Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 5
Oct 2022
Turn off MathJax
Article Contents
Dian-Guang Liu, Yun Yang, Cheng-Jun Mao, Jian-Feng Wu, Ji-Chun Wu. A Comparative Study on Hydrodynamics and Hydrochemistry Coupled Simulations of Drainage Pipe Crystallization Blockage in Karst Tunnels. Journal of Earth Science, 2022, 33(5): 1179-1189. doi: 10.1007/s12583-022-1720-3
Citation: Dian-Guang Liu, Yun Yang, Cheng-Jun Mao, Jian-Feng Wu, Ji-Chun Wu. A Comparative Study on Hydrodynamics and Hydrochemistry Coupled Simulations of Drainage Pipe Crystallization Blockage in Karst Tunnels. Journal of Earth Science, 2022, 33(5): 1179-1189. doi: 10.1007/s12583-022-1720-3

A Comparative Study on Hydrodynamics and Hydrochemistry Coupled Simulations of Drainage Pipe Crystallization Blockage in Karst Tunnels

doi: 10.1007/s12583-022-1720-3
More Information
  • Corresponding author: Yun Yang, yy_hhu@hhu.edu.cn; Ji-Chun Wu, jcwu@nju.edu.cn
  • Received Date: 17 Mar 2022
  • Accepted Date: 19 Jul 2022
  • Available Online: 19 Oct 2022
  • Issue Publish Date: 30 Oct 2022
  • Drainage pipe system is the requisite component of the traffic tunnels in Karst area. To reveal the dynamic process of crystallization blockage in drainage pipes, a novel hydrodynamics and hydrochemistry coupled simulation model was developed for calculating the deposition rate of CaCO3 fouling in pipeline surface. Sediments adhering to the pipe walls involve a deformable domain with moving geometric boundaries, and moving mesh and level set methods are proposed for simulation of for tunnel turbulence and crystallization fouling process. The simulation results are compared with the experimental results showing similar trend. The effects of temperature, flow velocity, and solution concentration on crystallization blockage were analyzed by comparative simulation studies. The simulation results show that: (1) the moving mesh method simulated nozzle shrinkage caused by crystalline deposition, without accounting for geometric topology shape changes. However, the level set method tracked the moving topology and thus can simulate the process of complete blockage; (2) the flow velocity in the longitudinal pipe generally exceeded that in the transverse pipe, and the CaCO3 crystal concentration in the transverse pipe eclipsed that in the longitudinal pipe, which meant crystallization blockages primarily occurred in the transverse pipe; (3) the temperature and concentration correlated positively with the crystallization rate, while the crystal precipitation value decreases with the increasing of inlet flow velocity increases. This study advances a hydrodynamics and hydrochemistry coupled crystallization blockage model to provide technical support for the early identification of crystallization-induced pipe blockage in the drainage system in karst tunnel sites.

     

  • loading
  • An, R. D., Yu, C. H., 2020. A Level Set Redistancing Algorithm for Simulation of Two-Phase Flow. Numerical Heat Transfer Part B-Fundamentals, 78(1): 30-53 (in Chinese with English Abstract) doi: 10.1080/10407790.2020.1746601
    Bere, K. V., Nez, E., Balog, E., et al., 2021. Enhancing the Yield of Calcium Carbonate Precipitation by Obstacles in Laminar Flow in a Confined Geometry. Physical Chemistry Chemical Physics, 23: 15515-15521 (in Chinese with English Abstract) doi: 10.1039/D1CP01334C
    Bohnet, M., 1987. Fouling of Heat Transfer Surfaces. Chemical Engineering & Technology, 10(1): 113-125. https://doi.org/10.1002/ceat.270100115
    Brahim, F., Augustin, W., Bohnet, M., 2003. Numerical Simulation of the Fouling Process. International Journal of Thermal Sciences, 42(3): 323-334. https://doi.org/10.1016/s1290-0729(02)00021-2
    Chang, R., Kim, S., Lee, S., et al., 2017. Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism. Frontiers in Energy Research, 5: 1-17 (in Chinese with English Abstract)
    Chen, Y., Lian, B., Yin, Z. Y., et al., 2014. Weathering of Carbonate Rocks by Biological Soil Crusts in Karst Areas. Journal of Earth Science, 25(4): 662-667. https://doi.org/10.1007/s12583-014-0455-1
    Cheng, S.B., Liu, A.S., Cui, S., et al., 2021. Mineralization Process of Permian Karst Bauxite in Western Guangxi. Earth Science, 46(8): 2697-2710 (in Chinese with English Abstract)
    Dreybrodt, W., Buhmann, D., 1991. A Mass Transfer Model for Dissolution and Precipitation of Calcite from Solutions in Turbulent Motion. Chemical Geology, 90(1/2): 107-122. https://doi.org/10.1016/0009-2541(91)90037-r
    Epstein, N., 1994. A Model of the Initial Chemical Reaction Fouling Rate for Flow within a Heated Tube, Add Its Verification. Heat Transfer 1994-Proceedings of the Tenth International Heat Transfer Conferences, 135: 225-229
    Gao, C. L., Li, L. P., Zhou, Z. Q., et al., 2021. Peridynamics Simulation of Water Inrush Channels Evolution Process Due to Rock Mass Progressive Failure in Karst Tunnels. International Journal of Geomechanics, 21(4): 4021028. https://10.1061/(asce)gm.1943-5622.0001980 doi: 10.1061/(ASCE)GM.1943-5622.0001980
    Gong, Q. J., Deng, J., Wang, Q. F., et al., 2010. Experimental Determination of Calcite Dissolution Rates and Equilibrium Concentrations in Deionized Water Approaching Calcite Equilibrium. Journal of Earth Science, 21(4): 402-411. https://doi.org/10.1007/s12583-010-0103-3
    Jiao, H. Y., Du, X. L., Zhao, M., et al., 2021. Nonlinear Seismic Response of Rock Tunnels Crossing Inactive Fault under Obliquely Incident Seismic P Waves. Journal of Earth Science, 32(5): 1174-1189. https://doi.org/10.1007/s12583-021-1483-2
    Sundar, S., Rajagopal, M. C., Zhao, H. Y., et al., 2020. Fouling Modeling and Prediction Approach for Heat Exchangers Using Deep Learning. International Journal of Heat and Mass Transfer, 159: 120112. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120112
    Han, Z. M., Xu, Z. M., 2020. Experimental and Numerical Investigation on Particulate Fouling Characteristics of Vortex Generators with a Hole. International Journal of Heat and Mass Transfer, 148: 119130. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119130
    Hong, Y. W., Qian, X. Q., Li, J. H., et al., 2021. On Scavenging Performances of Cleaning Solvents for the Clogging in the Drainage System of Karst Tunnels. Modern Tunneling Technology, 57(6): 160-170
    Hasson, D., Avriel, M., Resnick, W., et al., 1968. Mechanism of Calcium Carbonate Scale Deposition on Heat-Transfer Surfaces. Industrial & Engineering Chemistry Fundamentals, 7(1): 59-65. https://doi.org/10.1021/i160025a011
    Huang, W. Z., Russell, R. D., 2011. Adaptive Moving Mesh Methods. Springer New York Dordrecht Heidelberg London
    Li, L. P., Xiong, Y. F., Wang, J., et al., 2020. Comprehensive Influence Analysis of Multiple Parameters on the Safety Thickness Against Water Inrush in Shield Tunnel. International Journal of Geomechanics, 20(12): https://10.1061/(asce)gm.1943-5622.0001870
    Liu, Z. H., Dreybrodt, W., 1998. The DBL Model and Prediction of Calcite Dissolution/Precipitation Rates. Carsologica Sinica, 17(1): 1-7
    Liu, S. Y., Zhang, X. F., Zhou, X. F., et al., 2021. Parameter Optimization of Anti-Crystallization Flocking Drainage Pipe Based on Macro Force and Displacement Characteristics of Villus. Thermal Science, 25(6): 4127-4135. https://doi.org/10.2298/tsci2106127l
    Plummer, L., Wigley, T., Parkhurst, D., 1978. The Kinetics of Calcite Dissolution in CO2-Water Systems at 5℃ to 60℃ and 0.0 to 1.0 atm CO2. American Journal of Science, 278: 179-216 doi: 10.2475/ajs.278.2.179
    Qiao, W., Li, W. P., Li, T., et al., 2018. Relevance Between Hydrochemical and Hydrodynamic Data in a Deep Karstified Limestone Aquifer: A Mining Area Case Study. Mine Water and the Environment, 37(2): 393-404. https://doi.org/10.1007/s10230-017-0506-9
    Singurindy, O., Berkowitz, B., Lowell, R. P., 2004. Carbonate Dissolution and Precipitation in Coastal Environments: Laboratory Analysis and Theoretical Consideration. Water Resources Research, 40(4): W04401. https://doi.org/10.1029/2003wr002651
    Song, H. R., Huang, S. Y., 1990. Crystallized Precipitation of Carbonate. Carsologica Sinica, 9(2): 105-118 (in Chinese with English Abstract)
    Tang, J. P., Zhang, Q., Hu, Y., et al., 2019. Hydrochemical Characteristics of Karst Groundwater in the Mountains of Northern Bazhong City, China. Environmental Science, 40(10): 4543-4552. https://doi.org/10.13227/j.hjkx.201904068
    Veress, M., 2020. Karst Types and Their Karstification. Journal of Earth Science, 31(3): 621-634. https://doi.org/10.1007/s12583-020-1306-x
    Wang, Z.J., Zhou, H., Qi, L.X., et al., 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523 (in Chinese with English Abstract)
    Wedenig, M., Boch, R., Leis, A., et al., 2021. Green Inhibitor Performance Against CaCO3 Scaling: Rate-Modeling Aided Test Procedure. Crystal Growth & Design, 21(4): 1959-1971. https://doi.org/10.1021/acs.cgd.0c01258
    Xu, Z. M., Zhao, Y., Han, Z. M., et al., 2018. Numerical Simulation of Calcium Sulfate (CaSO4) Fouling in the Plate Heat Exchanger. Heat and Mass Transfer, 54(7): 1867-1877. https://doi.org/10.1007/s00231-018-2282-x
    Xu, Z. M., Zhao, Y., He, J. J., et al., 2021. Fouling Characterization of Calcium Carbonate on Heat Transfer Surfaces with Sodium Carboxymethyl Cellulose as an Inhibitor. International Journal of Thermal Sciences, 162: 106790. https://doi.org/10.1016/j.ijthermalsci.2020.106790
    Zheng, K. X., Pei, X. W., Zhu, D. Q., et al., 2019. Thoughts on Tunnel Water Inrush in Changing Zones of Groundwater Level in Karst Areas. Carsologica Sinica, 38(4): 473-479 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article Metrics

    Article views(123) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return