Citation: | Yiming Ma, Weimin Ruan, Chao Niu, Tianshui Yang. Movement History of the Microcontinents from the Tibetan Plateau Based on Paleomagnetic Results with Sufficient Sampling Units. Journal of Earth Science, 2022, 33(5): 1072-1080. doi: 10.1007/s12583-022-1721-2 |
Paleomagnetic results cannot be applied in global and regional tectonic reconstructions unless the paleosecular variation has been adequately averaged. However, how many sampling sites and samples are enough to calculate a reliable paleopole remains debated. Based on the relation among the sampling sites
Besse, J., Courtillot, V., 2002. Apparent and True Polar Wander and the Geometry of the Geomagnetic Field over the Last 200 Myr. Journal of Geophysical Research: Solid Earth, 107(B11): EPM6–1. https://doi.org/10.1029/2000jb000050 |
Bian, W. W., Yang, T. S., Peng, W. X., et al., 2021. Paleomagnetic Constraints on the India-Asia Collision and the Size of Greater India. Journal of Geophysical Research: Solid Earth, 126(6): e2021jb021965. https://doi.org/10.1029/2021jb021965 |
Biggin, A. J., van Hinsbergen, D. J. J., Langereis, C. G., et al., 2008. Geomagnetic Secular Variation in the Cretaceous Normal Superchron and in the Jurassic. Physics of the Earth and Planetary Interiors, 169(1/2/3/4): 3–19. https://doi.org/10.1016/j.pepi.2008.07.004 |
Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific, Boston. 319 |
Cao, Y., Sun, Z. M., Li, H. B., et al., 2017. New Late Cretaceous Paleomagnetic Data from Volcanic Rocks and Red Beds from the Lhasa Terrane and Its Implications for the Paleolatitude of the Southern Margin of Asia Prior to the Collision with India. Gondwana Research, 41: 337–351. https://doi.org/10.1016/j.gr.2015.11.006 |
Chen, S. S., Shi, R. D., Gong, X. H., et al., 2017. A Syn-Collisional Model for Early Cretaceous Magmatism in the Northern and Central Lhasa Subterranes. Gondwana Research, 41: 93–109. https://doi.org/10.1016/j.gr.2015.04.008 |
Chen, Y. F., Ding, L., Li, Z. Y., et al., 2020. Provenance Analysis of Cretaceous Peripheral Foreland Basin in Central Tibet: Implications to Precise Timing on the Initial Lhasa-Qiangtang Collision. Tectonophysics, 775: 228311. http://doi.10.1016/j.tecto.2019.228311 doi: 10.1016/j.tecto.2019.228311 |
Cogné, J. P., 2003. PaleoMac: A MacintoshTM Application for Treating Paleomagnetic Data and Making Plate Reconstructions. Geochemistry, Geophysics, Geosystems, 4(1): 1007. https://doi.org/10.1029/2001gc000227 |
Cogné, J. P., Besse, J., Chen, Y., et al., 2013. A New Late Cretaceous to Present APWP for Asia and Its Implications for Paleomagnetic Shallow Inclinations in Central Asia and Cenozoic Eurasian Plate Deformation. Geophysical Journal International, 192(3): 1000–1024. https://doi.org/10.1093/gji/ggs104 |
Deenen, M. H. L., Langereis, C. G., van Hinsbergen, D. J. J., et al., 2011. Geomagnetic Secular Variation and the Statistics of Palaeomagnetic Directions. Geophysical Journal International, 186(2): 509–520. https://doi.org/10.1111/j.1365-246x.2011.05050.x |
Dewey, J. F., Shackleton, R. M., Chang, C. F., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society, 327(1594): 379–413. https://doi.org/10.1098/rsta.1988.0135 |
Fisher, R., 1953. Dispersion on a Sphere. Proceedings of the Royal Society of London, 217(1130): 295–305. https://doi.org/10.1098/rspa.1953.0064 |
Gerritsen, D., Vaes, B., van Hinsbergen, D. J. J., 2022. Influence of Data Filters on the Position and Precision of Paleomagnetic Poles: What is the Optimal Sampling Strategy? Geochemistry, Geophysics, Geosystems, 23(4): e2021gc010269. https://doi.org/10.1029/2021gc010269 |
Guan, C., Yan, M. D., Zhang, W. L., et al., 2021. Paleomagnetic and Chronologic Data Bearing on the Permian/Triassic Boundary Position of Qamdo in the Eastern Qiantang Terrane: Implications for the Closure of the Paleo-Tethys. Geophysical Research Letters, 48(6): e2020gl092059. https://doi.org/10.1029/2020gl092059 |
Huang, K. N., Opdyke, N. D., Li, J. G., et al., 1992. Paleomagnetism of Cretaceous Rocks from Eastern Qiangtang Terrane of Tibet. Journal of Geophysical Research: Solid Earth, 97(B2): 1789–1799. https://doi.org/10.1029/91jb02747 |
Huang, W. T., Lippert, P. C., Jackson, M. J., et al., 2017a. Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India-Asia Collision. Journal of Geophysical Research: Solid Earth, 122(2): 808–825. https://doi.org/10.1002/2016jb013662 |
Huang, W. T., Lippert, P. C., Jackson, M. J., et al., 2017b. Reply to Comment by Z. Yi et al. on "Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India-Asia Collision". Journal of Geophysical Research: Solid Earth, 122(7): 4859–4863. https://doi.org/10.1002/2017jb014447 |
Huang, W. T., Dupont-Nivet, G., Lippert, P. C., et al., 2015. Can a Primary Remanence be Retrieved from Partially Remagnetized Eocence Volcanic Rocks in the Nanmulin Basin (Southern Tibet) to Date the India-Asia Collision? Journal of Geophysical Research: Solid Earth, 120(1): 42–66. https://doi.org/10.1002/2014jb011599 |
Johnson, C. L., Constable, C. G., Tauxe, L., et al., 2008. Recent Investigations of the 0–5 Ma Geomagnetic Field Recorded by Lava Flows. Geochemistry, Geophysics, Geosystems, 9(4): Q04032. https://doi.org/10.1029/2007gc001696 |
Koymans, M. R., Langereis, C. G., Pastor-Galan, D., et al., 2016. Paleomagnetism. org: An Online Multi-Platform Open Source Environment for Paleomagnetic Data Analysis. Computers & Geosciences, 93: 127–137. https://doi.org/10.1016/j.cageo.2016.05.007 |
Li, Z. Y., Ding, L., Lippert, P., et al., 2016. Paleomagnetic Constraints on the Mesozoic Drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia. Geology, 44: 727–730. https://doi.org/10.1130/g38030.1 |
Linder, J., Gilder, S. A., 2012. Latitude Dependency of the Geomagnetic Secular Variation S Parameter: A Mathematical Artifact. Geophysical Research Letters, 39(2): L02308. https://doi.org/10.1029/2011gl050330 |
Ma, Y. M., Wang, Q., Wang, J., et al., 2019. Paleomagnetic Constraints on the Origin and Drift History of the North Qiangtang Terrane in the Late Paleozoic. Geophysical Research Letters, 46(2): 689–697. https://doi.org/10.1029/2018gl080964 |
Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2018. A Stable Southern Margin of Asia during the Cretaceous: Paleomagnetic Constraints on the Lhasa-Qiangtang Collision and the Maximum Width of the Neo-Tethys. Tectonics, 37(10): 3853–3876. https://doi.org/10.1029/2018tc005143 |
Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2017. Paleomagnetic and Geochronologic Results of Latest Cretaceous Lava Flows from the Lhasa Terrane and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 122(11): 8786–8809. https://doi.org/10.1002/2017jb014743 |
Ma, Y. M., Yang, T. S., Bian, W. W., et al., 2016. Early Cretaceous Paleomagnetic and Geochronologic Results from the Tethyan Himalaya: Insights into the Neotethyan Paleogeography and the India-Asia Collision. Scientific Reports, 6: 21605. https://doi.org/10.1038/srep21605 |
Ma, Y. M., Yang, T. S., Yang, Z. Y., et al., 2014. Paleomagnetism and U-Pb Zircon Geochronology of Lower Cretaceous Lava Flows from the Western Lhasa Terrane: New Constraints on the India-Asia Collision Process and Intracontinental Deformation within Asia. Journal of Geophysical Research: Solid Earth, 119(10): 7404–7424. https://doi.org/10.1002/2014jb011362 |
Matthews, K. J., Maloney, K. T., Zahirovic, S., et al., 2016. Global Plate Boundary Evolution and Kinematics since the Late Paleozoic. Global and Planetary Change, 146: 226–250. https://doi.org/10.1016/j.gloplacha.2016.10.002 |
McElhinny, M. W., McFadden, P. L., 1997. Palaeosecular Variation over the Past 5 Myr Based on a New Generalized Database. Geophysical Journal International, 131(2): 240–252. https://doi.org/10.1111/j.1365-246x.1997.tb01219.x |
McFadden, P. L., Merrill, R. T., McElhinny, M. W., et al., 1991. Reversals of the Earth's Magnetic Field and Temporal Variations of the Dynamo Families. Journal of Geophysical Research: Solid Earth, 96(B3): 3923–3933. https://doi.org/10.1029/90jb02275 |
Meert, J. G., Pivarunas, A. F., Evans, D. A. D., et al., 2020. The Magnificent Seven: A Proposal for Modest Revision of the Quality Index. Tectonophysics, 790: 228549. https://doi.org/10.1016/j.tecto.2020.228549 |
Meng, J., Zhao, X. X., Wang, C. S., et al., 2018. Palaeomagnetism and Detrital Zircon U-Pb Geochronology of Cretaceous Redbeds from Central Tibet and Tectonic Implications. Geological Journal, 53(5): 2315–2333. https://doi.org/10.1002/gj.3070 |
Meng, J., Gilder, S. A., Li, Y. L., et al., 2020. Expanse of Greater India in the Late Cretaceous. Earth and Planetary Science Letters, 542: 116330. https://doi.org/10.1016/j.epsl.2020.116330 |
Meng, J., Gilder, S. A., Wang, C. S., et al., 2019. Defining the Limits of Greater India. Geophysical Research Letters, 46(8): 4182–4191. https://doi.org/10.1029/2019gl082119 |
Patzelt, A., Li, H. M., Wang, J. D., et al., 1996. Palaeomagnetism of Cretaceous to Tertiary Sediments from Southern Tibet: Evidence for the Extent of the Northern Margin of India Prior to the Collision with Eurasia. Tectonophysics, 259(4): 259–284. https://doi.org/10.1016/0040-1951(95)00181-6 |
Song, C., Wang, J., Fu, X., et al., 2012. Late Triassic Paleomagnetic Data from the Qiangtang Terrane of Tibetan Plateau and Their Tectonic Significances. Journal of Jilin University: Earth Science Edition, 42(2): 526–535 (in Chinese with English Abstract) |
Song, P. P., Ding, L., Lippert, P. C., et al., 2020. Paleomagnetism of Middle Triassic Lavas from Northern Qiangtang (Tibet): Constraints on the Closure of the Paleo-Tethys Ocean. Journal of Geophysical Research: Solid Earth, 125(2): e2019jb017804. https://doi.org/10.1029/2019jb017804 |
Song, P. P., Ding, L., Li, Z. Y., et al., 2015. Late Triassic Paleolatitude of the Qiangtang Block: Implications for the Closure of the Paleo-Tethys Ocean. Earth and Planetary Science Letters, 424: 69–83. https://doi.org/10.1016/j.epsl.2015.05.020 |
Sun, Z. M., Pei, J. L., Li, H. B., et al., 2012. Palaeomagnetism of Late Cretaceous Sediments from Southern Tibet: Evidence for the Consistent Palaeolatitudes of the Southern Margin of Eurasia Prior to the Collision with India. Gondwana Research, 21(1): 53–63. https://doi.org/10.1016/j.gr.2011.08.003 |
Sun, Z. M., Jiang, W., Pei, J. L., et al., 2008. New Early Cretaceous Paleomagnetic Data from Volcanic of the Eastern Lhasa Block and Its Tectonic Implications. Acta Petrologica Sinica, 24(7): 1621–1626 (in Chinese with English Abstract) |
Tan, X. D., Gilder, S., Kodama, K. P., et al., 2010. New Paleomagnetic Results from the Lhasa Block: Revised Estimation of Latitudinal Shortening across Tibet and Implications for Dating the India-Asia Collision. Earth and Planetary Science Letters, 293(3/4): 396–404. https://doi.org/10.1016/j.epsl.2010.03.013 |
Tauxe, L., Kent, D., 2004. A Simplified Statistical Model for the Geomagnetic Field and the Detection of Shallow Bias in Paleomagnetic Inclinations: Was the Ancient Magnetic Field Dipolar? Geophysical Monograph, 145: 101–115. https://doi.org/10.1029/145gm08 |
Tauxe, L., Banerjee, S. K., Butler R. F., et al., 2018. Essentials of Paleomagnetism: Fifth Web Edition. Scripps Institution of Oceanography, La Jolla |
Tauxe, L., 1993. Sedimentary Records of Relative Paleointensity of the Geomagnetic Field: Theory and Practice. Reviews of Geophysics, 31(3): 319–354. https://doi.org/10.1029/93rg01771 |
Tong, Y. B., Yang, Z. Y., Pei, J. L., et al., 2017. Paleomagnetism of the Upper Cretaceous Red-Beds from the Eastern Edge of the Lhasa Terrane: New Constraints on the Onset of the India-Eurasia Collision and Latitudinal Crustal Shortening in Southern Eurasia. Gondwana Research, 48: 86–100. https://doi.org/10.1016/j.gr.2017.04.018 |
Torsvik, T. H., van der Voo, R., Preeden, U., et al., 2012. Phanerozoic Polar Wander, Palaeogeography and Dynamics. Earth-Science Reviews, 114(3/4): 325–368. https://doi.org/10.1016/j.earscirev.2012.06.007 |
van der Voo, R., 1990. The Reliability of Paleomagnetic Data. Tectonophysics, 184(1): 1–9. https://doi.org/10.1016/0040-1951(90)90116-p |
van Hinsbergen, D. J. J., Lippert, P. C., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America, 109(20): 7659–7664. https://doi.org/10.1073/pnas.1117262109 |
van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., et al., 2011. Acceleration and Deceleration of India-Asia Convergence since the Cretaceous: Roles of Mantle Plumes and Continental Collision. Journal of Geophysical Research: Solid Earth, 116(B6): B06101. https://doi.org/10.1029/2010jb008051 |
Yan, M. D., Zhang, D. W., Fang, X. M., et al., 2016. Paleomagnetic Data Bearing on the Mesozoic Deformation of the Qiangtang Block: Implications for the Evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292–316. https://doi.org/10.1016/j.gr.2016.01.012 |
Yang, T. S., Jin, J. J., Bian, W. W., et al., 2019. Precollisional Latitude of the Northern Tethyan Himalaya from the Paleocene Redbeds and Its Implication for Greater India and the India-Asia Collision. Journal of Geophysical Research: Solid Earth, 124(11): 10777–10798. https://doi.org/10.1029/2019jb017927 |
Yang, T. S., Ma, Y. M., Bian, W. W., et al., 2015. Paleomagnetic Results from the Early Cretaceous Lakang Formation Lavas: Constraints on the Paleolatitude of the Tethyan Himalaya and the India-Asia Collision. Earth and Planetary Science Letters, 428: 120–133. https://doi.org/10.1016/j.epsl.2015.07.040 |
Yang, T. S., Ma, Y. M., Zhang, S. H., et al., 2015. New Insights into the India-Asia Collision Process from Cretaceous Paleomagnetic and Geochronologic Results in the Lhasa Terrane. Gondwana Research, 28(2): 625–641. https://doi.org/10.1016/j.gr.2014.06.010 |
Yang, X. F., Cheng, X., Zhou, Y. N., et al., 2017. Paleomagnetic Results from Late Carboniferous to Early Permian Rocks in the Northern Qiangtang Terrane, Tibet, China, and Their Tectonic Implications. Science China Earth Sciences, 60(1): 124–134. https://doi.org/10.1007/s11430-015-5462-7 |
Yi, Z., Appel, E., Huang, B., et al., 2017. Comment on "Remagnetization of the Paleogene Tibetan Himalayan Carbonate Rocks in the Gamba Area: Implications for Reconstructing the Lower Plate in the India‐Asia Collision" by Huang et al. Journal of Geophysical Research–Solid Earth, 122(7): 4852–4858 doi: 10.1002/2017JB014353 |
Yi, Z., Huang, B. C., Chen, J. S., et al., 2011. Paleomagnetism of Early Paleogene Marine Sediments in Southern Tibet, China: Implications to Onset of the India-Asia Collision and Size of Greater India. Earth and Planetary Science Letters, 309: 153–165. https://doi.org/10.1016/j.epsl.2011.07.001 |
Yu, L., Yan, M. D., Domeier, M., et al., 2022. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo-Jinshajiang Ocean. Geophysical Research Letters, 49(2): e2021gl096902. https://doi.org/10.1029/2021gl096902 |
Yuan, J., Yang, Z. Y., Deng, C. L., et al., 2021. Rapid Drift of the Tethyan Himalaya Terrane before Two-Stage India-Asia Collision. National Science Review, 8(7): nwaa173. https://doi.org/10.1093/nsr/nwaa173 |
Zhang, J., 2017. Zircon U-Pb Geochronology and Paleomagnetism of Late Permian Nayixiong Formation Volcanic Rocks in the Northern Qiangtang-Qamdo Block of the Tibetan Platesau: [Dissertation]. Northwest University, Xi'an (in Chinese with English Abstract) |
Zhang, Y., Huang, B. C., Zhao, Q., 2019. New Paleomagnetic Positive Proof of the Rigid or Quasi-Rigid Greater Indian Plate during the Early Cretaceous. Chinese Science Bulletin, 64(21): 2225–2244 (in Chinese with English Abstract) |
Zhang, Y. C., Shi, G. R., Shen, S. Z., 2013. A Review of Permian Stratigraphy, Palaeobiogeography and Palaeogeography of the Qinghai-Tibet Plateau. Gondwana Research, 24(1): 55–76. https://doi.org/10.1016/j.gr.2012.06.010 |
Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7–17. https://doi.org/10.1016/j.lithos.2015.06.023 |