Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 1
Feb 2023
Turn off MathJax
Article Contents
Junaid Khan, Huazhou Yao, Junhong Zhao, Qiwei Li, Wenshuai Xiang, Junsheng Jiang, Asma Tahir. Petrogenesis and Tectonic Implications of the Tertiary Choke Shield Basalt and Continental Flood Basalt from the Central Ethiopian Plateau. Journal of Earth Science, 2023, 34(1): 86-100. doi: 10.1007/s12583-022-1729-7
Citation: Junaid Khan, Huazhou Yao, Junhong Zhao, Qiwei Li, Wenshuai Xiang, Junsheng Jiang, Asma Tahir. Petrogenesis and Tectonic Implications of the Tertiary Choke Shield Basalt and Continental Flood Basalt from the Central Ethiopian Plateau. Journal of Earth Science, 2023, 34(1): 86-100. doi: 10.1007/s12583-022-1729-7

Petrogenesis and Tectonic Implications of the Tertiary Choke Shield Basalt and Continental Flood Basalt from the Central Ethiopian Plateau

doi: 10.1007/s12583-022-1729-7
More Information
  • Corresponding author: Junaid Khan, Junaidkhan5615@yahoo.com; Huazhou Yao, ycxc2009@126.com
  • Received Date: 28 May 2022
  • Accepted Date: 15 Aug 2022
  • Available Online: 02 Feb 2023
  • Issue Publish Date: 28 Feb 2023
  • The voluminous Choke Shield basalts and flood basalts are distributed in the central Ethiopian Plateau. They are tholeiitic in composition and have OIB-like geochemical features. The ca. 23 Ma Choke Shield basalts have SiO2 (47.1 wt.%-59.6 wt.%), MgO (1.01 wt.%-7.8 wt.%), Na2O + K2O (2.7 wt.%-8.4 wt.%), and display right inclined REE patterns ((La/Yb)N = 21.4-24.2) with enrichment of Nb, Ta, Zr, Hf and Pb in the primitive mantle-normalized trace element diagrams. They show low initial 87Sr/86Sr ratios (0.703 47-0.703 77) and high εNd(t) values (+4.4 to +5.0). In comparison, the 24 Ma high-Ti (HT1) flood basalts have SiO2 (38.9 wt.%-50.8 wt.%), MgO (3.9 wt.%-11.4 wt.%), Na2O + K2O (1.6 wt.%-5.8 wt.%), and display right inclined REE patterns ((La/Yb)N= 24-130.3) with enrichment of Nb, Ta, Zr, Hf, and Pb. They also show low initial 87Sr/86Sr ratios (0.703 30-0.704 44) and high εNd(t) values (+2.2 to +5.3). Both types of basalts were contaminated by minor crustal materials and underwent fractional crystallization of clinopyroxene, plagioclase, olivine, and minor Fe-Ti oxide. The Choke Shield basalts were generated by 1%-5% melting of garnet-spinel to phlogopite-bearing spinel lherzolite in a shallow zone of the mantle plume, while the flood basalts were formed by < 20% melting of amphibole-bearing garnet to garnet-spinel lherzolite in a deeper zone of the same mantle plume. The mantle source beneath the central Ethiopian Plateau was significantly heterogeneous during the Tertiary. It was characterized by EMI and EMII end-members that were formed by the metasomatism of the different components.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S5) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1729-7
  • loading
  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1016/S0377-0273(00)00182-7
    Asrat, A., 2018. Geoheritage, Potential Geoheritage Sites in Ethiopia: Challenges of Their Promotion and Conservation. In: Reynard, E., Brilha, J., eds., Geoheritage: Assessment, Protection, and Management. Elsevier. 339–353. https://doi.org/10.1016/B978-0-12-809531-7.00019-8
    Ayalew, D., Arndt, N., Bastien, F., et al., 2009. A New Mantle Xenolith Locality from Simien Shield Volcano, NW Ethiopia. Geological Magazine, 146(1): 144–149. https://doi.org/10.1017/s0016756808005785
    Ayalew, D., Jung, S., Romer, R. L., et al., 2016. Petrogenesis and Origin of Modern Ethiopian Rift Basalts: Constraints from Isotope and Trace Element Geochemistry. Lithos, 258/259: 1–14. https://doi.org/10.1016/j.lithos.2016.04.001
    Ayalew, D., Marty, B., Yirgu, G., et al., 1999. Geochemical and Isotopic (Sr, Nd and Pb) Characteristics of Volcanic Rocks from Southwestern Ethiopia. Journal of African Earth Sciences, 29(2): 381–391. https://doi.org/10.1016/S0899-5362(99)00104-9
    Baker, J. A., MacPherson, C. G., Menzies, M. A., et al., 2000. Resolving Crustal and Mantle Contributions to Continental Flood Volcanism, Yemen; Constraints from Mineral Oxygen Isotope Data. Journal of Petrology, 41(12): 1805–1820. https://doi.org/10.1093/petrology/41.12.1805
    Baker, J. A., Snee, L., Menzies, M., 1996. A Brief Oligocene Period of Flood Volcanism in Yemen: Implications for the Duration and Rate of Continental Flood Volcanism at the Afro-Arabian Triple Junction. Earth and Planetary Science Letters, 138(1/2/3/4): 39–55. https://doi.org/10.1016/0012-821X(95)00229-6
    Beccaluva, L., Bianchini, G., Ellam, R. M., et al., 2011. Peridotite Xenoliths from Ethiopia: Inferences about Mantle Processes from Plume to Rift Settings. GSA Special Papers: Volcanism and Evolution of the African Lithosphere. Geological Society of America. Geo Science World. 478: 77–104. https://doi.org/10.1130/2011.2478(05)
    Beccaluva, L., Bianchini, G., Natali, C., et al., 2009. Continental Flood Basalts and Mantle Plumes: A Case Study of the Northern Ethiopian Plateau. Journal of Petrology, 50(7): 1377–1403. https://doi.org/10.1093/petrology/egp024
    Berhe, S. M., Desta, B., Nicoletti, M., et al., 1987. Geology, Geochronology and Geodynamic Implications of the Cenozoic Magmatic Province in W and SE Ethiopia. Journal of the Geological Society, 144(2): 213–226. https://doi.org/10.1144/gsjgs.144.2.0213
    Bianchini, G., Bryce, J. G., Blichert-Toft, J., et al., 2014. Mantle Dynamics and Secular Variations beneath the East African Rift: Insights from Peridotite Xenoliths (Mega, Ethiopia). Chemical Geology, 386: 49–58. https://doi.org/10.1016/j.chemgeo.2014.07.024
    Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63–114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3
    Brotzu, P., Ganzerli-Valentini, M., Morbidelli, L., et al., 1981. Basaltic Volcanism in the Northern Sector of the Main Ethiopian Rift. Journal of Volcanology and Geothermal Research, 10(4): 365–382. https://doi.org/10.1016/0377-0273(81)90086-X
    Burov, E., Gerya, T., 2014. Asymmetric Three-Dimensional Topography over Mantle Plumes. Nature, 513(7516): 85–89. https://doi.org/10.1038/nature13703
    Campbell, I. H., Griffiths, R. W., 1990. Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters, 99(1/2): 79–93. https://doi.org/10.1016/0012-821X(90)90072-6
    Chernet, T., Hart, W., Aronson, J., et al., 1998. New Age Constraints on the Timing of Volcanism and Tectonism in the Northern Main Ethiopian Rift-Southern Afar Transition Zone (Ethiopia). Journal of Volcanology and Geothermal Research, 80(3/4): 267–280. https://doi.org/10.1016/S0377-0273(97)00035-8
    Coffin, M. F., Eldholm, O., 1994. Large Igneous Provinces: Crustal Structure, Dimensions, and External Consequences. Reviews of Geophysics, 32(1): 1. https://doi.org/10.1029/93rg02508
    Conticelli, S., Sintoni, M. F., Abebe, T., et al., 1999. Petrology and Geochemistry of Ultramafic Xenoliths and Host Lavas from the Ethiopian Volcanic Province: An Insight into the Upper Mantle under the Eastern Africa. Acta Vulcanologica, 11: 143–159
    Coulié, E., 2001. Chronologie 40Ar/39Ar et K/Ar de La Dislocation Du Plateau Éthiopien et de La Déchirure Continentale à La Corne de l'Afrique Depuis 30 Ma: [Dissetation]. Universite de Paris Sud, Orsay
    Coulié, E., Quideleur, X., Gillot, P. Y., et al., 2003. Comparative K-Ar and Ar/Ar Dating of Ethiopian and Yemenite Oligocene Volcanism: Implications for Timing and Duration of the Ethiopian Traps. Earth and Planetary Science Letters, 206(3/4): 477–492. https://doi.org/10.1016/S0012-821X(02)01089-0
    Edwards, C. M. H., Menzies, M. A., Thirlwall, M. F., et al., 1994. The Transition to Potassic Alkaline Volcanism in Island Arcs: The Ringgit—Beser Complex, East Java, Indonesia. Journal of Petrology, 35(6): 1557–1595. https://doi.org/10.1093/petrology/35.6.1557
    Ferrando, S., Frezzotti, M. L., Neumann, E. R., et al., 2008. Composition and Thermal Structure of the Lithosphere beneath the Ethiopian Plateau: Evidence from Mantle Xenoliths in Basanites, Injibara, Lake Tana Province. Mineralogy and Petrology, 93(1): 47–78. https://doi.org/10.1007/s00710-007-0219-z
    Furman, T., Kaleta, K. M., Bryce, J. G., et al., 2006. Tertiary Mafic Lavas of Turkana, Kenya: Constraints on East African Plume Structure and the Occurrence of High-μ Volcanism in Africa. Journal of Petrology, 47(6): 1221–1244. https://doi.org/10.1093/petrology/egl009
    George, R., Rogers, N., Kelley, S., 1998. Earliest Magmatism in Ethiopia: Evidence for Two Mantle Plumes in One Flood Basalt Province. Geology, 26(10): 923–926. https://doi.org/10.1130/0091-7613(1998)0260923: emieef>2.3.co;2 doi: 10.1130/0091-7613(1998)0260923:emieef>2.3.co;2
    Getaw, A., Ayalew, D., 2020. Petrogenesis of Hirna Mafic Lavas, in Southeastern Ethiopia Volcanic Province: Assessments from Major and Trace Elements. Journal of African Earth Sciences, 164: 103799. https://doi.org/10.1016/j.jafrearsci.2020.103799
    Ghebretensae, G. F., Yao, H. Z., Zhao, J. H., et al., 2019. Neoproterozoic Magmatism in the Southern Arabian-Nubian Shield: Implications for Petrogenesis and Tectonic Setting. Arabian Journal for Science and Engineering, 44(7): 6525–6545. https://doi.org/10.1007/s13369-019-03949-w
    Gibson, S. A., Thompson, R. N., Leonardos, O. H., et al., 1995. The Late Cretaceous Impact of the Trindade Mantle Plume: Evidence from Large-Volume, Mafic, Potassic Magmatism in SE Brazil. Journal of Petrology, 36(1): 189–229. https://doi.org/10.1093/petrology/36.1.189
    Gurenko, A. A., Chaussidon, M., 1995. Enriched and Depleted Primitive Melts Included in Olivine from Icelandic Tholeiites: Origin by Continuous Melting of a Single Mantle Column. Geochimica et Cosmochimica Acta, 59(14): 2905–2917. https://doi.org/10.1016/0016-7037(95)00184-0
    Han, B. F., Wang, S. G., Kagami, H., 1999. Trace Element and Nd-Sr Isotope Constraints on Origin of the Chifeng Flood Basalts, North China. Chemical Geology, 155(3): 187–199. https://doi.org/10.1016/S0009-2541(98)00172-7
    Hart, S. R., 1988. Heterogeneous Mantle Domains: Signatures, Genesis and Mixing Chronologies. Earth and Planetary Science Letters, 90(3): 273–296. https://doi.org/10.1016/0012-821X(88)90131-8
    Hart, W. K., Wolde Gabriel, G., Walter, R. C., et al., 1989. Basaltic Volcanism in Ethiopia: Constraints on Continental Rifting and Mantle Interactions. Journal of Geophysical Research, 94(B6): 7731. https://doi.org/10.1029/jb094ib06p07731
    Hawkesworth, C. J., Mantovani, M. S. M., Peate D. W., 1988. Lithosphere Remobilization during Paraná CFB Magmatism. Journal of Petrology, 29(Special-Volume 1): 205–223. https://doi.org/10.1093/petrology/Special_Volume.1.205
    Hawkesworth, C. J., Marsh, J. S., Duncan, A. R., et al., 1984. The Role of Continental Lithosphere in the Generation of the Karoo Volcanic Rocks: Evidence from Combined Nd- and Sr-Isotope Studies. In: Erlank, A. J., ed., Petrogenesis of the Volcanic Rocks of the Karoo Province. Geological Society of South Africa Special Publication. 13: 341–354
    Hofmann, C., Courtillot, V., Féraud, G., et al., 1997. Timing of the Ethiopian Flood Basalt Event and Implications for Plume Birth and Global Change. Nature, 389(6653): 838–841. https://doi.org/10.1038/39853
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
    Jenner, G. A., Foley, S. F., Jackson, S. E., et al., 1993. Determination of Partition Coefficients for Trace Elements in High Pressure-Temperature Experimental Run Products by Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS). Geochimica et Cosmochimica Acta, 57(23/24): 5099–5103. https://doi.org/10.1016/0016-7037(93)90611-Y
    Johnson, P. R., 2014. An Expanding Arabian-Nubian Shield Geochronologic and Isotopic Dataset: Defining Limits and Confirming the Tectonic Setting of a Neoproterozoic Accretionary Orogen. The Open Geology Journal, 8(1): 3–33. https://doi.org/10.2174/1874262901408010003
    Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian-Ediacaran History of the Arabian-Nubian Shield: A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3): 167–232. https://doi.org/10.1016/j.jafrearsci.2011.07.003
    Jourdan, F., Bertrand, H., Schärer, U., et al., 2007. Major and Trace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: Lithosphere vs Mantle Plume Contribution. Journal of Petrology, 48(6): 1043–1077. https://doi.org/10.1093/petrology/egm010
    Jung, C., Jung, S., Hoffer, E., et al., 2006. Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany. Journal of Petrology, 47(8): 1637–1671. https://doi.org/10.1093/petrology/egl023
    Kazmin, V., 1971. Precambrian of Ethiopia. Nature Physical Science, 230(16): 176–177. https://doi.org/10.1038/physci230176a0
    Kazmin, V., 1975. The Precambrian of Ethiopia and Some Aspects of the Geology of the Mozambique Belt. Bulletin Geophysics Obs., Addis Ababa University. 15: 27–43
    Keranen, K., Klemperer, S. L., Gloaguen, R., et al., 2004. Three-Dimensional Seismic Imaging of a Protoridge Axis in the Main Ethiopian Rift. Geology, 32(11): 949–952. https://doi.org/10.1130/g20737.1
    Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4): 793–834. https://doi.org/10.1093/petrology/egg112
    Koppers, A. A. P., 2002. ArArCALC—Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605–619. https://doi.org/10.1016/S0098-3004(01)00095-4
    Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silicadiagram. Journal of Petrology, 27: 745–750. https://doi.org/10.1093/petrology/27.3.745
    Lightfoot, P. C., Hawkesworth, C. J., Devey, C. W., et al., 1990. Source and Differentiation of Deccan Trap Lavas: Implications of Geochemical and Mineral Chemical Variations. Journal of Petrology, 31(5): 1165–1200. https://doi.org/10.1093/petrology/31.5.1165
    Lightfoot, P. C., Hawkesworth, C. J., Hergt, J., et al., 1993. Remobilisation of the Continental Lithosphere by a Mantle Plume: Major-, Trace-Element, and Sr-, Nd-, and Pb-Isotope Evidence from Picritic and Tholeiitic Lavas of the Noril'sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology, 114(2): 171–188. https://doi.org/10.1007/BF00307754
    Marty, B., Pik, R., Yirgu, G., 1996. Helium Isotopic Variations in Ethiopian Plume Lavas: Nature of Magmatic Sources and Limit on Lower Mantle Contribution. Earth and Planetary Science Letters, 144(1/2): 223–237. https://doi.org/10.1016/0012-821X(96)00158-6
    McDonough, W. F., 1990. Constraints on the Composition of the Continental Lithospheric Mantle. Earth and Planetary Science Letters, 101(1): 1–18. https://doi.org/10.1016/0012-821X(90)90119-I
    McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021–1091. https://doi.org/10.1093/petrology/32.5.1021
    Mège, D., Korme, T., 2004. Dyke Swarm Emplacement in the Ethiopian Large Igneous Province: Not only a Matter of Stress. Journal of Volcanology and Geothermal Research, 132(4): 283–310. https://doi.org/10.1016/s0377-0273(03)00318-4
    Melluso, L., Beccaluva, L., Brotzu, P., et al., 1995. Constraints on the Mantle Sources of the Deccan Traps from the Petrology and Geochemistry of the Basalts of Gujarat State (Western India). Journal of Petrology, 36(5): 1393–1432. https://doi.org/10.1093/petrology/36.5.1393
    Melluso, L., Cucciniello, C., Petrone, C. M., et al., 2008. Petrology of Karoo Volcanic Rocks in the Southern Lebombo Monocline, Mozambique. Journal of African Earth Sciences, 52(4/5): 139–151. https://doi.org/10.1016/j.jafrearsci.2008.06.002
    Meshesha, D., Shinjo, R., 2008. Rethinking Geochemical Feature of the Afar and Kenya Mantle Plumes and Geodynamic Implications. Journal of Geophysical Research, 113(B9): B09209. https://doi.org/10.1029/2007jb005549
    Natali, C., Beccaluva, L., Bianchini, G. G., et al., 2016. High-MgO Lavas Associated to CFB as Indicators of Plume-Related Thermochemical Effects: The Case of Ultra-Titaniferous Picrite-Basalt from the Northern Ethiopian-Yemeni Plateau. Gondwana Research, 34: 29–48. https://doi.org/10.1016/j.gr.2016.02.009
    Natali, C., Beccaluva, L., Bianchini, G., et al., 2011. Rhyolites Associated to Ethiopian CFB: Clues for Initial Rifting at the Afar Plume Axis. Earth and Planetary Science Letters, 312(1/2): 59–68. https://doi.org/10.1016/j.epsl.2011.09.059
    Natali, C., Beccaluva, L., Bianchini, G., et al., 2017. Comparison among Ethiopia-Yemen, Deccan, and Karoo Continental Flood Basalts of Central Gondwana: Insights on Lithosphere Versus Asthenosphere Contributions in Compositionally Zoned Magmatic Provinces. GSA Special Papers: The Crust-Mantle and Lithosphere-Asthenosphere Boundaries: Insights from Xenoliths, Orogenic Deep Sections, and Geophysical Studies Geological Society of America. Geological Society of America. Geo Science World. 526: 191–215. https://doi.org/10.1130/2017.2526(10)
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/BF00375192
    Peate, D. W., 1997. The Parana-Etendeka Province. In: Mahoney, J. J., Coffin, M. F., eds., Large Igneous Provinces. American Geophysical Union, Washington D. C. . 217–245
    Peate, D. W., Hawkesworth, C. J., 1996. Lithospheric to Asthenospheric Transition in Low-Ti Flood Basalts from Southern Paraná, Brazil. Chemical Geology, 127(1/2/3): 1–24. https://doi.org/10.1016/0009-2541(95)00086-0
    Peate, D. W., Hawkesworth, C. J., Mantovani, M. S. M., 1992. Chemical Stratigraphy of the Paraná Lavas (South America): Classification of Magma Types and Their Spatial Distribution. Bulletin of Volcanology, 55(1): 119–139. https://doi.org/10.1007/BF00301125
    Piccirillo, E. M., Melfi, A. J., 1988. The Mesozoic Flood Volcanism of the Paraná Basin: Petrogenetic and Geophysical Aspects. Instituto Astronomico e Geofisico, Universidade de Sao Paulo, Sao Paulo
    Piccirillo, E. M., Melfi, A. J., Comin-Chiaramonti, P., et al., 1988. Continental Flood Volcanism from the Paraná Basin (Brazil). In: Macdougall, J. D., ed., Continental Flood Basalts. Petrology and Structural Geology, 3: 195–238. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7805-9_6
    Pik, R., Deniel, C., Coulon, C., et al., 1998. The Northwestern Ethiopian Plateau Flood Basalts: Classification and Spatial Distribution of Magma Types. Journal of Volcanology and Geothermal Research, 81(1/2): 91–111. https://doi.org/10.1016/S0377-0273(97)00073-5
    Pik, R., Deniel, C., Coulon, C., et al., 1999. Isotopic and Trace Element Signatures of Ethiopian Flood Basalts: Evidence for Plume-Lithosphere Interactions. Geochimica et Cosmochimica Acta, 63(15): 2263–2279. https://doi.org/10.1016/S0016-7037(99)00141-6
    Qi, L., Hu, J., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513. https://doi.org/10.1016/S0039-9140(99)00318-5
    Qiu, H. N., Jiang, Y. D., 2007. Sphalerite 40Ar/39Ar Progressive Crushing and Stepwise Heating Techniques. Earth and Planetary Science Letters, 256(1/2): 224–232. https://doi.org/10.1016/j.epsl.2007.01.028
    Ray, D., Misra, S., Widdowson, M., et al., 2014. A Common Parentage for Deccan Continental Flood Basalt and Central Indian Ocean Ridge Basalt? a Geochemical and Isotopic Approach. Journal of Asian Earth Sciences, 84: 188–200. https://doi.org/10.1016/j.jseaes.2013.12.015
    Ren, Z. Y., Hanyu, T., Miyazaki, T., et al., 2009. Geochemical Differences of the Hawaiian Shield Lavas: Implications for Melting Process in the Heterogeneous Hawaiian Plume. Journal of Petrology, 50(8): 1553–1573. https://doi.org/10.1093/petrology/egp041
    Roger, S., Dautria, J. M., Coulon, C., et al., 1999. An Insight on the Nature, Composition and Evolution of the Lithospheric Mantle beneath the Northwestern Ethiopian Plateau: The Ultrabasic Xenoliths from the Tana Lake Province. Acta Vulcanologica, 11: 161–168
    Rudnick, R. L., Gao, S., 2003. The Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry: The Crust. Elsevier-Pergamon, Oxford, 3: 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4.
    Sgualdo, P., Aviado, K., Beccaluva, L., et al., 2015. Lithospheric Mantle Evolution in the Afro-Arabian Domain: Insights from Bir Ali Mantle Xenoliths (Yemen). Tectonophysics, 650: 3–17. https://doi.org/10.1016/j.tecto.2014.11.025
    Sheth, H. C., Melluso, L., 2008. The Mount Pavagadh Volcanic Suite, Deccan Traps: Geochemical Stratigraphy and Magmatic Evolution. Journal of Asian Earth Sciences, 32(1): 5–21. https://doi.org/10.1016/j.jseaes.2007.10.001
    Shimoda, G., Tatsumi, Y., Morishita, Y., 2003. Behavior of Subducting Sediments beneath an Arc under a High Geothermal Gradient: Constraints from the Miocene SW Japan Arc. Geochemical Journal, 37(4): 503–518.
    Singh, M. R., Manikyamba, C., Ray, J., et al., 2016. Major, Trace and Platinum Group Element (PGE) Geochemistry of Archean Iron Ore Group and Proterozoic Malangtoli Metavolcanic Rocks of Singhbhum Craton, Eastern India: Inferences on Mantle Melting and Sulphur Saturation History. Ore Geology Reviews, 72: 1263–1289. https://doi.org/10.1016/j.oregeorev.2015.04.024
    Stewart, K., Rogers, N., 1996. Mantle Plume and Lithosphere Contributions to Basalts from Southern Ethiopia. Earth and Planetary Science Letters, 139(1/2): 195–211. https://doi.org/10.1016/0012-821X(96)00015-5
    Sun, W. D., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London Special Publications, 42(1): 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
    Tamirat, T., Chekol, T., Meshesha, D., 2021. Petrology and Geochemistry of Basaltic Rocks from North Western Ethiopian Plateau Continental Flood Basalt. Journal of African Earth Sciences, 182: 104282. https://doi.org/10.1016/j.jafrearsci.2021.104282
    Tesfaye, S., Harding, D. J., Kusky, T. M., 2003. Early Continental Breakup Boundary and Migration of the Afar Triple Junction, Ethiopia. Geological Society of America Bulletin, 115(9): 1053. https://doi.org/10.1130/b25149.1
    Ukstins, I. A., Renne, P. R., Wolfenden, E., et al., 2002. Matching Conjugate Volcanic Rifted Margins: 40Ar/39Ar Chrono-Stratigraphy of Pre- and Syn-Rift Bimodal Flood Volcanism in Ethiopia and Yemen. Earth and Planetary Science Letters, 198(3/4): 289–306. https://doi.org/10.1016/S0012-821X(02)00525-3
    Vail, J. R., 1985. Pan-African (Late Precambrian) Tectonic Terrains and the Reconstruction of the Arabian-Nubian Shield. Geology, 13(12): 839.https://doi.org/10.1130/0091-7613(1985)13839: plptta>2.0.co;2 doi: 10.1130/0091-7613(1985)13839:plptta>2.0.co;2
    Wang, F., Zheng, X. S., Lee, J. I. K., et al., 2009. An 40Ar/39Ar Geochronology on a Mid-Eocene Igneous Event on the Barton and Weaver Peninsulas: Implications for the Dynamic Setting of the Antarctic Peninsula. Geochemistry Geophysics Geosystems, 10(12): Q12006. https://doi.org/10.1029/2009GC002874
    Watchorn, F., Nichols, G. J., Bosence, D. W. J., 1998. Rift-Related Sedimentation and Stratigraphy, Southern Yemen (Gulf of Aden). Sedimentation and Tectonics in Rift Basins Red Sea: Gulf of Aden. Springer, Netherlands, Dordrecht. 165–189. https://doi.org/10.1007/978-94-011-4930-3_11
    Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2/3/4): 381–397. https://doi.org/10.1016/0012-821X(91)90217-6
    White, W. M., Duncan, R. A., 1995. Geochemistry and Geochronology of the Society Island: New Evidence from Deep Mantle Recycling. In: Basu, A., Hart, S. R., eds., Isotope Studies of Crust-Mantle Evolution. AGU, Washington, D. C. . 1–23
    Woldemichael, B. W., Kimura, J. I., 2008. Geochemistry of the Neoproterozoic Ghimbi-Nedjo Mafic to Intermediate Intrusions: Implications for Magma Genesis and Tectonic Setting of the Western Ethiopia Shield. Earth Science (Chikyu Kagaku), 62(4): 257–271. https://doi.org/10.15080/agcjchikyukagaku.62.4_257
    Woldemichael, B. W., Kimura, J. I., Dunkley, D. J., et al., 2010. SHRIMP U-Pb Zircon Geochronology and Sr-Nd Isotopic Systematic of the Neoproterozoic Ghimbi-Nedjo Mafic to Intermediate Intrusions of Western Ethiopia: A Record of Passive Margin Magmatism at 855 Ma?. International Journal of Earth Sciences, 99(8): 1773–1790. https://doi.org/10.1007/s00531-009-0481-x
    Wolfenden, E., Ebinger C., Yirgu G., et al., 2004. Evolution of the Northern Main Ethiopian Rift: Birth of a Triple Junction. Earth and Planetary Science Letters, 224(1/2): 213–228. https://doi.org/10.1016/j.epsl.2004.04.022
    Wooden, J. L., Czamanske, G. K., Fedorenko, V. A., et al., 1993. Isotopic and Trace-Element Constraints on Mantle and Crustal Contributions to Siberian Continental Flood Basalts, Noril􀆳sk Area, Siberia. Geochimica et Cosmochimica Acta, 57(15): 3677–3704. https://doi.org/10.1016/0016-7037(93)90149-Q
    Yao, H. Z., Chen, K. X., Wang, J. X., et al., 2018. The Geochemical Criteria of Mantle Plume Origin for Cenozoic Volcanism, Eastern African Rift System(EARS). Geology and Mineral Resources of South China, 34(1): 10–21 https://doi.org/10.3969/j.issn.1007-3701.2018.01.002 (in Chinese with English Abstract)
    Yu, X., Lee, C. T. A., Chen, L. H., et al., 2015. Magmatic Recharge in Continental Flood Basalts: Insights from the Chifeng Igneous Province in Inner Mongolia. Geochemistry Geophysics Geosystems, 16(7): 2082–2096. https://doi.org/10.1002/2015GC005805
    Zhang, Y., Liu, J. Q., Guo, Z. F., 2010. Permian Basaltic Rocks in the Tarim Basin, NW China: Implications for Plume-Lithosphere Interaction. Gondwana Research, 18(4): 596–610. https://doi.org/10.1016/j.gr.2010.03.006
    Zhao, J. H., Zhou, M. F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27–47. https://doi.org/10.1016/j.precamres.2006.09.002
    Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3/4): 152–168. https://doi.org/10.1016/j.lithos.2008.09.017
    Zimmer, M., Kroner, A., Jochum, K. P., et al., 1995. The Gabal Gerf Complex: A Precambrian N-MORB Ophiolite in the Nubian Shield, NE Africa. Chemical Geology, 123(1/2/3/4): 29–51. https://doi.org/10.1016/0009-2541(95)00018-H
    Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33–47. https://doi.org/10.1016/S0009-2541(00)00243-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(259) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return