Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 5
Oct 2022
Turn off MathJax
Article Contents
Shao-Yong Jiang, Huimin Su, Xinyou Zhu, Kangyu Zhu, Zhenpeng Duan. A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type. Journal of Earth Science, 2022, 33(5): 1095-1113. doi: 10.1007/s12583-022-1736-8
Citation: Shao-Yong Jiang, Huimin Su, Xinyou Zhu, Kangyu Zhu, Zhenpeng Duan. A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type. Journal of Earth Science, 2022, 33(5): 1095-1113. doi: 10.1007/s12583-022-1736-8

A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type

doi: 10.1007/s12583-022-1736-8
More Information
  • Corresponding author: Shao-Yong Jiang,
  • Received Date: 09 Jun 2022
  • Accepted Date: 02 Sep 2022
  • Issue Publish Date: 30 Oct 2022
  • Lithium is one of the important strategic energy metals, which is in short supply in China. There are three major types of lithium deposits: brine and salt lake type, highly differentiated granite or pegmatite type, and carbonate-clay type. In recent years, some new types of lithium deposits have also begun to receive great attention and subject recent research. There are many crypto-explosive breccia pipe type deposits in the world, including copper, gold, lead, zinc, tungsten and tin deposits, but little is known about this type of lithium deposit. This paper introduces the latest research results of the Weilasituo Sn-Li-Rb polymetallic deposit in Inner Mongolia (NE China), which occurs in the middle-southern section of the Great Xing'an Range metallogenic belt. A remarkable feature of this deposit is the coexistence of various mineralization types, including granite type Rb and Sn-Zn, hydrothermal crypto-explosive breccia pipe type Li-Rb, quartz vein type Sn-Zn and sulfide vein type Pb-Zn-Ag mineralization. Among them, hydrothermal crypto-explosive breccia pipe type Li-Rb deposit is currently very rare at home and abroad, which is likely a new type of rare metal deposit that worthy of our attention. This paper systematically summarizes the geology, alteration and mineralization, geochemistry, isotopes and geochronology of the Weilasituo deposit, and establishes a new petrogenic and metallogenic model.


  • loading
  • Aleinikoff, J. N., Selby, D., Slack, J. F., et al., 2016. U-Pb, Re-Os, and Ar/Ar Geochronology of Rare Earth Element (REE)-Rich Breccia Pipes and Associated Host Rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au Deposit, St. Francois Mountains, Missouri. Economic Geology, 111(8): 1883–1914. https://doi.org10.2113/econgeo.111.8.1883
    Anderson, E. D., Atkinson, W. W. Jr, Marsh, T., et al., 2009. Geology and Geochemistry of the Mammoth Breccia Pipe, Copper Creek Mining District, Southeastern Arizona: Evidence for a Magmatic-Hydrothermal Origin. Mineralium Deposita, 44(2): 151–170. https://doi.org10.1007/s00126-008-0206-2
    Baker, E. M., Andrew, A. S., 1991. Geologic, Fluid Inclusion, and Stable Isotope Studies of the Gold-Bearing Breccia Pipe at Kidston, Queensland, Australia. Economic Geology, 86(4): 810–830. https://doi.org10.2113/gsecongeo.86.4.810
    Benson, T. R., Coble, M. A., Rytuba, J. J., et al., 2017. Lithium Enrichment in Intracontinental Rhyolite Magmas Leads to Li Deposits in Caldera Basins. Nature Communications, 8(1): 1–9. https://doi.org10.1038/s41 467-017-00234-y doi: 10.1038/s41467-017-00234-y
    Bradley, D., Munk, L. A., Jochens, H., et al., 2013. A Preliminary Deposits Model for Lithium Brines. USGS, Open File, 1006
    Breiter, K., Hložková, M., Korbelová, Z., et al., 2019. Diversity of Lithium Mica Compositions in Mineralized Granite-Greisen System: Cínovec Li-Sn-W Deposit, Erzgebirge. Ore Geology Reviews, 106(115): 12–27. https://doi.org10.1016/j.oregeorev.2019.01.013
    Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites Revisited. The Canadian Mineralogist, 43(6): 2005–2026. https://doi.org10.2113/gscanmin.43.6.2005
    Chakhmouradian, A. R., Smith, M. P., Kynicky, J., 2015. From "Strategic" Tungsten to "Green" Neodymium: A Century of Critical Metals at a Glance. Ore Geology Reviews, 64: 455–458. https://doi.org10.1016/j.oregeorev.2014.06.008
    Chen, C., Lee, C. T. A., Tang, M., et al., 2020. Lithium Systematics in Global Arc Magmas and the Importance of Crustal Thickening for Lithium Enrichment. Nature Communications, 11(1): 5313. https://doi.org10.1038/s41467-020-19106-z
    Chen, Y. J., Zhao, R. Y., Wu, B., 2012. Discovery of Cryptoexplosive Breccias in the Jiling Uranium Deposit of the Longshoushan Area, Gansu Province and Their Genesis. Geology and Exploration, 48(6): 1101–1108 (in Chinese with English Abstract)
    Chevychelov, V. Y., Borodulin, G. P., Zaraisky, G. P., 2010. Solubility of Columbite, (Mn, Fe) (Nb, Ta)2O6, in Granitoid and Alkaline Melts at 650–850 ℃ and 30–400 MPa: An Experimental Investigation. Geochemistry International, 48(5): 456–464 doi: 10.1134/S0016702910050034
    Cui, W., Liu, C. L., Chen, C., et al., 2021. Characteristics and Prospecting Direction of Crypto-Explosive Breccia Pipe of Beryllium and Rubidium Deposits in Pengzhuang, Eastern Hebei. Journal of Hebei Geo University, 44(4): 26–34 (in Chinese with English Abstract)
    Fan, H. R., Hu, F. F., Wilde, S. A., et al., 2011. The Qiyugou Gold-Bearing Breccia Pipes, Xiong'ershan Region, Central China: Fluid-Inclusion and Stable-Isotope Evidence for an Origin from Magmatic Fluids. International Geology Review, 53(1): 25–45. https://doi.org10.1080/00206810902875370
    Fan, Z., Qiu, H., Fu, X., et al., 2017. Discovery and Exploration of Weilasituo Large Porphyry-Type Tin-Polymetal Deposit in Inner Mongolia and Its Geological Significance. Gold Science and Technology, 25(1): 9–17 (in Chinese with English Abstract)
    Fu, X., Lu, G. X., Kou, L. M., et al., 2020. Research on the Zoning and Distribution of Ore-Bearing Tectono-Deformation-Lithofacies Belt in the Weilasituo Li-Sn Polymetallic Deposit, Inner Mongolia. Geological Bulletin of China, 39(11): 1752–1758 (in Chinese with English Abstract) doi: 10.12097/j.issn.1671-2552.2020.11.007
    Gao, X., Zhou, Z. H., Breiter, K., et al., 2019. Ore-Formation Mechanism of the Weilasituo Tin-Polymetallic Deposit, NE China: Constraints from Bulk-Rock and Mica Chemistry, He-Ar Isotopes, and Re-Os Dating. Ore Geology Reviews, 109(4): 163–183. https://doi.org10.1016/j.orege orev.2019.04.007 doi: 10.1016/j.oregeorev.2019.04.007
    Godfrey, L. V., Chan, L. H., Alonso, R. N., et al., 2013. The Role of Climate in the Accumulation of Lithium-Rich Brine in the Central Andes. Applied Geochemistry, 38: 92–102. m.2013.09.002 doi: 10.1016/j.apgeochem.2013.09.002
    Gulson, B. L., Jones, M. T., 1992. Cassiterite: Potential for Direct Dating of Mineral Deposits and a Precise Age for the Bushveld Complex Granites. Geology, 20(4): 355.>;2 doi: 10.1130/0091-7613(1992)0200355:cpfddo>;2
    Guo, G. J., 2016. Discussion on Geological Characteristics and Metallogenic Origin of Weilasituo Sn-Polymetallic Deposit in Inner Mongolia: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Guo, J., Zhang, R. Q., Li, C. Y., et al., 2018. Genesis of the Gaosong Sn-Cu Deposit, Gejiu District, SW China: Constraints from in situ LA-ICP-MS Cassiterite U-Pb Dating and Trace Element Fingerprinting. Ore Geology Reviews, 92: 627–642.
    Guo, L. X., Liu, J. M., Zeng, Q. D., et al., 2018. Fluid Inclusion Characteristics of the Weilasituo Sn Polymetallic Ore Deposit, Inner Mongolia, China. Earth Science Frontiers, 25(1): 168–181 (in Chinese with English Abstract)
    Guo, S., He, P., Zhang, X. B., et al., 2019. Geochronology and Geochemistry of Maodeng-Xiaogushan tin-Polymetallic Ore Field in Southern Da Hinggan Mountains and Their Geological Significances. Mineral Deposits, 38(3): 509–525 (in Chinese with English Abstract)
    Guo, W. K., Zeng, Q. D., Guo, Y. P., et al., 2018. Rb-Sr Dating of Sphalerite and S-Pb Isotopic Studies of the Xinxing Crypto-Explosive Breccia Pb-Zn-(Ag) Deposit in the Southeastern Segment of the Lesser Xing'an-Zhangguangcai Metallogenic Belt, NE China. Ore Geology Reviews, 99: 75–85.
    Harlaux, M., Marignac, C., Mercadier, J., et al., 2021. Multistage Development of a Hydrothermal W Deposit during the Variscan Late-Orogenic Evolution: The Puy-Les-Vignes Breccia Pipe (Massif Central, France). BSGF-Earth Sciences Bulletin, 192: 33.
    Hennigh, Q., Hutchinson, R., 1999. Cassiterite at Kidd Creeek: An Example of Volcanogenic Massive Sulfide-Hosted Tin Mineralization. Economic Geology Monograph Series, 10: 431–440
    Hofstra, A. H., Todorov, T. I., Mercer, C. N., et al., 2013. Silicate Melt Inclusion Evidence for Extreme Pre-Eruptive Enrichment and Post-Eruptive Depletion of Lithium in Silicic Volcanic Rocks of the Western United States: Implications for the Origin of Lithium-Rich Brines. Economic Geology, 108(7): 1691–1701.
    Ishihara, S., Qin, K. Z., Wang, Y. W., 2008. Resource Evaluation of Indium in the Dajing Tin-Polymetallic Deposits, Inner Mongolia, China. Resource Geology, 58(1): 72–79.
    Jiang, S. H., Nie, F. J., Liu, Y. F., et al., 2010. Sulfur and Lead Isotopic Compositions of Bairendaba and Weilasituo Silver-Polymetallic Deposits, Inner Mongolia. Mineral Deposits, 29(1): 101–112 (in Chinese with English Abstract) doi: 10.3969/j.issn.0258-7106.2010.01.010
    Jiang, S. Y., Peng, N. J., Huang, L. C., et al., 2015. Geological Characteristic and Ore Genesis of the Giant Tungsten Deposits from the Dahutang Ore-Concentrated District in Northern Jiangxi Province. Acta Petrologica Sinica, 31(3): 639–655 (in Chinese with English Abstract)
    Jiang, S. Y., Su, H. M., Xiong, Y. Q., et al., 2020. Spatial-Temporal Distribution, Geological Characteristics and Ore-Formation Controlling Factors of Major Types of Rare Metal Mineral Deposits in China. Acta Geologica Sinica-English Edition, 94(6): 1757–1773.
    Jiang, Y. H., Liu, Z. Q., Cui, F. Z., et al., 2019. A Review of Cryptoexplosive Breccia Research and Its Diagenesis and Metallogenesis Mechanism. Mineral Resources and Geology, 33(6): 1009–1025 (in Chinese with English Abstract) doi: 10.3969/j.issn.1001-5663.2019.06.010
    Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and other Deposits. Ore Geology Reviews, 48: 55–69.
    Li, B. Y., Jiang, D. W., Fu, X., et al., 2018. Geological Characteristics and Prospecting Significance of Weilasituo Li Polymetallic Deposit, Inner Mongolia. Mineral Exploration, 9(6): 1185–1191 (in Chinese with English Abstract) doi: 10.3969/j.issn.1674-7801.2018.06.021
    Liao, Z., Wang, Y. W., Wang, J. B., et al., 2012. LA-ICP-MS Zircon U-Pb Dating of Dykes of Dajing Tin-Polymetallic Deposit, Inner Mongolia, China, and Its Geological Significance. Acta Petrologica Sinica, 28(7): 2292–2306 (in Chinese with English Abstract)
    Linnen, R. L., 1998. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li+F; Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 93(7): 1013–1025.
    Liu, C. L., Yu, X. C., Yuan, X. Y., et al., 2021. Characteristics, Distribution Regularity and Formation Model of Brine-Type Li Deposits in Salt Lakes in the World. Acta Geologica Sinica, 95(7): 2007–2029 (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.07.001
    Liu, J. Y., 1982. Characteristics and Mineralization of Yanshanian Crypto-Explosive Breccia in Jiangxi Province. Geology and Exploration, 5: 18–25 (in Chinese with English Abstract)
    Liu, L. J., Wang, D. H., Gao, J. Q., et al., 2019. Breakthroughs of Lithium Exploration Progress (2017–2018) and Its Significance to China's Strategic Key Mineral Exploration. Acta Geologica Sinica, 93(6): 1479–1488 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2019.06.023
    Liu, R. L., Wu, G., Li, T. G., et al., 2018a. LA-ICP-MS Cassiterite and Zircon U-Pb Ages of the Weilasituo Tin Polymetallic Deposit in the Southern Great Xing'an Range and Their Geological Significance. Earth Science Frontiers, 25(5): 183–201 (in Chinese with English Abstract)
    Liu, R. L., Wu, G., Chen, G. Z., et al., 2018b. Characteristics of Fluid Inclusions and H-O-C-S-Pb Isotopes of Weilasituo Sn-Polymetallic Deposit in Southern Da Hinggan Mountains. Mineral Deposits, 37(2): 199–224 (in Chinese with English Abstract)
    Liu, Y., Chen, Z. Y., Yang, Z. S., et al., 2015. Mineralogical and Geochemical Studies of Brecciated Ores in the Dalucao REE Deposit, Sichuan Province, Southwestern China. Ore Geology Reviews, 70: 613–636.
    Liu, Y., Chen, C., Shu, X. C., et al., 2017. The Formation Model of the Carbonatite-Syenite Complex REE Deposits in the East of Tibetan Plateau: A Case Study of Dalucao REE Deposit. Acta Petrologica Sinica, 33(7): 1978–2000 (in Chinese with English Abstract)
    Liu, Y. F., 2009. Metallogenic Study of Bairendaba Ag-Polymetallic Deposit in Hexigten Banner, Inner Mongolia. Chinese Academy of Geological Sciences, Beijing (in Chinese with English Abstract)
    Liu, Y. F., Jiang, S. H., 2014. Ore Deposit Geology and Genesis of the Haobugao Zn-Fe Deposit, Inner Mongolia, NE China. Acta Geologica Sinica-English Edition, 88(s2): 18–19.
    Liu, Y. F., Jiang, S. H., Bagas, L., 2016. The Genesis of Metal Zonation in the Weilasituo and Bairendaba Ag-Zn-Pb-Cu-(Sn-W) Deposits in the Shallow Part of a Porphyry Sn-W-Rb System, Inner Mongolia, China. Ore Geology Reviews, 75: 150–173.
    London, D., 2008. Pegmatites. Canadian Mineralogist Special Publication 10, The Mineralogical Association of Canada, 10: 1–347
    Mei, W., Lü, X. B., Tang, K. R., et al., 2015a. Ore-Forming Fluid and Its Evolution of Bairendaba-Weilasituo Deposits in West Slope of Southern Great Xing'an Range. Earth Science, 40(1): 145–162 (in Chinese with English Abstract)
    Mei, W., Lü, X., Liu, Z., et al., 2015b. Geochronological and Geochemical Constraints on the Ore-Related Granites in Huanggang Deposit, Southern Great Xing'an Range, NE China and Its Tectonic Significance. Geosciences Journal, 19(1): 53–67.
    Norman, D. I., Sawkins, F. J., 1985. The Tribag Breccia Pipes; Precambrian Cu-Mo Deposits, Batchawana Bay, Ontario. Economic Geology, 80(6): 1593–1621.
    Ouyang, H. G., Mao, J. W., Santosh, M., et al., 2014. The Early Cretaceous Weilasituo Zn-Cu-Ag Vein Deposit in the Southern Great Xing'an Range, Northeast China: Fluid Inclusions, H, O, S, Pb Isotope Geochemistry and Genetic Implications. Ore Geology Reviews, 56: 503–515.
    Pan, X. F., Guo, L. J., Wang, S., et al., 2009. Laser Microprobe Ar-Ar Dating of Biotite from the Weilasituo Cu-Zn Polymetallic Deposit in Inner Mongolia. Acta Petrologica et Mineralogica, 28(5): 473–479 (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6524.2009.05.007
    Quan, H. Y., 2017. Ore-Forming Fluid Geochemical Characteristics and Ore Genesis of Weilasituo Pb-Zn deposit Inner Mongolia: [Dissertation]. Jilin University, Changchun (in Chinese with English Abstract)
    Qing, M., Han, X. J., 2002. A Commentary of Cryptoexplosion Breccia Type Gold Deposits. Gold Geology, 8(2): 1–7 (in Chinese with English abstract)
    Ruan, B. X., Lv, X. B., Yang, W., et al., 2015. Geology, Geochemistry and Fluid Inclusions of the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, NE China: Implications for Tectonic Setting and Metallogeny. Ore Geology Reviews, 71: 121–137.
    Shaw, R. A., 2021. Global Lithium (Li) Mines, Deposits and Occurrences (November 2021). British Geological Survey, London
    Sheng, X., Di, T., Bai, X., et al., 2020. Amazonite Alteration and Its Significance of the Quartz Porphyry in the Weilasituo Deposit, Inner Mongolia. Inner Mongolia Science Technology & Economy, 15: 83–84 (in Chinese with English Abstract)
    Shu, Q. H., Lai, Y., Sun, Y., et al., 2013. Ore Genesis and Hydrothermal Evolution of the Baiyinnuo'er Zinc-Lead Skarn Deposit, Northeast China: Evidence from Isotopes (S, Pb) and Fluid Inclusions. Economic Geology, 108(4): 835–860.
    Sillitoe, R. H., 1985. Ore-Related Breccias in Volcanoplutonic Arcs. Economic Geology, 80(6): 1467–1514.
    Solomovich, L. I., Trifonov, B. A., Sabelnikov, S. E., 2012. Geology and Mineralization of the Uchkoshkon Tin Deposit Associated with a Breccia Pipe, Eastern Kyrgyzstan. Ore Geology Reviews, 44: 59–69.
    Song, B. C., Zhang, B. L., Wang, J., et al., 2002. Discuss on Minerogenesis Mechanism of Cryptoexplosive Type Gold Deposit. Mineral Deposits, 21: 662–665 (in Chinese with English Abstract)
    Spry, P. G., Paredes, M. M., Foster, F., et al., 1996. Evidence for a Genetic Link between Gold-Silver Telluride and Porphyry Molybdenum Mineralization at the Golden Sunlight Deposit, Whitehall, Montana; Fluid Inclusion and Stable Isotope Studies. Economic Geology, 91(3): 507–526.
    Sun, Y. L., 2018. Characteristics and Evolution of Ore-Forming Fluids and Mineralization Model for the Weilasituo Tin Polymetallic Deposit, Inner Mongolia: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Sun, Y. L., Xu, H., Zhu, X. Y., et al., 2017. Characteristics of Fluid Inclusion and Its Geological Significance in the Weilasituo Tin-Polymetallic Deposit, Inner Mongolia. Mineral Exploration, 8(6): 1044–1053 (in Chinese with English Abstract) doi: 10.3969/j.issn.1674-7801.2017.06.013
    Tabelin, C. B., Dallas, J., Casanova, S., et al., 2021. Towards a Low-Carbon Society: A Review of Lithium Resource Availability, Challenges and Innovations in Mining, Extraction and Recycling, and Future Perspectives. Minerals Engineering, 163: 106743.
    Tao, L. C., 2017. In situ LA-ICP-MS Trace Element Analysis of Sulfides from Weilasituo Polymetallic Deposit and Its Significance: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Tischendorf, G., Rieder, M., Förster, H. J., et al., 2004. A New Graphical Presentation and Subdivision of Potassium Micas. Mineralogical Magazine, 68(4): 649–667.
    Tornos, F., Galindo, C., Casquet, C., et al., 2006. The Aguablanca Ni-(Cu) Sulfide Deposit, SW Spain: Geologic and Geochemical Controls and the Relationship with a Midcrustal Layered Mafic Complex. Mineralium Deposita, 41(8): 737–769.
    Wang, B., Zhou, T. F., Fan, Y., et al., 2020. Breccia, Hydrothermal Alteration and Structural Geology of the Huangtun Porphyry Au-Cu Deposit in the Middle-Lower Yangtze Metallogenic Belt, Eastern China. Ore Geology Reviews, 120: 103414.
    Wang, F. X., Bagas, L., Jiang, S. H., et al., 2017. Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China. Ore Geology Reviews, 80: 1206–1229.
    Wang, J., 2009. Chronology and Geochemistry of Granitoid for the Weilasituo Cupper Polymetallic Deposit in Inner Mongolia: [Dissertation]. China University of Geosciences (Beijing) (in Chinese with English Abstract)
    Wang, X. Y., Hou, Q. Y., Wang, J., et al., 2013. SHRIMP Geochronology and Hf Isotope of Zircons from Granitoids of the Weilasituo Deposit in Inner Mongolia. Geoscience, 27(1): 67–78 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-8527.2013.01.007
    Wang, Z. B., 2001. Discussion of Crytoexplosive Rocks and the Formation Model. Conributions to Geology and Mineral Resources Research, 16(3): 201–205 (in Chinese with English Abstract)
    Wang, Z. G., Wang, K. Y., Wan, D., et al., 2017. Genesis of the Tianbaoshan Pb-Zn-Cu-Mo Polymetallic Deposit in Eastern Jilin, NE China: Constraints from Fluid Inclusions and C-H-O-S-Pb Isotope Systematics. Ore Geology Reviews, 80: 1111–1134.
    Wen, H. J., Luo, C. G., Du, S. J., et al., 2020. Carbonate-Hosted Clay-Type Lithium Deposit and Its Prospecting Significance. Chinese Science Bulletin, 65(1): 53–59.
    Wu, G., Liu, R. L., Chen, G. Z., et al., 2021. Mineralization of the Weilasituo Rare Metal-Tin-Polymetallic Ore Deposit in Inner Mongolia: Insights from Fractional Crystallization of Granitic Magmas. Acta Petrologica Sinica, 37(3): 637–664 (in Chinese with English Abstract) doi: 10.18654/1000-0569/2021.03.01
    Xie, W., Wen, S. Q., Zhang, G. L., et al., 2021. Geochronology, Fluid Inclusions and Isotopic Characteristics of the Dongjun Pb-Zn-Ag Deposit, Inner Mongolia, NE China. Acta Geologica Sinica-English Edition, 95(5): 1611–1633.
    Xiong, S. F., Jiang, S. Y., Zhao, K. D., et al., 2019. Gold Distribution and Source of the J4 Gold-Bearing Breccia Pipe in the Qiyugou District, North China Craton: Constraints from Ore Mineralogy and in situ Analysis of Trace Elements and S-Pb Isotopes. Ore Geology Reviews, 105: 514–536.
    Xue, H. M., Guo. L. J., Hou, Z. Q., et al., 2009. The Xilinggele Complex from the Eastern Part of the Central Asian-Mongolia Orogenic Belt, China: Products of Early Variscan Orogeny Other than Ancient Block: Evidence from Zircon SHRIMP U-Pb Ages. Acta Petrologica Sinica, 25(8): 2001–2010 (in Chinese with English Abstract)
    Yang, Z. L., Qiu, J. S., Xing, G. F., et al., 2014. Petrogenesis and Magmatic Evolution of the Yashan Granite Pluton in Yichun, Jiangxi Province, and Their Constraints on Mineralization. Acta Geologica Sinica, 88(5): 850–868 (in Chinese with English Abstract)
    Yao, L., Lü, Z. C., Ye, T. Z., et al., 2017. Zircon U-Pb Age, Geochemical and Nd-Hf Isotopic Characteristics of Quartz Porphyry in the Baiyinchagan Sn Polymetallic Deposit, Inner Mongolia, Southern Great Xing'an Range, China. Acta Petrologica Sinica, 33(10): 3183–3199 (in Chinese with English Abstract)
    Yu, W. J., Luo, Z. H., Liu, Y. S., et al., 2017. Petrogenesis of the Lala Iron-Copper Deposit: Evidence by Cryptoexplosive Breccia CSD Data and Their Zircon U-Pb Data. Acta Petrologica Sinica, 33(3): 925–941 (in Chinese with English Abstract)
    Yu, Z. F., Xu, H., Zhu, X. Y., et al., 2015. Characteristics and Evolution of Oreforming Fluids in Yaogangxian Tungsten Deposit, Hunan Province. Mineral Deposits, 34(2): 309–320 (in Chinese with English Abstract)
    Zhai, D. G., Liu, J. J., Li, J. M., et al., 2016. Geochronological Study of Weilasituo Porphyry Type Sn Deposit in Inner Mongolia and Its Geological Significance. Mineral Deposits, 35(5): 1011–1022 (in Chinese with English Abstract)
    Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2014. S-Pb Isotopic Geochemistry, U-Pb and Re-Os Geochronology of the Huanggangliang Fe-Sn Deposit, Inner Mongolia, NE China. Ore Geology Reviews, 59: 109–122.
    Zhang, H. Y., 2020. The Studies on High-Intermediate Temperature Sn-Rb-Li-W and Intermediate-Low Temperature Cu-Zn-Ag Metallogenic Ore System at Weilasituo, Inner Mongolia, NE China: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Zhang, L., Jiang, S. Y., 2021. Two Episodic Nb-Ta Mineralization Events and Genesis of the Zhaojinggou Rare-Metal Deposit, North Margin of the North China Craton. Ore Geology Reviews, 131: 103994.
    Zhang, T. F., Guo, S., Xin, H. T., et al., 2019. Petrogenesis and Magmatic Evolution of Highly Fractionated Granite and Their Constraints on Sn-(Li-Rb-Nb-Ta) Mineralization in the Weilasituo Deposit, Inner Mongolia, Southern Great Xingán Range, China. Earth Science, 44(1): 248–267 (in Chinese with English Abstract)
    Zhang, Z. F., 1991. General Features and Genetic Mechanism of Crypto-Ex-Plosive Breccias. Geological Science and Technology Information, 10(4): 1–5 (in Chinese with English Abstract)
    Zhao, Y. Y., Fu, J. J., Li, Y., 2015. Super Large Lithium and Boron Deposit in Jadar Basin, Serbia. Geological Review, 61(1): 34–44 (in Chinese with English Abstract)
    Zhu, K. Y., Jiang, S. Y., Su, H. M., et al., 2021. In situ Geochemical Analysis of Multiple Generations of Sphalerite from the Weilasituo Sn-Li-Rb-Cu-Zn Ore Field (Inner Mongolia, Northeastern China): Implication for Critical Metal Enrichment and Ore-Forming Process. Ore Geology Reviews, 139: 104473.
    Zhu, X. Y., Zhang, Z. H., Fu, X., et al., 2016. Geological and Geochemical Characteristics of the Weilasito Sn-Zn Deposit, Inner Mongolia. Geology in China, 43(1): 188–208 (in Chinese with English Abstract)
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(4)

    Article Metrics

    Article views(46) PDF downloads(50) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint