Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 5
Oct 2023
Turn off MathJax
Article Contents
Qinjun Qiu, Zhen Huang, Dexin Xu, Kai Ma, Liufeng Tao, Run Wang, Jianguo Chen, Zhong Xie, Yongsheng Pan. Integrating NLP and Ontology Matching into a Unified System for Automated Information Extraction from Geological Hazard Reports. Journal of Earth Science, 2023, 34(5): 1433-1446. doi: 10.1007/s12583-022-1716-z
Citation: Qinjun Qiu, Zhen Huang, Dexin Xu, Kai Ma, Liufeng Tao, Run Wang, Jianguo Chen, Zhong Xie, Yongsheng Pan. Integrating NLP and Ontology Matching into a Unified System for Automated Information Extraction from Geological Hazard Reports. Journal of Earth Science, 2023, 34(5): 1433-1446. doi: 10.1007/s12583-022-1716-z

Integrating NLP and Ontology Matching into a Unified System for Automated Information Extraction from Geological Hazard Reports

doi: 10.1007/s12583-022-1716-z
More Information
  • Corresponding author: Run Wang, runwang@cug.edu.cn
  • Received Date: 06 Dec 2021
  • Accepted Date: 23 Jul 2022
  • Available Online: 14 Oct 2023
  • Issue Publish Date: 30 Oct 2023
  • Many detailed data on past geological hazard events are buried in geological hazard reports and have not been fully utilized. The growing developments in geographic information retrieval and temporal information retrieval offer opportunities to analyse this wealth of data to mine the spatiotemporal evolution of geological disaster occurrence and enhance risk decision making. This study pre-sents a combined NLP and ontology matching information extraction framework for automatically re-cognizing semantic and spatiotemporal information from geological hazard reports. This framework mainly extracts unstructured information from geological disaster reports through named entity recognition, ontology matching and gazetteer matching to identify and annotate elements, thus enabling users to quickly obtain key information and understand the general content of disaster reports. In addition, we present the final results obtained from the experiments through a reasonable visualization and analyse the visual results. The extraction and retrieval of semantic information related to the dynamics of geohazard events are performed from both natural and human perspectives to provide information on the progress of events.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abdelkoui, F., Kholladi, M. K., 2017. Extracting Criminal-Related Events from Arabic Tweets. Journal of Information Technology Research, 10(3): 34–47. https://doi.org/10.4018/jitr.2017070103
    Abraham, S., Mäs, S., Bernard, L., 2018. Extraction of Spatio-Temporal Data about Historical Events from Text Documents. Transactions in GIS, 22(3): 677–696. https://doi.org/10.1111/tgis.12448
    Ali Sit, M., Koylu, C., Demir, I., 2019. Identifying Disaster-Related Tweets and Their Semantic, Spatial and Temporal Context Using Deep Learning, Natural Language Processing and Spatial Analysis: A Case Study of Hurricane Irma. International Journal of Digital Earth, 12(11): 1205–1229. https://doi.org/10.1080/17538947.2018.1563219
    Burel, G., Saif, H., Alani, H., 2017. Semantic Wide and Deep Learning for Detecting Crisis-Information Categories on Social Media. The Semantic Web-ISWC 2017: 16th International Semantic Web Conference, October 21–25, 2017, Vienna. https://doi.org/10.1007/978-3-319-682 88-4_9
    Campos, R., Dias, G., Jorge, A. M., et al., 2015. Survey of Temporal Information Retrieval and Related Applications. ACM Computing Surveys, 47(2): 1–41. https://doi.org/10.1145/2619088
    Chiu, J. P. C., Nichols, E., 2015. Named Entity Recognition with Bidirectional LSTM-CNNS. arXiv: 1511.08308. https://arxiv.org/abs/1511.08308
    Clough, P., 2005. Extracting Metadata for Spatially-Aware Information Retrieval on the Internet. The 2005 Workshop on Geographic Information Retrieval. 4 November 2005, Bremen. https://doi.org/10.1145/1096985.1096992
    Fan, R., Wang, L. Z., Yan, J. N., et al., 2019. Deep Learning-Based Named Entity Recognition and Knowledge Graph Construction for Geological Hazards. ISPRS International Journal of Geo-Information, 9(1): 15 https://doi.org/10.3390/ijgi9010015
    Gregory, I., 2002. A Place in History: A Guide to Using GIS in Historical Research. Oxbow Books, Oxford
    Jayawardhana, U. K., Gorsevski, P. V., 2019. An Ontology-Based Framework for Extracting Spatio-Temporal Influenza Data Using Twitter. International Journal of Digital Earth, 12(1): 2–24. https://doi.org/10.1080/17538947.2017.1411535
    Jindal, P., Roth, D., 2013. Extraction of Events and Temporal Expressions from Clinical Narratives. Journal of Biomedical Informatics, 46: S13–S19. https://doi.org/10.1016/j.jbi.2013.08.010
    Karimzadeh, M., Huang, W. Y., Banerjee, S., et al., 2013. GeoTxt: A Web API to Leverage Place References in Text. Proceedings of the 7th Workshop on Geographic Information Retrieval. November 5, 2013, Orlando. https://doi.org/10.1145/2533888.2533942
    Karimzadeh, M., Pezanowski, S., MacEachren, A., et al., 2019. GeoTxt: A Scalable Geoparsing System for Unstructured Text Geolocation. GeoTxt: A Scalable Geoparsing System. Transactions in GIS, 23(1): 118–136. https://doi.org/10.1111/tgis.12510
    Kordjamshidi, P., Van Otterlo, M., Moens, M. F., 2011. Spatial Role Labeling: Towards Extraction of Spatial Relations from Natural Language. ACM Transactions on Speech and Language Processing (TSLP), 8(3): 1–36
    Lee, C. H., Wu, C. H., Yang, H. C., et al., 2013. Exploiting Online Social Data in Ontology Learning for Event Tracking and Emergency Response. The 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, August 25–28, 2013, Niagara. https://doi.org/10.1145/2492517.2500260
    Li, S., Chen, J. P., Xiang, J., 2018. Prospecting Information Extraction by Text Mining Based on Convolutional Neural Networks―A Case Study of the Lala Copper Deposit, China. IEEE Access, 6: 52286–52297. https://doi.org/10.1109/access.2018.2870203
    Lin, S., Jin, P. Q., Zhao, X. J., 2014. Exploiting Temporal Information in Web Search. Expert Systems with Applications: An International Journal, 41: 331–341. https://doi.org/10.1016/j.eswa.2013.07.048
    Liu, K. J., El-Gohary, N., 2017. Ontology-Based Semi-Supervised Conditional Random Fields for Automated Information Extraction from Bridge Inspection Reports. Automation in Construction, 81: 313–327. https://doi.org/10.1016/j.autcon.2017.02.003
    Ma, K., Tan, Y. J., Tian, M., et al., 2022a. Extraction of Temporal Information from Social Media Messages Using the BERT Model. Earth Science Informatics, 15(1): 573–584. https://doi.org/10.1007/s12145-021-00756-6
    Ma, K., Tan, Y. J., Xie, Z., et al., 2022b. Chinese Toponym Recognition with Variant Neural Structures from Social Media Messages Based on BERT Methods. Journal of Geographical Systems, 24(2): 143–169. https://doi.org/10.1007/s10109-022-00375-9
    Ma, K., Tian, M., Tan, Y. J., et al., 2022c. What is this Article About? Generative Summarization with the BERT Model in the Geosciences Domain. Earth Science Informatics, 15(1): 21–36. https://doi.org/10.1007/s12145-021-00695-2
    Nguyen, D. T., Joty, S., Imran, M., et al., 2016. Applications of Online Deep Learning for Crisis Response Using Social Media Information. arXiv: 1610.01030. https://arxiv.org/abs/1610.01030
    Olteanu, A., Castillo, C., Diaz, F., et al., 2014. CrisisLex: A Lexicon for Collecting and Filtering Microblogged Communications in Crises. Proceedings of the International AAAI Conference on Web and Social Media, 8(1): 376–385. https://doi.org/10.1609/icwsm.v8i1.14538
    Qiu, Q. J., Xie, Z., Ma, K., et al., 2022a. Spatially Oriented Convolutional Neural Network for Spatial Relation Extraction from Natural Language Texts. Transactions in GIS, 26(2): 839–866. https://doi.org/10.1111/tgis.12887
    Qiu, Q. J., Xie, Z., Wang, S., et al., 2022b. ChineseTR: A Weakly Supervised Toponym Recognition Architecture Based on Automatic Training Data Generator and Deep Neural Network. Transactions in GIS, 26(3): 1256–1279. https://doi.org/10.1111/tgis.12902
    Qiu, Q. J., Xie, Z., Wu, L., et al., 2018. DGeoSegmenter: A Dictionary-Based Chinese Word Segmenter for the Geoscience Domain. Computers & Geosciences, 121: 1–11. https://doi.org/10.1016/j.cageo.2018.08.006
    Qiu, Q. J., Xie, Z., Wu, L., et al., 2019a. BiLSTM-CRF for Geological Named Entity Recognition from the Geoscience Literature. Earth Science Informatics, 12(4): 565–579. https://doi.org/10.1007/s12145-019-00390-3
    Qiu, Q. J., Xie, Z., Wu, L. A., et al., 2019b. GNER: A Generative Model for Geological Named Entity Recognition without Labeled Data Using Deep Learning. Earth and Space Science, 6(6): 931–946. https://doi.org/10.1029/2019ea000610
    Qiu, Q. J., Xie, Z., Wu, L., et al., 2019c. Geoscience Keyphrase Extraction Algorithm Using Enhanced Word Embedding. Expert Systems With Applications, 125: 157–169. https://doi.org/10.1016/j.eswa.2019.02.001
    Qiu, Q. J., Xie, Z., Wu, L., et al., 2020a. Automatic Spatiotemporal and Semantic Information Extraction from Unstructured Geoscience Reports Using Text Mining Techniques. Earth Science Informatics, 13(4): 1393–1410. https://doi.org/10.1007/s12145-020-00527-9
    Qiu, Q. J., Xie, Z., Wu, L., et al., 2020b. Dictionary-Based Automated Information Extraction from Geological Documents Using a Deep Learning Algorithm. Earth and Space Science, 7(3): e2019ea000993. https://doi.org/10.1029/2019ea000993
    Strotgen, J., Gertz, M., Popv, P., 2010. Extraction and Exploration of Spatiotemporal Information in Documents. The 6th Workshop on Geographic Information Retrieval, February 18–19, Zurich. http://doi.acm.org/10.1145/1722080.1722101
    Strötgen, J., Gertz, M., 2010. HeidelTime: High Quality Rule-Based Extraction and Normalization of Temporal Expressions. The 5th International Workshop on Semantic Evaluation, July 15–16, 2010, Uppsala
    Volz, R., Kleb, J., Mueller, W., 2007. Towards Ontology-Based Disambiguation of Geographical Identifiers. The 16th International World Wide Web Conference (WWW2007), May 8–12, 2007, Banff
    Wang, W., Kreimeyer, K., Woo, E. J., et al., 2016. A New Algorithmic Approach for the Extraction of Temporal Associations from Clinical Narratives with an Application to Medical Product Safety Surveillance Reports. Journal of Biomedical Informatics, 62: 78–89. https://doi.org/10.1016/j.jbi.2016.06.006
    Wang, W., Stewart, K., 2015. Spatiotemporal and Semantic Information Extraction from Web News Reports about Natural Hazards. Computers, Environment and Urban Systems, 50: 30–40. https://doi.org/10.1016/j.compenvurbsys.2014.11.001
    Wu, L. A., Xue, L., Li, C. L., et al., 2017. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data. ISPRS International Journal of Geo-Information, 6(6): 166. https://doi.org/10.3390/ijgi6060166
    Yeung, C. M. A., Jatowt, A., 2011. Studying how the Past is Remembered: Towards Computational History through Large Scale Text Mining. Proceedings of the 20th ACM International Conference on Information and Knowledge Management. October 24–28, 2011, Glasgow. https://doi.org/10.1145/2063576.2063755
    Zhang, F., Fleyeh, H., Wang, X. R., et al., 2019. Construction Site Accident Analysis Using Text Mining and Natural Language Processing Techniques. Automation in Construction, 99: 238–248. https://doi.org/10.1016/j.autcon.2018.12.016
    Zhang, Q. Q., Jin, P. Q., Lin, S., et al., 2011. Extracting Focused Locations for Web Pages. Lecture Notes in Computer Science, 7142: 76–89
    Zhou, P., El-Gohary, N., 2017. Ontology-Based Automated Information Extraction from Building Energy Conservation Codes. Automation in Construction, 74: 103–117. https://doi.org/10.1016/j.autcon.2016.09.004
    Zhou, P., Xu, J. M., Qi, Z. Y., et al., 2018. Distant Supervision for Relation Extraction with Hierarchical Selective Attention. Neural Networks, 108: 240–247. https://doi.org/10.1016/j.neunet.2018.08.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views(84) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return