Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Yuantao Gu, Quan Wan, Xiaoxia Li, Tao Han, Shuguang Yang, Qinhong Hu. Structure and Evolution of Clay-Organic Nanocomposites in Three Leading Shales in China. Journal of Earth Science, 2023, 34(3): 824-837. doi: 10.1007/s12583-022-1717-y
Citation: Yuantao Gu, Quan Wan, Xiaoxia Li, Tao Han, Shuguang Yang, Qinhong Hu. Structure and Evolution of Clay-Organic Nanocomposites in Three Leading Shales in China. Journal of Earth Science, 2023, 34(3): 824-837. doi: 10.1007/s12583-022-1717-y

Structure and Evolution of Clay-Organic Nanocomposites in Three Leading Shales in China

doi: 10.1007/s12583-022-1717-y
More Information
  • Corresponding author: Qinhong Hu, huqinhong@upc.edu.cn
  • Received Date: 08 Dec 2021
  • Accepted Date: 23 Jul 2022
  • Available Online: 08 Jun 2023
  • Issue Publish Date: 30 Jun 2023
  • Organic matter (OM) in shales occurs as nanometer-sized intercalations with clay minerals that are termed as clay-organic nanocomposites; however, the OM occurrence in nanocomposites at different stages of maturation is still unclear, and the co-evolution process of OM and clay under burial is not well understood. To reveal the variation of OM occurrence and clarify the relationship between petroleum generation of OM & transformation of clay minerals in nanocomposites as a function of maturity, this study investigates the structure and clay-OM association in 44 samples from three leading shales at different maturity stages from two basins in China. A total of 15 samples of lacustrine shale from upper Triassic Yanchang Formation, 15 samples of marine shale from Lower Silurian Longmaxi Formation, and 14 samples of marine shale from Lower Cambrian Niutitang Formation were analyzed based on organic geochemistry, X-ray diffraction (XRD), and field emission-scan electron microscopy (FE-SEM), focused ion beam (FIB) sample preparation and consequent high resolution-transmission electron microscopy (HR-TEM) observations combined with energy dispersive spectroscopy (EDS). The results from this study show that most shale samples are organic-rich, and these three shales represent thermal evolutionary process from oil-window mature to overmature in a sequence of Triassic Yanchang, Silurian Longmaxi, and Cambrian Niutitang formations. Thorough observations indicate that sub-parallel bands of clays and intermingling of detrital minerals (such as quartz) dominate the nanocomposites in the Yanchang samples. While for Longmaxi and Niutitang shales, abundant nanopores and pyrite nanoparticles are observed in nanocomposites with features of layered distributions of OM and clay minerals. The structural investigation of nanocomposites shows that organic carbon between multi-layers dominates the OM occurrence in nanocomposites, which significantly extends the traditional opinion of OM-clay association. At an oil-window mature stage, the fluctuational interlayer spacing and a certain intensity of the carbon peak observed in the EDS spectra for corresponding clays provide a visual evidence of the organic molecules accessing the monolayer spaces of smectite. With the evolutional process of nanocomposites in shale and petroleum generation of OM & mineral transformation (illitization of smectite) running in parallel, it is inferred that the organic molecules migrate from monolayer spaces as gaseous hydrocarbons are generated, and eventually form stable clay-organic nanocomposites at an overmature stage. The results presented here will contribute to an improved understanding of diagenesis and organic-inorganic interactions in OM-rich shales.

     

  • Electronic Supplementary Materials: Supplementary materials (Figs. S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1717-y.
  • loading
  • Aplin, A. C., Bishop, A. N., Clayton, C. J., et al., 1992. A Lamina-Scale Geochemical and Sedimentological Study of Sediments from the Peru Margin (Site 680, ODP Leg 112). Geological Society, London, Special Publications, 64(1): 131–149. https://doi.org/10.1144/gsl.sp.1992.064.01.0
    Aplin, A. C., MacQuaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031–2059. https://doi.org/10.1306/03281110162
    Berthonneau, J., Grauby, O., Abuhaikal, M., et al., 2016. Evolution of Organo-Clay Composites with Respect to Thermal Maturity in Type Ⅱ Organic-Rich Source Rocks. Geochimica et Cosmochimica Acta, 195: 68–83. https://doi.org/10.1016/j.gca.2016.09.008
    Bu, H. L., Yuan, P., Liu, H., et al., 2017. Effects of Complexation between Organic Matter (OM) and Clay Mineral on OM Pyrolysis. Geochimica et Cosmochimica Acta, 212: 1–15. https://doi.org/10.1016/j.gca. 2017.04.045 doi: 10.1016/j.gca.2017.04.045
    Cai, J. G., Bao, Y. J., Yang, S. Y., et al., 2007. Research on Preservation and Enrichment Mechanisms of Organic Matter in Muddy Sediment and Mudstone. Science in China Series D: Earth Sciences, 50(5): 765–775. https://doi.org/10.1007/s11430-007-0005-0
    Cai, J. G., Song, M. S., Lu, L. F., et al., 2013. Organo-Clay Complexes in Source Rocks—A Natural Material for Hydrocarbon Generation. Marine Geology & Quaternary Geology, 33(3): 123–131 (in Chinese with English Abstract) http://adsabs.harvard.edu/abs/2013MGQG...33..123C
    Cai, J. G., Zhu, X. J., Zhang, J. Q., et al., 2020. Heterogeneities of Organic Matter and Its Occurrence Forms in Mudrocks: Evidence from Com-parisons of Palynofacies. Marine and Petroleum Geology, 111: 21–32. https://doi.org/10.1016/j.marpetgeo.2019.08.004
    Cao, H. Y., Zhu, C. Q., Qiu, N. S., 2015. Thermal Evolution of Lower Silurian Longmaxi Formation in the Eastern Sichuan Basin. Journal of Earth Sciences and Environment, 37(6): 22–32 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201506006.htm
    Chen, G. J., Yen, M. C., Wang, J. M., et al., 2008. Layered Inorganic/Enzyme Nanohybrids with Selectivity and Structural Stability upon Interacting with Biomolecules. Bioconjugate Chemistry, 19(1): 138–144. https://doi.org/10.1021/bc700224q
    Chen, S. B., Zuo, Z. X., Zhu, Y. M., et al., 2015. Applicability of the Testing Method for the Maturity of Organic Matter in Shale Gas Reservoirs. Natural Gas Geoscience, 26(3): 564–574 (in Chinese with English Abstract) http://www.researchgate.net/publication/281887724_Applicability_of_the_testing_method_for_the_maturity_of_organic_matter_in_shale_gas_reservoirs
    Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26–31. https://doi.org/10.1016/j.coal.2012.08.004
    Dai, J. X., Li, J., Luo, X., et al., 2005. Stable Carbon Isotope Compositions and Source Rock Geochemistry of the Giant Gas Accumulations in the Ordos Basin, China. Organic Geochemistry, 36(12): 1617–1635. https://doi.org/10.1016/j.orggeochem.2005.08.017
    Day-Stirrat, R. J., Loucks, R. G., Milliken, K. L., et al., 2008. Phyllosilicate Orientation Demonstrates Early Timing of Compactional Stabilization in Calcite-Cemented Concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (USA). Sedimentary Geology, 208(1/2): 27–35. https://doi.org/10.1016/j.sedgeo.2008.04.007
    Dong, D. Z., Wang, Y. M., Li, X. J., et al. 2016. Breakthrough and Prospect of Shale Gas Exploration and Development in China. Natural Gas Industry, 36(1): 19–32 (in Chinese with English Abstract) http://www.sciengine.com/doi/pdf/E6842376468C443285A3A8F110AB8149
    Du, J. Z., Cai, J. G., Lei, T. Z., et al., 2021. Diversified Roles of Mineral Transformation in Controlling Hydrocarbon Generation Process, Mechanism, and Pattern. Geoscience Frontiers, 12(2): 725–736. https://doi.org/10.1016/j.gsf.2020.08.009
    Duan, Y., Wang, C. Y., Zheng, C. Y., et al., 2008. Geochemical Study of Crude Oils from the Xifeng Oilfield of the Ordos Basin, China. Journal of Asian Earth Sciences, 31(4/5/6): 341–356. https://doi.org/10.1016/j.jseaes.2007.05.003
    Fu, H. J., Yan, D. T., Yao, C. P., et al., 2022. Pore Structure and Multi-Scale Fractal Characteristics of Adsorbed Pores in Marine Shale: A Case Study of the Lower Silurian Longmaxi Shale in the Sichuan Basin, China. Journal of Earth Science, 33(5): 1278–1290. https://doi.org/10.1007/s12583-021-1602-0
    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2003. Determination of Total Organic Carbon in Sedimentary Rock: GB/T 19145-2003. Standard Press of China, Beijing (in Chinese) http://www.nssi.org.cn/nssi/front/6227683.html
    Gu, Y. T., Li, X. X., Wan, Q., et al., 2021a. On the Different Characteristics of Organic Pores in Shale and Their Influencing Factors: Taking Typical Marine, Continental and Transitional Facies Reservoirs in China as Examples. Acta Sedimentologica Sinica, 39(4): 794–810 (in Chinese with English Abstract)
    Gu, Y. T., Li, X. X., Wan, Q., et al., 2021b. The Differential Evolution of Nanopores in Discrete OM and Organic-Clay Composites for Shale: Insights from Stress Manipulation. Arabian Journal of Geosciences, 14(7): 554. https://doi.org/10.1007/s12517-021-06918-6
    Guo, H. J., Jia, W., Peng, P. A., et al., 2014. The Composition and Its Impact on the Methane Sorption of Lacustrine Shales from the Upper Triassic Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology, 57: 509–520. https://doi.org/10.1016/j.marpetgeo.2014.05.010
    Hower, J., Eslinger, E. V., Hower, M. E., et al., 1976. Mechanism of Burial Metamorphism of Argillaceous Sediment: 1. Mineralogical and Chemi-cal Evidence. Geological Society of America Bulletin, 87(5): 725–737. https://doi.org/10.1130/0016-7606(1976)87725:mobmoa>2.0.co;2 doi: 10.1130/0016-7606(1976)87725:mobmoa>2.0.co;2
    Jia, W., Segal, E., Kornemandel, D., et al., 2002. Polyaniline-DBSA/Organophilic Clay Nanocomposites: Synthesis and Characterization. Synthetic Metals, 128(1): 115–120. https://doi.org/10.1016/s0379-6779(01)00672-5
    Jiang, Z., 2018. Pore Structure and Gas Bearing Property of Typical Marine and Continental Shale Reservoirs in China. Scientific Press, Beijing (in Chinese with English Abstract)
    Jiang, Q., Zhu, C., Qiu, N., et al., 2015. Paleo-Heat Flow and Thermal Evolution of the Lower Cambrian Qiongzhusi Shale in the Southern Sichuan Basin, SW China. Natural Gas Geoscience, 26(8): 1563–1570 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/Periodical/trqdqkx201508016
    Kelemen, S. R., Fang, H. L., 2001. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy & Fuels, 15(3): 653–658. https://doi.org/10.1021/ef0002039
    Kennedy, M. J., Droser, M., Mayer, L. M., et al., 2006. Late Precambrian Oxygenation: Inception of the Clay Mineral Factory. Science, 311(5766): 1446–1449. https://doi.org/10.1126/science.1118929
    Kennedy, M. J., Löhr, S. C., Fraser, S. A., et al., 2014. Direct Evidence for Organic Carbon Preservation as Clay-Organic Nanocomposites in a Devonian Black Shale: From Deposition to Diagenesis. Earth and Planetary Science Letters, 388: 59–70. https://doi.org/10.1016/j.epsl.2013.11.044
    Kennedy, M. J., Pevear, D. R., Hill, R. J., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295: 657–660. https://doi.org/10.1126/science.1066611
    Kennedy, M. J., Wagner, T., 2011. Clay Mineral Continental Amplifier for Marine Carbon Sequestration in a Greenhouse Ocean. Proceedings of the National Academy of Sciences of the United States of America, 108(24): 9776–9781. https://doi.org/10.1073/pnas.1018670108
    Lagaly, G., 1989. Principles of Flow of Kaolin and Bentonite Dispersions. Applied Clay Science, 4(2): 105–123. https://doi.org/10.1016/0169-1317(89)90003-3
    Lanson, B., Sakharov, B. A., Claret, F., et al., 2009. Diagenetic Smectite-to-Illite Transition in Clay-Rich Sediments: a Reappraisal of X-Ray Diffraction Results Using the Multi-Specimen Method. American Journal of Science, 309(6): 476–516. https://doi.org/10.2475/06.2009.03
    Li, S. Y., He, H. P., Tao, Q., et al., 2020. Kaolinization of 2 : 1 Type Clay Minerals with Different Swelling Properties. American Mineralogist, 105(5): 687–696. https://doi.org/10.2138/am-2020-7339
    Liu, A. Q., Tang, D. J., Shi, X. Y., et al., 2019. Growth Mechanisms and Environmental Implications of Carbonate Concretions from the ~1.4 Ga Xiamaling Formation, North China. Journal of Palaeogeography, 8(1): 1–16. https://doi.org/10.1186/s42501-019-0036-4
    Liu, D., Xiao, X., Tian, H., et al., 2012. Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics: Methodology and Geological Applications. Chinse Science Bulletin, 58(11): 1285–1298 (in Chinese) http://210.77.95.253:8080/bitstream/344008/19258/2/13087.pdf
    Liu, S. G., Deng, B., Zhong, Y., et al., 2016. Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery. Earth Science Frontiers, 23(1): 11–28 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/Periodical/dxqy201601002
    Liu, Z. X., Xu, L. L., Wen, Y. R., et al., 2022. Accumulation Characteristics and Comprehensive Evaluation of Shale Gas in Cambrian Niutitang Formation, Hubei. Earth Science, 47(5): 1586–1603. https://doi.org/10.3799/dqkx.2021.214 (in Chinese with English Abstract)
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861 doi: 10.2110/jsr.2009.092
    Lu, L. F., Cai, J. G., Liu, W. H., et al., 2013. Occurrence and Thermostability of Absorbed Organic Matter on Clay Minerals in Mudstones and Muddy Sediments. Oil & Gas Geology, 34(1): 16–26 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=SYYT201301005&dbcode=CJFD&year=2013&dflag=pdfdown
    Metwally, Y. M., Chesnokov, E. M., 2012. Clay Mineral Transformation as a Major Source for Authigenic Quartz in Thermo-Mature Gas Shale. Applied Clay Science, 55: 138–150. https://doi.org/10.1016/j.clay. 2011.11.007 doi: 10.1016/j.clay.2011.11.007
    Meunier, A., Velde, B., 1989. Solid Solutions in I/S Mixed-Layer Minerals and Illite. American Mineralogist, 74(9/10): 1106–1112 http://ammin.geoscienceworld.org/content/74/9-10/1106
    Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177–200 doi: 10.1306/07231212048
    National Energy Administration, 2010. Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-ray Diffraction: SY/T 5163-2010. Petroleum Industry Press, Beijing (in Chinese)
    O'Brien, N. R., 1971. Fabric of Kaolinite and Illite Floccules. Clays and Clay Minerals, 19(6): 353–359. https://doi.org/10.1346/ccmn.1971.0190603
    Rahman, H. M., Kennedy, M., Löhr, S., et al., 2018. The Influence of Shale Depositional Fabric on the Kinetics of Hydrocarbon Generation through Control of Mineral Surface Contact Area on Clay Catalysis. Geochimica et Cosmochimica Acta, 220: 429–448. https://doi.org/10.1016/j.gca.2017.10.012
    Schoenherr, J., Littke, R., Urai, J. L., et al., 2007. Polyphase Thermal Evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as Deduced by Maturity of Solid Reservoir Bitumen. Organic Geo-chemistry, 38(8): 1293–1318. https://doi.org/10.1016/j.orggeochem. 2007.03.010 doi: 10.1016/j.orggeochem.2007.03.010
    Song, D. J., Tuo, J. C., Wang, Y. T., et al., 2019. Research Advances on Characteristics of Nanopore Structure of Organic-Rich Shales. Acta Sedimentologica Sinica, 37(6): 1309–1324 (in Chinese with English Abstract) http://www.researchgate.net/publication/338486980_Research_Advances_on_Characteristics_of_Nanopore_Structure_of_Organic-rich_Shales
    Sposito, G., Skipper, N. T., Sutton, R., et al., 1999. Surface Geochemistry of the Clay Minerals. Proceedings of the National Academy of Sciences of the United States of America, 96(7): 3358–3364. https://doi.org/10.1073/pnas.96.7.3358
    Środoń, J., 2006. Chapter 12.2 Identification and Quantitative Analysis of Clay Minerals. Developments in Clay Science. In: Bergaya, F., Theng, B. K. G., Lagaly, G., eds., Developments in Clay Science. Elsevier, Amsterdam. 765–787. https://doi.org/10.1016/s1572-4352(05)01028-7
    Theng, B. K. G., Churchman, G. J., Newman, R. H., 1986. The Occurrence of Interlayer Clay-Organic Complexes in Two New Zealand Soils. Soil Science, 142(5): 262–266. https://doi.org/10.1097/00010694-198611000-00003
    Tosca, N. J., Johnston, D. T., Mushegian, A., et al., 2010. Clay Mineralogy, Organic Carbon Burial, and Redox Evolution in Proterozoic Oceans. Geochimica et Cosmochimica Acta, 74(5): 1579–1592. https://doi.org/10.1016/j.gca.2009.12.001
    Tuschel, D., 2013. Raman Spectroscopy of Oil Shale. Spectroscopy, 28(3): 20–28
    Wang, P. F., Jiang, Z., Chen, L., et al., 2016. Pore Structure Characterization for the Longmaxi and Niutitang Shales in the Upper Yangtze Platform, South China: Evidence from Focused Ion Beam-He Ion Microscopy, Nano-Computerized Tomography and Gas Adsorption Analysis. Marine and Petroleum Geology, 77: 1323–1337. https://doi.org/10.1016/j.marpetgeo.2016.09.001
    Wang, X. Z., Gao, S. L., Gao, C., 2014. Geological Features of Mesozoic Lacustrine Shale Gas in South of Ordos Basin, NW China. Petroleum Exploration and Development, 41(3): 326–337. https://doi.org/10.1016/s1876-3804(14)60037-9
    Wang, Y. F., Zhai, G. Y., Liu, G. H., et al., 2021. Geological Characteristics of Shale Gas in Different Strata of Marine Facies in South China. Journal of Earth Science, 32(4): 725–741. https://doi.org/10.1007/s12583-020-1104-5
    Wang, Z. M., Jiang, Y. Q., Fu, Y. H., et al., 2022. Characterization of Pore Structure and Heterogeneity of Shale Reservoir from Wufeng Formation-Sublayers Long-11 in Western Chongqing Based on Nuclear Magnetic Resonance. Earth Science, 47(2): 490–504. https://doi.org/10.3799/dqkx.2021.076 (in Chinese with English Abstract)
    Xu, M., 2013. Studies on the Complexation and Stability of Clay Minerals and Organic Matter: [Dissertation]. Nanjing University, Nanjing (in Chinese with English Abstract)
    Yang, H., Niu, X. B., Xu, L. M., et al., 2016. Exploration Potential of Shale Oil in Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 43(4): 560–569. https://doi.org/10.1016/s1876-3804(16)30066-0
    Yang, Y., Lei, T. Z., Xing, L. T., et al., 2015. Oil Generation Abilities of Chemically Bound Organic Matter in Different Types of Organic Clay Complexes. Petroleum Geology & Experiment, 37(4): 487–493 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201504013.htm
    Yariv, S., Cross, H., 2002. Clay-Organic Complexes and Interaction. Marcel Dekker, New York
    Yuan, P., 2018. Unique Structure and Surface-Interface Reactivity of Nanostructured Minerals. Earth Science, 43(5): 1384–1407 (in Chinese with English Abstract)
    Zhao, J. H., Jin, Z. J., Jin, Z. K., et al., 2016. Lithofacies Types and Sedimentary Environment of Shale in Wufeng-Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 37(5): 572–586 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201605002.htm
    Zhu, H. J., Ju, Y. W., Huang, C., et al., 2020. Microcosmic Gas Adsorption Mechanism on Clay-Organic Nanocomposites in a Marine Shale. Energy, 197: 117256. https://doi.org/10.1016/j.energy.2020.117256
    Zhu, X. J., Cai, J. G., Liu, W. X., et al., 2016. Occurrence of Stable and Mobile Organic Matter in the Clay-Sized Fraction of Shale: Significance for Petroleum Geology and Carbon Cycle. International Journal of Coal Geology, 160/161: 1–10. https://doi.org/10.1016/j.coal.2016.03.011
    Zhu, X. J., Cai, J. G., Wang, G. L., et al., 2018. Role of Organo-Clay Composites in Hydrocarbon Generation of Shale. International Journal of Coal Geology, 192: 83–90. https://doi.org/10.1016/j.coal.2018.04.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(88) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return