton, H., et al., 2017. Single-Crystal X-Ray Diffraction Study of Fe2SiO4 Fayalite up to 31 GPa. Physics and Chemistry of Minerals, 44(3): 171–179. https://doi.org/10.1007/s00269-016-0846-1
    Zheng, Y., 2009. Fluid Regime in Continental Subduction Zones: Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166: 763–782. https://doi.org/10.1144/0016-76492008-016r
    Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5–48. https://doi.org/10.1016/j.chemgeo.2012.02.005
    Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Science China Earth Sciences, 59(4): 651–682. https://doi.org/10.1007/s11430-015-5258-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(250) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return