Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 5
Oct 2022
Turn off MathJax
Article Contents
Yiming Ma, Weimin Ruan, Chao Niu, Tianshui Yang. Movement History of the Microcontinents from the Tibetan Plateau Based on Paleomagnetic Results with Sufficient Sampling Units. Journal of Earth Science, 2022, 33(5): 1072-1080. doi: 10.1007/s12583-022-1721-2
Citation: Yiming Ma, Weimin Ruan, Chao Niu, Tianshui Yang. Movement History of the Microcontinents from the Tibetan Plateau Based on Paleomagnetic Results with Sufficient Sampling Units. Journal of Earth Science, 2022, 33(5): 1072-1080. doi: 10.1007/s12583-022-1721-2

Movement History of the Microcontinents from the Tibetan Plateau Based on Paleomagnetic Results with Sufficient Sampling Units

doi: 10.1007/s12583-022-1721-2
More Information
  • Corresponding author: Yiming Ma, maym@cug.edu.cn
  • Received Date: 20 Apr 2022
  • Accepted Date: 18 Jul 2022
  • Available Online: 19 Oct 2022
  • Issue Publish Date: 30 Oct 2022
  • Paleomagnetic results cannot be applied in global and regional tectonic reconstructions unless the paleosecular variation has been adequately averaged. However, how many sampling sites and samples are enough to calculate a reliable paleopole remains debated. Based on the relation among the sampling sites N, the precision parameter k, the virtual geomagnetic pole scatter s, and the confidence limit A95 of the paleopole, we find that 20 sites (samples) or more are required to yield a paleopole with an A95 ≈ 5° based on a review of available paleomagnetic results from the Lhasa, Qiangtang and Tethyan Himalaya. Random samplings of Jurassic virtual geomagnetic poles from the Sangri area show that the Fisher mean pole with neglectable angle deviation can be obtained when sampling sites increase to 20. High-quality paleomagnetic results, with sites/samples number N/n ≥ ~20–30, show that the Qiangtang, Lhasa, and Tethyan Himalaya moved northward in the Late Permian–Middle Triassic, Jurassic, and Cretaceous, respectively, and then accreted to Asia in the Late Triassic, Late Jurassic–Early Cretaceous and Paleocene–Early Eocene, respectively.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S6) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1721-2.
  • loading
  • Besse, J., Courtillot, V., 2002. Apparent and True Polar Wander and the Geometry of the Geomagnetic Field over the Last 200 Myr. Journal of Geophysical Research: Solid Earth, 107(B11): EPM6–1. https://doi.org/10.1029/2000jb000050
    Bian, W. W., Yang, T. S., Peng, W. X., et al., 2021. Paleomagnetic Constraints on the India-Asia Collision and the Size of Greater India. Journal of Geophysical Research: Solid Earth, 126(6): e2021jb021965. https://doi.org/10.1029/2021jb021965
    Biggin, A. J., van Hinsbergen, D. J. J., Langereis, C. G., et al., 2008. Geomagnetic Secular Variation in the Cretaceous Normal Superchron and in the Jurassic. Physics of the Earth and Planetary Interiors, 169(1/2/3/4): 3–19. https://doi.org/10.1016/j.pepi.2008.07.004
    Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific, Boston. 319
    Cao, Y., Sun, Z. M., Li, H. B., et al., 2017. New Late Cretaceous Paleomagnetic Data from Volcanic Rocks and Red Beds from the Lhasa Terrane and Its Implications for the Paleolatitude of the Southern Margin of Asia Prior to the Collision with India. Gondwana Research, 41: 337–351. https://doi.org/10.1016/j.gr.2015.11.006
    Chen, S. S., Shi, R. D., Gong, X. H., et al., 2017. A Syn-Collisional Model for Early Cretaceous Magmatism in the Northern and Central Lhasa Subterranes. Gondwana Research, 41: 93–109. https://doi.org/10.1016/j.gr.2015.04.008
    Chen, Y. F., Ding, L., Li, Z. Y., et al., 2020. Provenance Analysis of Cretaceous Peripheral Foreland Basin in Central Tibet: Implications to Precise Timing on the Initial Lhasa-Qiangtang Collision. Tectonophysics, 775: 228311. http://doi.10.1016/j.tecto.2019.228311 doi: 10.1016/j.tecto.2019.228311
    Cogné, J. P., 2003. PaleoMac: A MacintoshTM Application for Treating Paleomagnetic Data and Making Plate Reconstructions. Geochemistry, Geophysics, Geosystems, 4(1): 1007. https://doi.org/10.1029/2001gc000227
    Cogné, J. P., Besse, J., Chen, Y., et al., 2013. A New Late Cretaceous to Present APWP for Asia and Its Implications for Paleomagnetic Shallow Inclinations in Central Asia and Cenozoic Eurasian Plate Deformation. Geophysical Journal International, 192(3): 1000–1024. https://doi.org/10.1093/gji/ggs104
    Deenen, M. H. L., Langereis, C. G., van Hinsbergen, D. J. J., et al., 2011. Geomagnetic Secular Variation and the Statistics of Palaeomagnetic Directions. Geophysical Journal International, 186(2): 509–520. https://doi.org/10.1111/j.1365-246x.2011.05050.x
    Dewey, J. F., Shackleton, R. M., Chang, C. F., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society, 327(1594): 379–413. https://doi.org/10.1098/rsta.1988.0135
    Fisher, R., 1953. Dispersion on a Sphere. Proceedings of the Royal Society of London, 217(1130): 295–305. https://doi.org/10.1098/rspa.1953.0064
    Gerritsen, D., Vaes, B., van Hinsbergen, D. J. J., 2022. Influence of Data Filters on the Position and Precision of Paleomagnetic Poles: What is the Optimal Sampling Strategy? Geochemistry, Geophysics, Geosystems, 23(4): e2021gc010269. https://doi.org/10.1029/2021gc010269
    Guan, C., Yan, M. D., Zhang, W. L., et al., 2021. Paleomagnetic and Chronologic Data Bearing on the Permian/Triassic Boundary Position of Qamdo in the Eastern Qiantang Terrane: Implications for the Closure of the Paleo-Tethys. Geophysical Research Letters, 48(6): e2020gl092059. https://doi.org/10.1029/2020gl092059
    Huang, K. N., Opdyke, N. D., Li, J. G., et al., 1992. Paleomagnetism of Cretaceous Rocks from Eastern Qiangtang Terrane of Tibet. Journal of Geophysical Research: Solid Earth, 97(B2): 1789–1799. https://doi.org/10.1029/91jb02747
    Huang, W. T., Lippert, P. C., Jackson, M. J., et al., 2017a. Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India-Asia Collision. Journal of Geophysical Research: Solid Earth, 122(2): 808–825. https://doi.org/10.1002/2016jb013662
    Huang, W. T., Lippert, P. C., Jackson, M. J., et al., 2017b. Reply to Comment by Z. Yi et al. on "Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India-Asia Collision". Journal of Geophysical Research: Solid Earth, 122(7): 4859–4863. https://doi.org/10.1002/2017jb014447
    Huang, W. T., Dupont-Nivet, G., Lippert, P. C., et al., 2015. Can a Primary Remanence be Retrieved from Partially Remagnetized Eocence Volcanic Rocks in the Nanmulin Basin (Southern Tibet) to Date the India-Asia Collision? Journal of Geophysical Research: Solid Earth, 120(1): 42–66. https://doi.org/10.1002/2014jb011599
    Johnson, C. L., Constable, C. G., Tauxe, L., et al., 2008. Recent Investigations of the 0–5 Ma Geomagnetic Field Recorded by Lava Flows. Geochemistry, Geophysics, Geosystems, 9(4): Q04032. https://doi.org/10.1029/2007gc001696
    Koymans, M. R., Langereis, C. G., Pastor-Galan, D., et al., 2016. Paleomagnetism. org: An Online Multi-Platform Open Source Environment for Paleomagnetic Data Analysis. Computers & Geosciences, 93: 127–137. https://doi.org/10.1016/j.cageo.2016.05.007
    Li, Z. Y., Ding, L., Lippert, P., et al., 2016. Paleomagnetic Constraints on the Mesozoic Drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia. Geology, 44: 727–730. https://doi.org/10.1130/g38030.1
    Linder, J., Gilder, S. A., 2012. Latitude Dependency of the Geomagnetic Secular Variation S Parameter: A Mathematical Artifact. Geophysical Research Letters, 39(2): L02308. https://doi.org/10.1029/2011gl050330
    Ma, Y. M., Wang, Q., Wang, J., et al., 2019. Paleomagnetic Constraints on the Origin and Drift History of the North Qiangtang Terrane in the Late Paleozoic. Geophysical Research Letters, 46(2): 689–697. https://doi.org/10.1029/2018gl080964
    Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2018. A Stable Southern Margin of Asia during the Cretaceous: Paleomagnetic Constraints on the Lhasa-Qiangtang Collision and the Maximum Width of the Neo-Tethys. Tectonics, 37(10): 3853–3876. https://doi.org/10.1029/2018tc005143
    Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2017. Paleomagnetic and Geochronologic Results of Latest Cretaceous Lava Flows from the Lhasa Terrane and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 122(11): 8786–8809. https://doi.org/10.1002/2017jb014743
    Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2016. Early Cretaceous Paleomagnetic and Geochronologic Results from the Tethyan Himalaya: Insights into the Neotethyan Paleogeography and the India-Asia Collision. Scientific Reports, 6: 21605. https://doi.org/10.1038/srep21605
    Ma, Y. M., Yang, T. S., Yang, Z. Y., et al., 2014. Paleomagnetism and U-Pb Zircon Geochronology of Lower Cretaceous Lava Flows from the Western Lhasa Terrane: New Constraints on the India-Asia Collision Process and Intracontinental Deformation within Asia. Journal of Geophysical Research: Solid Earth, 119(10): 7404–7424. https://doi.org/10.1002/2014jb011362
    Matthews, K. J., Maloney, K. T., Zahirovic, S., et al., 2016. Global Plate Boundary Evolution and Kinematics since the Late Paleozoic. Global and Planetary Change, 146: 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002
    McElhinny, M. W., McFadden, P. L., 1997. Palaeosecular Variation over the Past 5 Myr Based on a New Generalized Database. Geophysical Journal International, 131(2): 240–252. https://doi.org/10.1111/j.1365-246x.1997.tb01219.x
    McFadden, P. L., Merrill, R. T., McElhinny, M. W., et al., 1991. Reversals of the Earth's Magnetic Field and Temporal Variations of the Dynamo Families. Journal of Geophysical Research: Solid Earth, 96(B3): 3923–3933. https://doi.org/10.1029/90jb02275
    Meert, J. G., Pivarunas, A. F., Evans, D. A. D., et al., 2020. The Magnificent Seven: A Proposal for Modest Revision of the Quality Index. Tectonophysics, 790: 228549. https://doi.org/10.1016/j.tecto.2020.228549
    Meng, J., Zhao, X. X., Wang, C. S., et al., 2018. Palaeomagnetism and Detrital Zircon U-Pb Geochronology of Cretaceous Redbeds from Central Tibet and Tectonic Implications. Geological Journal, 53(5): 2315–2333. https://doi.org/10.1002/gj.3070
    Meng, J., Gilder, S. A., Li, Y. L., et al., 2020. Expanse of Greater India in the Late Cretaceous. Earth and Planetary Science Letters, 542: 116330. https://doi.org/10.1016/j.epsl.2020.116330
    Meng, J., Gilder, S. A., Wang, C. S., et al., 2019. Defining the Limits of Greater India. Geophysical Research Letters, 46(8): 4182–4191. https://doi.org/10.1029/2019gl082119
    Patzelt, A., Li, H. M., Wang, J. D., et al., 1996. Palaeomagnetism of Cretaceous to Tertiary Sediments from Southern Tibet: Evidence for the Extent of the Northern Margin of India Prior to the Collision with Eurasia. Tectonophysics, 259(4): 259–284. https://doi.org/10.1016/0040-1951(95)00181-6
    Song, C., Wang, J., Fu, X., et al., 2012. Late Triassic Paleomagnetic Data from the Qiangtang Terrane of Tibetan Plateau and Their Tectonic Significances. Journal of Jilin University: Earth Science Edition, 42(2): 526–535 (in Chinese with English Abstract)
    Song, P. P., Ding, L., Lippert, P. C., et al., 2020. Paleomagnetism of Middle Triassic Lavas from Northern Qiangtang (Tibet): Constraints on the Closure of the Paleo-Tethys Ocean. Journal of Geophysical Research: Solid Earth, 125(2): e2019jb017804. https://doi.org/10.1029/2019jb017804
    Song, P. P., Ding, L., Li, Z. Y., et al., 2015. Late Triassic Paleolatitude of the Qiangtang Block: Implications for the Closure of the Paleo-Tethys Ocean. Earth and Planetary Science Letters, 424: 69–83. https://doi.org/10.1016/j.epsl.2015.05.020
    Sun, Z. M., Pei, J. L., Li, H. B., et al., 2012. Palaeomagnetism of Late Cretaceous Sediments from Southern Tibet: Evidence for the Consistent Palaeolatitudes of the Southern Margin of Eurasia Prior to the Collision with India. Gondwana Research, 21(1): 53–63. https://doi.org/10.1016/j.gr.2011.08.003
    Sun, Z. M., Jiang, W., Pei, J. L., et al., 2008. New Early Cretaceous Paleomagnetic Data from Volcanic of the Eastern Lhasa Block and Its Tectonic Implications. Acta Petrologica Sinica, 24(7): 1621–1626 (in Chinese with English Abstract)
    Tan, X. D., Gilder, S., Kodama, K. P., et al., 2010. New Paleomagnetic Results from the Lhasa Block: Revised Estimation of Latitudinal Shortening across Tibet and Implications for Dating the India-Asia Collision. Earth and Planetary Science Letters, 293(3/4): 396–404. https://doi.org/10.1016/j.epsl.2010.03.013
    Tauxe, L., Kent, D., 2004. A Simplified Statistical Model for the Geomagnetic Field and the Detection of Shallow Bias in Paleomagnetic Inclinations: Was the Ancient Magnetic Field Dipolar? Geophysical Monograph, 145: 101–115. https://doi.org/10.1029/145gm08
    Tauxe, L., Banerjee, S. K., Butler R. F., et al., 2018. Essentials of Paleomagnetism: Fifth Web Edition. Scripps Institution of Oceanography, La Jolla
    Tauxe, L., 1993. Sedimentary Records of Relative Paleointensity of the Geomagnetic Field: Theory and Practice. Reviews of Geophysics, 31(3): 319–354. https://doi.org/10.1029/93rg01771
    Tong, Y. B., Yang, Z. Y., Pei, J. L., et al., 2017. Paleomagnetism of the Upper Cretaceous Red-Beds from the Eastern Edge of the Lhasa Terrane: New Constraints on the Onset of the India-Eurasia Collision and Latitudinal Crustal Shortening in Southern Eurasia. Gondwana Research, 48: 86–100. https://doi.org/10.1016/j.gr.2017.04.018
    Torsvik, T. H., van der Voo, R., Preeden, U., et al., 2012. Phanerozoic Polar Wander, Palaeogeography and Dynamics. Earth-Science Reviews, 114(3/4): 325–368. https://doi.org/10.1016/j.earscirev.2012.06.007
    van der Voo, R., 1990. The Reliability of Paleomagnetic Data. Tectonophysics, 184(1): 1–9. https://doi.org/10.1016/0040-1951(90)90116-p
    van Hinsbergen, D. J. J., Lippert, P. C., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America, 109(20): 7659–7664. https://doi.org/10.1073/pnas.1117262109
    van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., et al., 2011. Acceleration and Deceleration of India-Asia Convergence since the Cretaceous: Roles of Mantle Plumes and Continental Collision. Journal of Geophysical Research: Solid Earth, 116(B6): B06101. https://doi.org/10.1029/2010jb008051
    Yan, M. D., Zhang, D. W., Fang, X. M., et al., 2016. Paleomagnetic Data Bearing on the Mesozoic Deformation of the Qiangtang Block: Implications for the Evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292–316. https://doi.org/10.1016/j.gr.2016.01.012
    Yang, T. S., Jin, J. J., Bian, W. W., et al., 2019. Precollisional Latitude of the Northern Tethyan Himalaya from the Paleocene Redbeds and Its Implication for Greater India and the India-Asia Collision. Journal of Geophysical Research: Solid Earth, 124(11): 10777–10798. https://doi.org/10.1029/2019jb017927
    Yang, T. S., Ma, Y. M., Bian, W. W., et al., 2015. Paleomagnetic Results from the Early Cretaceous Lakang Formation Lavas: Constraints on the Paleolatitude of the Tethyan Himalaya and the India-Asia Collision. Earth and Planetary Science Letters, 428: 120–133. https://doi.org/10.1016/j.epsl.2015.07.040
    Yang, T. S., Ma, Y. M., Zhang, S. H., et al., 2015. New Insights into the India-Asia Collision Process from Cretaceous Paleomagnetic and Geochronologic Results in the Lhasa Terrane. Gondwana Research, 28(2): 625–641. https://doi.org/10.1016/j.gr.2014.06.010
    Yang, X. F., Cheng, X., Zhou, Y. N., et al., 2017. Paleomagnetic Results from Late Carboniferous to Early Permian Rocks in the Northern Qiangtang Terrane, Tibet, China, and Their Tectonic Implications. Science China Earth Sciences, 60(1): 124–134. https://doi.org/10.1007/s11430-015-5462-7
    Yi, Z., Appel, E., Huang, B., et al., 2017. Comment on "Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India‐Asia Collision" by Huang et al. Journal of Geophysical Research–Solid Earth, 122(7): 4852–4858 doi: 10.1002/2017JB014353
    Yi, Z., Huang, B. C., Chen, J. S., et al., 2011. Paleomagnetism of Early Paleogene Marine Sediments in Southern Tibet, China: Implications to Onset of the India-Asia Collision and Size of Greater India. Earth and Planetary Science Letters, 309: 153–165. https://doi.org/10.1016/j.epsl.2011.07.001
    Yu, L., Yan, M. D., Domeier, M., et al., 2022. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo-Jinshajiang Ocean. Geophysical Research Letters, 49(2): e2021gl096902. https://doi.org/10.1029/2021gl096902
    Yuan, J., Yang, Z. Y., Deng, C. L., et al., 2021. Rapid Drift of the Tethyan Himalaya Terrane before Two-Stage India-Asia Collision. National Science Review, 8(7): nwaa173. https://doi.org/10.1093/nsr/nwaa173
    Zhang, J., 2017. Zircon U-Pb Geochronology and Paleomagnetism of Late Permian Nayixiong Formation Volcanic Rocks in the Northern Qiangtang-Qamdo Block of the Tibetan Platesau: [Dissertation]. Northwest University, Xi'an (in Chinese with English Abstract)
    Zhang, Y., Huang, B. C., Zhao, Q., 2019. New Paleomagnetic Positive Proof of the Rigid or Quasi-Rigid Greater Indian Plate during the Early Cretaceous. Chinese Science Bulletin, 64(21): 2225–2244 (in Chinese with English Abstract)
    Zhang, Y. C., Shi, G. R., Shen, S. Z., 2013. A Review of Permian Stratigraphy, Palaeobiogeography and Palaeogeography of the Qinghai-Tibet Plateau. Gondwana Research, 24(1): 55–76. https://doi.org/10.1016/j.gr.2012.06.010
    Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7–17. https://doi.org/10.1016/j.lithos.2015.06.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(158) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return