Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 5
Oct 2023
Turn off MathJax
Article Contents
Jian Zhang, Teng Deng, Deru Xu, Junfeng Dai, Zenghua Li, Bin Li, Yueqiang Zhou. Role of Hematite-Rich Host Rocks in the Gold Mineralization of the Woxi Au (-Sb-W) Ore Deposit in Western Jiangnan Orogen of South China. Journal of Earth Science, 2023, 34(5): 1527-1542. doi: 10.1007/s12583-022-1718-x
Citation: Jian Zhang, Teng Deng, Deru Xu, Junfeng Dai, Zenghua Li, Bin Li, Yueqiang Zhou. Role of Hematite-Rich Host Rocks in the Gold Mineralization of the Woxi Au (-Sb-W) Ore Deposit in Western Jiangnan Orogen of South China. Journal of Earth Science, 2023, 34(5): 1527-1542. doi: 10.1007/s12583-022-1718-x

Role of Hematite-Rich Host Rocks in the Gold Mineralization of the Woxi Au (-Sb-W) Ore Deposit in Western Jiangnan Orogen of South China

doi: 10.1007/s12583-022-1718-x
More Information
  • Corresponding author: Teng Deng, dengteng2015@126.com; Deru Xu, xuderu@ecit.cn
  • Received Date: 02 May 2022
  • Accepted Date: 23 Jul 2022
  • Available Online: 14 Oct 2023
  • Issue Publish Date: 30 Oct 2023
  • The formation of many hydrothermal gold deposits is closely related to iron-rich rocks. The host rocks of the Madiyi Formation of the Mid- to Late Neoproterozoic Banxi Group for the Woxi Au (-Sb-W) deposit, which is located in western Hunan Province of the western Jiangnan Orogen, South China, is rich in hematite, which provides a good example for studying the relationship between the formation of gold deposit and iron-rich rocks. Field investigation and petrographic observation on the unaltered, weakly altered and strongly altered rocks demonstrate that the bleaching is caused by a combination of carbonatization, sulfidation and sericitization. Mass balance calculation suggests that, during decolourization there is no change in TFe2O3, while FeO is gained and Fe2O3 is lost. Geochemical modeling found that Au was mainly present as AuHS(aq) and Au(HS)2-, and that the water-rock interactions decreased the sulfur fugacity which destroyed the stability of such aqueous complexes. Combined with the locally occurred native gold in quartz veins, it is concluded that the major gold precipitation mechanisms are sulfidation and fluid boiling. Based on previous geochronological and geochemical research further gold mineralization is proposed to be generated by deep sourced magmatic or metamorphic fluid migrated upward along the Woxi fault, and the iron-rich Madiyi Formation is the idea chemical trap for gold deposition. The decrease of sulfur contents caused by fluid-rock interactions and fluid boiling are the major mechanisms for gold mineralization.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bai, D., Li, B., Zhou, C., et al., 2021. Gold Mineralization Events of the Jiangnan Orogen in Hunan and Their Tectonic Settings. Acta Petrologica et Mineralogica, 40(5): 897–922 (in Chinese with English Abstract)
    Bortnikov, N. S., Volkov, A. V., Savva, N. E., et al., 2022. Epithermal Au-Ag-Se-Te Deposits of the Chukchi Peninsula (Arctic Zone of Russia): Metallogeny, Mineral Assemblages, and Fluid Regime. Russian Geology and Geophysics, 63(4): 435–457. https://doi.org/10.2113/rgg20214425
    Charvet, J., 2013. The Neoproterozoic–Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198–209. https://doi.org/10.1016/j.jseaes.2013.02.015
    Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309–330. https://doi.org/10.1016/j.jseaes.2010.03.006
    Chen, A., 2012. Study on Mineralization Regularity and Formation Mechanism of Scheelite and Wolframite in the Woxi Au-Sb-W Deposit in Hunan Province: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Cline, J. S., Hofstera, A. H., Muntean, J. L., et al., 2005. Carlin-Type Gold Deposits in Nevada: Critical Geological Characteristics and Viable Models. Economic Geology 100th Anniversary Volume, 451–484
    Cline, J. S., Muntean, J. L., Gu, X. X., et al., 2013. A Comparison of Carlin-type Gold Deposits: Guizhou Province, Golden Triangle, Southwest China, and Northern Nevada, USA. Earth Science Frontiers, 20(1): 1–18 (in Chinese with English Abstract)
    Cooke, D. R., Hollings, P., Wilkinson, J. J., et al., 2014. Geochemistry of Porphyry Deposits. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-095975-7.01116-5
    Deng, J., Wang, Q., 2016. Gold Mineralization in China: Metallogenic Provinces, Deposit Types and Tectonic Framework. Gondwana Research, 36: 219–274. https://doi.org/10.1016/j.gr.2015.10.003
    Deng, T., Xu, D. R., Chi, G. X., et al., 2019. Revisiting the ca. 845–820-Ma S-Type Granitic Magmatism in the Jiangnan Orogen: New Insights on the Neoproterozoic Tectono-Magmatic Evolution of South China. International Geology Review, 61(4): 383–403. https://doi.org/10.1080/00206814.2018.1426054
    Deng, T., Xu, D., Chi, G., 2017. Geology, Geochronology, Geochemistry and Ore Genesis of the Wangu Gold Deposit in Northeastern Hunan Province, Jiangnan Orogen, South China. Ore Geology Reviews, 88: 619–637. https://doi.org/10.1016/j.oregeorev.2017.01.012
    Ding, D., Guo, T., Liu, Y., et al., 2007. Structural Attribute of the Jiangnan-Xuefengshan Belt, China: A Discussion, Geol. Bull. China, 26(7): 801–809 (in Chinese with English Abstract)
    Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.1016/j.gr.2015.06.009
    Duan, L. A., Gu, H. L., Deng, J. H., et al, 2018. Geological Study and Significance of Typical Gold Deposits in Eastern Qinzhou-Hangzhou Metallogenic Belt: Constraint from Tianjingshan Gold Deposit in South Anhui Province. J. Geochem. Explor. , 190: 87–108. https://doi.org/10.1016/j.gexplo.2018.02.018
    Emsbo, P., Hofstra, A. H., Lauha, E. A., et al., 2003. Origin of High-Grade Gold Ore, Source of Ore Fluid Components, and Genesis of the Meikle and Neighboring Carlin-Type Deposits, Northern Carlin Trend, Nevada. Economic Geology, 98(6): 1069–1105. https://doi.org/10.2113/gsecongeo.98.6.1069
    Fan, H. R., Groves, D. I., Mikucki E. J., et al., 2000. Contrasting Fluid Types at the Nevoria Gold Deposit in the Southern Cross Greenstone Belt, Western Australia: Implications of Auriferous Fluids Depositing Ores within an Archean Banded iron-Formation. Economic Geology, 95(7): 1527–1536. https://doi.org/10.2113/95.7.1527
    Fu, S., Lan, Q., Yan, J., 2020. Trace Element Chemistry of Hydrothermal Quartz and Its Genetic Significance: A Case Study from the Xikuangshan and Woxi Giant Sb Deposits in Southern China. Ore Geology Reviews, 126: 103732. https://doi.org/10.1016/j.oregeorev.2020.103732
    Gao, L. Z., Liu, Y. X., Ding, X. Z., et al., 2012. SHRIMP Dating of Cangshuipu Group in the Middle Part of the Jiangnan Orogen and Its Implications for Tectonic Evolutions. Geology in China, 39(1): 12–20 (in Chinese with English Abstract)
    Gao, P., Zheng, Y., Zhao, Z., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266–294. https://doi.org/10.1016/j.earscirev.2017.07.016
    GHCPAPF (Gold Headquarters of Chinese People's Armed Police Force), 1996. Geology of Woxi-Type Stratabound Gold Deposit in Hunan Province. Seismological Press, Beijing
    Goldfarb, R. J., Baker, T., Dubé, B., et al., 2005. Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terran. One Hundredth Anniversary Volume. Society of Economic Geologists. https://doi.org/10.5382/av100.14
    Grant, J. A., 1986. The Isocon Diagram: A Simple Solution to Gresens'Equation for Metasomatic Alteration. Economic Geology, 81(8): 1976–1982. https://doi.org/10.2113/gsecongeo.81.8.1976
    Grant, J. A., 2005. Isocon Analysis: A Brief Review of the Method and Applications. Phys. Chem. Earth, 30(17–18): 997–1004. https://doi.org/10.1016/j.pce.2004.11.003
    Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1/2): 79–100. https://doi.org/10.1016/j.precamres.2006.08.002
    Gresens, R. L., 1967. Composition-Volume Relationships of Metasomatism. Chemical Geology, 2: 47–65
    Groves, D. I., Santosh, M., Deng, J., et al., 2020. A Holistic Model for the Origin of Orogenic Gold Deposits and Its Implications for Exploration. Mineralium Deposita, 55(2): 275–292. https://doi.org/10.1007/s00126-019-00877-5
    Gu, X. X., Zhang, Y., Schulz, O., et al., 2012. The Woxi W-Sb-Au Deposit in Hunan, South China: An Example of Late Proterozoic Sedimentary Exhalative (SEDEX) Mineralization. Journal of Asian Earth Sciences, 57: 54–75. https://doi.org/10.1016/j.jseaes.2012.06.006
    Gu, X. X., Liu, J. M., Schulz, O., et al., 2002. Jung-Proterozoische Submarine Primäranreicherung und Metamorphogene Weiterentwicklung der Stratiformen W-Sb-Au-Er Zlagerstätten vom "Typ Woxi" in Hunan (Süd-China). Archiv für Lagerstättenforschung der Geologischen Bundesanstalt, 23: 1–204
    Gu, X. X., Liu, J. M., Schulz, O., et al., 2005. REE Geochemical Evidence for the Genesis of the Woxi Au-Sb-W Deposit, Hunan Province. Geochimica, 34(5): 428–442 (in Chinese with English Abstract)
    Gu, X. X., Schulz, O., Vavtar, F., et al., 2003. Ore Fabric Characteristics and Genetic Significance of Woxi W-Sb-Au Deposit Deposit, Hunan Province. Mineral Deposits, 12(2): 107–120 (in Chinese with English Abstract)
    Gu, X. X., Schulz, O., Vavtar, F., et al., 2007. Rare Earth Element Geochemistry of the Woxi W-Sb-Au Deposit, Hunan Province, South China. Ore Geology Reviews, 31(1/2/3/4): 319–336. https://doi.org/10.1016/j.oregeorev.2005.01.003
    Hofstra, A. H., Leventhal, J. S., Northrop, H. R., et al., 1991. Genesis of Sediment-Hosted Disseminated-Gold Deposits by Fluid Mixing and Sulfidization: Chemical-Reaction-Path Modeling of Ore-Depositional Processes Documented in the Jerritt Canyon District, Nevada. Geology, 19(1): 36–40. https://doi.org/10.1130/0091-7613(1991)0190036:goshdg>2.3.co;2. doi: 10.1130/0091-7613(1991)0190036:goshdg>2.3.co;2
    Hofstra, A. H., Cline, J. S., 2000. Characteristics and Models for Carlin-Type Gold Deposits. Gold in 2000. Society of Economic Geologists, 163–220. https://doi.org/10.5382/rev.13.05
    Jia, S., Wang, E., Fu, J., et al., 2019. Geology, Fluid Inclusions and Isotope Geochemistry of the Herenping Gold Deposit in the Southern Margin of the Yangtze Craton, China: A Sediment-Hosted Reduced Intrusion-Related Gold Deposit? Ore Geology Reviews, 107: 926–943. https://doi.org/10.1016/j.oregeorev.2019.03.031
    Jin, H. S., Fu, L. W., 1986. The Evolution of Volcanic Rocks in Hunan Province and Their Implications in Plate Tectonics. Geological Review, 32(3): 225–235 (in Chinese with English Abstract)
    Jin, X. Y., Yang, C. F., Liu, J. Z., et al., 2021. Source and Evolution of the Ore-Forming Fluids of Carlin-Type Gold Deposit in the Youjiang Basin, South China: Evidences from Solute Data of Fluid Inclusion Extracts. Journal of Earth Science, 32(1): 185–194. https://doi.org/10.1007/s12583-020-1055-x
    Kesler, S. E., Fortuna, J., Ye, Z. J., et al., 2003. Evaluation of the Role of Sulfidation in Deposition of Gold, Screamer Section of the Betze-Post Carlin-Type Deposit, Nevada. Econ. Geol. , 98: 1137–1157
    Li, H., Wu, Q. H., Evans, N. J., et al., 2018. Geochemistry and Geochronology of the Banxi Sb Deposit: Implications for Fluid Origin and the Evolution of Sb Mineralization in Central-Western Hunan, South China. Gondwana Research, 55: 112–134. https://doi.org/10.1016/j.gr.2017.11.010
    Li, J. H., Zhang, Y. Q., Dong, S. W., et al, 2012. Late Mesozoic-Early Cenozoic Deformation History of the Yuanma Basin, Central South China. Tectonophysics, 570/571: 163–183. https://doi.org/10.1016/j.tecto.2012.08.012
    Li, J. H., Zhang, Y. Q., Dong, S. W., et al., 2013. The Hengshan Low-Angle Normal Fault Zone: Structural and Geochronological Constraints on the Late Mesozoic Crustal Extension in South China. Tectonophysics, 606: 97–115. https://doi.org/10.1016/j.tecto.2013.05.013
    Li, W., Cook, N. J., Xie, G., et al., 2021. Complementary Textural, Trace Element, and Isotopic Analyses of Sulfides Constrain Ore-Forming Processes for the Slate-Hosted Yuhengtang Au Deposit, South China. Economic Geology, 116(8): 1825–1848. https://doi.org/10.5382/econgeo.4847
    Li, W., Xie, G. Q., Mao, J. W., et al., 2023. Precise Age Constrains for the Woxi Au-Sb-W Deposit, South China. Economic Geology, 118(2): 509–518. https://doi.org/10.5382/econgeo.4971
    Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2): 117–128. https://doi.org/10.1016/j.precamres.2009.07.004
    Li, Z. X., Li, X. H., 2007. Formation of the 1 300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1
    Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, South-Eastern South China: New Age Constraints and Pressure-Temperature Conditions. Geol. Soc. Am. Bull. , 122: 772–793
    Liang, Y., Wang, G. G., Liu, S. Y., et al., 2015. A Study on the Mineralization of the Woxi Au-Sb-W Deposit, Western Hunan, China. Resource Geology, 65(1): 27–38 (in Chinese with English Abstract)
    Liang, Y., Zhong, J. S., Pei, Q. M., 2021. An Application for Thermodynamic Calculation of AuxAg1-x-Fluid Equilibria: Super-Pure Native Gold in Woxi Au-Sb-W Deposit, Western Hunan, China. Geochemistry International, 59(3): 314–327 (in Chinese with English Abstract)
    Liu, H., Beaudoin, G., Makvandi, S., et al., 2021. Multivariate Statistical Analysis of Trace Element Compositions of Native Gold from Orogenic Gold Deposits: Implication for Mineral Exploration. Ore Geology Reviews, 131: 104061. https://doi.org/10.1016/j.oregeorev.2021.104061
    Liu, Y. K., 2014. Geochemical Characteristics and Genesis of the Sixteen Penggong Au-Sb-W Deposit in Woxi Hunan: [Dissertation]. Central South University, Changsha (in Chinese)
    Liu, Y., 2020. The Basin and Tectonic Evolution of the Neoproterozoic Banxi Period (Banxi Group) in Western Hunan: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Liu, S., Wang, Q., Groves, D. I., et al., 2021. Adoption of a Mineral System Model in Successful Deep Exploration at Erdaogou, China's Deepest Gold Mine, on the Northeastern Margin of the North China Craton. Ore Geology Reviews, 131: 104060. https://doi.org/10.1016/j.oregeorev.2021.104060
    Liu, X., Fan, H. R., Hu, F. F., et al., 2016. Nature and Evolution of the Ore-Forming Fluids in the Giant Dexing Porphyry Cu-Mo-Au Deposit, Southeastern China. Journal of Geochemical Exploration, 171: 83–95. https://doi.org/10.1016/j.gexplo.2015.10.011
    Luo, G. Y., 1994. Geologic Featurbs of Granite-Porphyry Dykes in Liaojiaping District and the Relationship with W, Sb, Au Mineralization. Hunan Geology, 13(1): 7–10 (in Chinese with English Abstract)
    Luo, X. L., Zhong, D. Q., Li, G. S., 1996. Geology of Woxi-Type Stratabound Gold Deposits in Hunan Province. Seismic Press, Beijing
    Luo, X. L., Yi, S. J., Liang, J. C., 1984. On the Genesis of Woxi Gold-Antimony-Tungsten Deposit in Western Hunan. Geology and Exploration, 20(7): 1–10 (in Chinese with English Abstract)
    Luo, X. Q., 1996. Mineralization and Prospecting Guide of Chanziping Gold Deposit in Hunan. Hunan Geology, 15: 33–38 (in Chinese with English Abstract)
    Ma, W., Deng, T., Xu, D., et al., 2021. Geological and Geochemical Characteristics of Hydrothermal Alteration in the Wangu Deposit in the Central Jiangnan Orogenic Belt and Implications for Gold Mineralization. Ore Geology Reviews, 139: 104479. https://doi.org/10.1016/j.oregeorev.2021.104479
    Ma, D. S., Liu, Y. J., 1992. Geochemical Characteristics and Genesis of Stratabound Gold Deposits in Jiangnan Gold Metallogenic Belt. Science in China (Series B), 35: 240–256 (in Chinese with English Abstract)
    Ma, X. H., Zeng, Q. W., Tao, S. Y., et al., 2021. Mineralogical Characteristics and in-situ Sulfur Isotopic Analysis of Gold-Bearing Sulfides from the Qilishan Gold Deposit in the Jiaodong Peninsula, China. Journal of Earth Science, 32(1): 116–126. https://doi.org/10.1007/s12583-020-1370-2
    Mao, J., Li, H., Xu, J., et al., 1997. Geology and Genesis of the Wangu Gold Deposit in Hunan Province, China. Atomic Energy Press, Beijing
    Mao, J., Pirajno, F., Cook, N., 2011. Mesozoic Metallogeny in East China and Corresponding Geodynamic Settings—An Introduction to the Special Issue. Ore Geology Reviews, 43(1): 1–7. https://doi.org/10.1016/j.oregeorev.2011.09.003
    Mao, J. W., Zhang, Z. H., Yang, J. M., et al., 2000. The Hanshan Gold Deposit in the Caledonian North Qilian Orogenic Belt, NW China. Mineralium Deposita, 35(1): 63–71. https://doi.org/10.1007/pl00002969
    Mikucki, E. J., 1998. Hydrothermal Transport and Depositional Processes in Archean Lode-Gold Systems: A Review. Ore Geology Reviews, 13(1/2/3/4/5): 307–321. https://doi.org/10.1016/S0169-1368(97)00025-5
    Mikucki, E. J., Ridley, J. R., 1993. The Hydrothermal Fluid of Archæan Lode-Gold Deposits at Different Metamorphic Grades: Compositional Constraints from Ore and Wallrock Alteration Assemblages. Mineralium Deposita, 28(6): 469–481. https://doi.org/10.1007/bf02431603
    Neall, F. B., Phillips, G. N., 1987. Fluid-Wall Rock Interaction in an Archean Hydrothermal Gold Deposit; A Thermodynamic Model for the Hunt Mine, Kambalda. Economic Geology, 82(7): 1679–1694. https://doi.org/10.2113/gsecongeo.82.7.1679
    Ni, P., Wang, G. G., Chen, H., et al., 2015. An Early Paleozoic Orogenic Gold Belt along the Jiang-Shao Fault, South China: Evidence from Fluid Inclusions and Rb-Sr Dating of Quartz in the Huangshan and Pingshui Deposits. Journal of Asian Earth Sciences, 103: 87–102. https://doi.org/10.1016/j.jseaes.2014.11.031
    Pan, P., Wood, S. A., 1994. Solubility of Pt and Pd Sulfides and Au Metal in Aqueous Bisulfide Solutions. Mineralium Deposita, 29(5): 373–390. https://doi.org/10.1007/bf01886955
    Peng, J. T., Hu, R. Z., Zhao, H. J., et al., 2003. Sm-Nd and Ar-Ar Dating of Scheelite and Quartz in the Woxi Au-Sb-W Deposit. Chinese Science Bulletin, 2(18): 1976–1981 (in Chinese with English Abstract)
    Peng, J. T., Hu, R. Z., Zhao, J. H., et al., 2005. Rare Earth Element (REE) Geochemistry for Scheelite from the Woxi Au-Sb-W Deposit, Western Hunan. Geochimica, 34(2): 115–122 (in Chinese with English Abstract)
    Peng, B., Frei, R., 2004. Nd-Sr-Pb Isotopic Constraints on Metal and Fluid Sources in W-Sb-Au Mineralization at Woxi and Liaojiaping (Western Hunan, China). Mineralium Deposita, 39(3): 313–327. https://doi.org/10.1007/s00126-004-0409-0
    Phillips, G. N., Groves, D. I., Martyn, J. E., 1984. An Epigenetic Origin for Archean Banded Iron-Formation-Hosted Gold Deposits. Economic Geology, 79(1): 162–171. https://doi.org/10.2113/gsecongeo.79.1.162
    Phillips, G. N., Powell, R., 2010. Formation of Gold Deposits: A Metamorphic Devolatilization Model. Journal of Metamorphic Geology, 28(6): 689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
    Pirajno, F., Yu, H. C., 2021. Cycles of Hydrothermal Activity, Precipitation of Chemical Sediments, with Special Reference to Algoma-Type BIF. Gondwana Research, 100: 251–260. https://doi.org/10.1016/j.gr.2021.02.012
    Pokrovski, G. S., Tagirov, B. R., Schott, J., et al., 2009. A New View on Gold Speciation in Sulfur-Bearing Hydrothermal Fluids from in situ X-Ray Absorption Spectroscopy and Quantum-Chemical Modeling. Geochimica et Cosmochimica Acta, 73(18): 5406–5427. https://doi.org/10.1016/j.gca.2009.06.007
    Potts, P. J., Kane, J. S., 2005. International Association of Geoanalysts Certificate of Analysis: Certified Reference Material OU-6 (Penrhyn Slate). Geostandards and Geoanalytical Research, 29(2): 233–236. https://doi.org/10.1111/j.1751-908x.2005.tb00895.x
    Prihatmoko, S., Idrus, A., 2020. Low-Sulfidation Epithermal Gold Deposits in Java, Indonesia: Characteristics and Linkage to the Volcano-Tectonic Setting. Ore Geology Reviews, 121: 103490. https://doi.org/10.1016/j.oregeorev.2020.103490
    Sanislav, I. V., Brayshaw, M., Kolling, S. L., et al., 2017. The Structural History and Mineralization Controls of the World-Class Geita Hill Gold Deposit, Geita Greenstone Belt, Tanzania. Mineralium Deposita, 52(2): 257–279. https://doi.org/10.1007/s00126-016-0660-1
    Shelton, K. L., So, C. S., Chang, J. S., 1988. Gold-Rich Mesothermal Vein Deposits of the Republic of Korea; Geochemical Studies of the Jungwon Gold Area. Economic Geology, 83(6): 1221–1237. https://doi.org/10.2113/gsecongeo.83.6.1221
    Shen, G. W., Zhang, L., Sun, S. C., et al., 2022. Textures of Gold-Bearing Sulfides and Gold Precipitation Mechanism, Wangu Gold Deposit, Jiangnan Orogen. Acta Petrologica Sinica, 38(1): 91–108. https://doi.org/10.18654/1000-0569/2022.01.07
    Shu, L., Charvet, J., 1996. Kinematics and Geochronology of the Proterozoic Dongxiang-Shexian Ductile Shear Zone: With HP Metamorphism and Ophiolitic Melange (Jiangnan Region, South China). Tectonophysics, 267(1/2/3/4): 291–302. https://doi.org/10.1016/s0040-1951(96)00104-7
    Shu, L., Yu, J., Jia, D., et al., 2008. Early Paleozoic Orogenic Belt in the Eastern Segment of South China. Geol. Bull. China, 27: 1081–1093 (in Chinese with English Abstract)
    Shu, L. S., Faure, M., Yu, J. H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3/4): 263–276. https://doi.org/10.1016/j.precamres.2011.03.003
    Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154–186. https://doi.org/10.2475/01.2014.05
    Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China: Tectonics, 34: 1600–1621. https://doi.org/10.1002/2015tc003835
    Sibson, R. H., Robert, F., Poulsen, K. H., 1988. High-Angle Reverse Faults, Fluid-Pressure Cycling, and Mesothermal Gold-Quartz Deposits. Geology, 16(6): 551. https://doi.org/10.1130/0091-7613(1988)0160551:harffp>2.3.co;2 doi: 10.1130/0091-7613(1988)0160551:harffp>2.3.co;2
    Simmons, S. F., Tutolo, B. M., Barker, S. L. L., et al., 2020. Chapter 38: Hydrothermal Gold Deposition in Epithermal, Carlin, and Orogenic Deposits. Geology of the World's Major Gold Deposits and Provinces. Society of Economic Geologists, 823–845. https://doi.org/10.5382/sp.23.38
    Su, W., Heinrich, C. A., Pettke, T., et al., 2009. Sediment-Hosted Gold Deposits in Guizhou, China: Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Economic Geology, 104(1): 73–93. https://doi.org/10.2113/gsecongeo.104.1.73
    Sun, S. C., Zhang, L., Li, R. H., et al., 2019. Process and Mechanism of Gold Mineralization at the Zhengchong Gold Deposit, Jiangnan Orogenic Belt: Evidence from the Arsenopyrite and Chlorite Mineral Thermometers. Minerals, 9(2): 133. https://doi.org/10.3390/min9020133
    Thompson, M., Potts, P. J., Kane, J. S., et al., 2000. GeoPT5. An International Proficiency Test for Analytical Geochemistry Laboratories-Report on Round 5. Geostandards and Geoanalytical Research, 24(1): E1–E28. https://doi.org/10.1111/j.1751-908x.2000.tb00592.x
    van Ryt, M. R., Sanislav I. V., Dirks P., 2020. Trace Element Associations in Magnetite and Hydrothermal Pyrite from the Geita Hill Gold Deposit, Tanzania. Journal of Geochemical Exploration, 209: 106418. https://doi.org/10.1016/j.gexplo.2019.106418
    Vos, I. A., Bierlein, F. P., Standing, J. S., et al., 2009. The Geology and Mineralisation at the Golden Pride Gold Deposit, Nzega Greenstone Belt, Tanzania. Mineralium Deposita, 44(7): 751–764. https://doi.org/10.1007/s00126-009-0245-3
    Wang, C., Shao, Y., Evans, N. J., et al., 2020a. Genesis of Zixi Gold Deposit in Xuefengshan, Jiangnan Orogen (South China): Age, Geology and Isotopic Constraints. Ore Geology Reviews, 117: 103301. https://doi.org/10.1016/j.oregeorev.2019.103301
    Wang, C., Shao, Y. J., Zhang, X., et al., 2020b. Metallogenesis of the Hengjiangchong Gold Deposit in Jiangnan Orogen, South China. Ore Geology Reviews, 118: 103350. https://doi.org/10.1016/j.oregeorev.2020.103350
    Wang, D. Z., Shu, L. S., 2012. Late Mesozoic Basin and Range Tectonics and Related Magmatism in Southeast China. Geoscience Frontiers, 3(2): 109–124. https://doi.org/10.1016/j.gsf.2011.11.007
    Wang, G. G., Ni, P., Zhao, C., et al., 2019. The Research Advances and Genetic Model of the Giant Dexing Cu-Au Ore Cluster. Acta Petrologica Sinica, 35(12): 3644–3658. https://doi.org/10.18654/1000-0569/2019.12.05
    Wang, J. Q., Shu, L. S., Santosh, M., 2016. Petrogenesis and Tectonic Evolution of Lianyunshan Complex, South China: Insights on Neoproterozoic and Late Mesozoic Tectonic Evolution of the Central Jiangnan Orogen. Gondwana Research, 39: 114–130. https://doi.org/10.1016/j.gr.2016.06.015
    Wang, L., Percival, J. B., Hedenquist, J. W., et al., 2021. Alteration Mineralogy of the Zhengguang Epithermal Au-Zn Deposit, Northeast China: Interpretation of Shortwave Infrared Analyses during Mineral Exploration and Assessment. Economic Geology, 116(2): 389–406. https://doi.org/10.5382/econgeo.4792
    Wang, L., Qin, K., Song, G., et al., 2020. Geology and Genesis of the Early Paleozoic Zhengguang Intermediate-Sulfidation Epithermal Au-Zn Deposit, Northeast China. Ore Geology Reviews, 124: 103602. https://doi.org/10.1016/j.oregeorev.2020.103602
    Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1/2): 111–130. https://doi.org/10.1016/j.precamres.2005.11.014
    Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273–1305. https://doi.org/10.1016/j.gr.2012.02.019
    Williams-Jones, A. E., Bowell, R. J., Migdisov, A. A., 2009. Gold in Solution. Elements, 5(5): 281–287. https://doi.org/10.2113/gselements.5.5.281
    Xu, D., Chen, G., Xia, B., et al., 2006. The Caledonian Adakite-Like Granodiorites in Banshanpu Area Eastern Hunan Province, South China Petrogenesis and Geological Significance. Geol. J. China Univ. , 12: 507–521 (in Chinese with English Abstract)
    Xu, D., Deng, T., Chi, G., et al., 2017a. Gold Mineralization in the Jiangnan Orogenic Belt of South China: Geological, Geochemical and Geochronological Characteristics, Ore Deposit-Type and Geodynamic Setting. Ore Geology Reviews, 88: 565–618. https://doi.org/10.1016/j.oregeorev.2017.02.004
    Xu, D., Chi, G., Zhang, Y., et al., 2017b. Yanshanian (Late Mesozoic) Ore Deposits in China––An Introduction to the Special Issue. Ore Geology Reviews, 88: 481–490. https://doi.org/10.1016/j.oregeorev.2017.04.022
    Yang, F., Pang, X. J., Li, B., et al., 2021. Geological, Fluid Inclusion, H-O-S-Pb Isotope Constraints on the Genesis of the Erdaogou Gold Deposit, Liaoning Province. Journal of Earth Science, 32(1): 103–115. https://doi.org/10.1007/s12583-020-1068-5
    Yao, J., Shu, L., Santosh, M., et al., 2014. Neoproterozoic Arc-Related Mafic-Ultramafic Rocks and Syn-Collision Granite from the Western Segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 243: 39–62. https://doi.org/10.1016/j.precamres.2013.12.027
    Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2019. Jiangnan Orogen, South China: A ~970–820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016
    Yao, X. F., Cheng, Z. Z., Du, Z. Z., et al., 2021. Petrology, Geochemistry, and Sr-Nd-S Isotopic Compositions of Ore-Hosting Biotite Monzodiorite in the Luanjiahe Gold Deposit, Jiaodong Peninsula, China. Journal of Earth Science, 32(1): 51–67. https://doi.org/10.1007/s12583-020-1386-7
    Yi, S. X., 2012. Research on Geological Features, Fluid Inclusion and Genesis of Woxi Au-Sb-W Deposit in Hunan Province: [Dissertation]. Central South University, Changsha (in Chinese with English Abstract)
    Zhang, J. F., 2017. The Study on Ore-Forming Fluids in the Woxi Au-Sb-W Deposit, Hunan Province: [Dissertation]. Chengdu University of Technology, Chengdu (in Chinese with English Abstract)
    Zhang, L., Groves, D. I., Yang, L. Q., et al., 2020. Utilization of Pre-Existing Competent and Barren Quartz Veins as Hosts to Later Orogenic Gold Ores at Huangjindong Gold Deposit, Jiangnan Orogen, Southern China. Mineralium Deposita, 55(2): 363–380. https://doi.org/10.1007/s00126-019-00904-5
    Zhang, L., Yang, L. Q., Groves, D. I., et al., 2018. Geological and Isotopic Constraints on Ore Genesis, Huangjindong Gold Deposit, Jiangnan Orogen, Southern China. Ore Geology Reviews, 99: 264–281. https://doi.org/10.1016/j.oregeorev.2018.06.013
    Zhang, Z. R., 1980. The Genesis and Ore-Forming Mechanism of the Woxi Au-Sb-W Deposit, Taoyuan. Science Information of the Metallurgical Institute of South China, 1–10 (in Chinese with English Abstract)
    Zhang, Z. R., 1989. Research on Gold Deposits. Press of China Industrial University, Beijing. 1–190
    Zhao, C., Qin, K. Z., Song, G. X., et al., 2019. Early Palaeozoic High-Mg Basalt-Andesite Suite in the Duobaoshan Porphyry Cu Deposit, NE China: Constraints on Petrogenesis, Mineralization, and Tectonic Setting. Gondwana Research, 71: 91–116. https://doi.org/10.1016/j.gr.2019.01.015
    Zhao, G., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173–1180. https://doi.org/10.1016/j.gr.2014.09.004
    Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13–54. https://doi.org/10.1016/j.precamres.2012.09.017
    Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26–33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
    Zhou, Z. K., Yonezu, K., Imai, A., et al., 2022. Trace Elements Mineral Chemistry of Sulfides from the Woxi Au-Sb-W Deposit, Southern China. Resource Geology, 72(1): 1–16. https://doi.org/10.1111/rge.12279
    Zhu, Y. N., Peng, J. T., 2015. Infrared Microthermometric and Noble Gas Isotope Study of Fluid Inclusions in Ore Minerals at the Woxi Orogenic Au-Sb-W Deposit, Western Hunan, South China. Ore Geology Reviews, 65: 55–69. https://doi.org/10.1016/j.oregeorev.2014.08.014
    Zou, S., Zou, F., Ning, J., et al., 2018. A Stand-Alone Co Mineral Deposit in Northeastern Hunan Province, South China: Its Timing, Origin of Ore Fluids and Metal Co, and Geodynamic Setting. Ore Geology Reviews, 92: 42–60. https://doi.org/10.1016/j.oregeorev.2017.11.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(58) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return