Citation: | Junwu Zhang, Xian Liang, Fangyue Wang, Huaikun Wang, Yu Fan, Te Ba, Xiangxi Meng. CorelKit: An Extensible CorelDraw VBA Program for Geoscience Drawing. Journal of Earth Science, 2023, 34(3): 735-757. doi: 10.1007/s12583-022-1772-4 |
CorelKit is developed with the built-in VBA environment of CorelDraw®, and is a new plug-in in CorelDraw for geological and geochemical drawing. CorelKit can help users quickly and easily draw geological and geochemical graphs, such as scatterplot, triangular scatterplot, line chart, histogram, bar chart, box plot, pie graph, etc. In order to adapt to the geological application, the above functions are strengthened. Scatterplot and triangular scatterplot provide nearly 150 common basemaps, covering rock classification, structural environment discrimination, mineral genesis, isotope geochemistry, etc., for the convenience of the user mapping. Meanwhile, CorelKit further provides a structural joint rose diagram and sulfur isotopic composition diagram. This software also has many practical functions such as Bézier line topology, Multiple Bézier lines close fill, Single inner fill, Correction basemap, Add a compass, Add a scale, which facilitates daily geological drawing. The software has a friendly interface, in both Chinese and English versions, and is suitable for CorelDraw X4 and later versions. We introduced the Bézier line topology to CorelKit for the first time, which is similar to the GIS® topology for geological maps. According to the "GB/T 958-2015 Geological Legends Used for Regional Geological Map", a two-color filling library of rock pattern pictures is established, which is convenient to realize the two-color filling of sedimentary rocks, metamorphic rocks and magmatic rocks patterns. Obviously, CorelKit makes up for many shortcomings of CorelDraw in geosciences and is a very practical tool for geoscience researchers.
Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525–541. https://doi.org/10.1093/petrology/35.2.525 |
Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1): 51–73. https://doi.org/10.1016/s0024-4937(99)00052-3 |
Bailey, J. C., 1981. Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 32(1/2/3/4): 139–154. https://doi.org/10.1016/0009-2541(81)90135-2 |
Barker, F., 1979. Trondhjemite: Definition, Environment and Hypotheses of Origin. In: Barker, F., ed., Developments in Petrology. Elsevier, Amster-dam. 6: 1–12. |
Bass, M. N., Moberly, R. M., Rhodes, J. M., et al., 1973. Volcanic Rocks Cored in the Central Pacific, Leg 17, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project, U. S. Government Printing Office. 17: 429–503. |
Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8 |
Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92: 181–193. https://doi.org/10.1007/bf00375292 |
Blevin, P. L., Chappell, B. W., 1995. Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia: The Metallogeny of I- and S-Type Granites. Economic Geology, 90(6): 1604–1619. https://doi.org/10.2113/gsecongeo.90.6.1604 |
Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258. https://doi.org/10.1016/s0012-821x(97)00040-x |
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Developments in Geochemistry, Rare Earth Element Geochemistry. Elsevier, Amsterdam. 2: 63–114. |
Brill, B. A., 1989. Trace-Element Contents and Partitioning of Elements in Ore Minerals from the CSA Cu-Pb-Zn Deposit, Australia, and Implica-tions for Ore Genesis. The Canadian Mineralogist, 27(2): 263–274 http://www.researchgate.net/publication/279597270_Trace-element_contents_and_partitioning_of_elements_in_ore_minerals_from_the_CSA_Cu-Pb-Zn_deposit_Australia |
Cao, M. J., Li, G. M., Qin, K. Z., et al., 2012. Major and Trace Element Characteristics of Apatites in Granitoids from Central Kazakhstan: Implications for Petrogenesis and Mineralization. Resource Geology, 62(1): 63–83. https://doi.org/10.1111/j.1751-3928.2011.00180.x |
Chen, G. Y., Sun, D. S., Yin, H. A., 1987. Genetic Mineralogy and Prospecting Mineralogy. Chongqing Press, Chongqing. 234–235 (in Chinese) |
Chen, W. T., Zhou, M. F., Li, X. C., et al., 2015. In-Situ LA-ICP-MS Trace Elemental Analyses of Magnetite: Cu-(Au, Fe) Deposits in the Khetri Copper Belt in Rajasthan Province, NW India. Ore Geology Reviews, 65: 929–939. https://doi.org/10.1016/j.oregeorev.2014.09.035 |
Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895 |
Dare, S. A. S., Barnes, S. J., Beaudoin, G., et al., 2014. Trace Elements in Magnetite as Petrogenetic Indicators. Mineralium Deposita, 49(7): 785–796. https://doi.org/10.1007/s00126-014-0529-0 |
David, R. W., Hans, P. E., 1965. Stability of Biotite: Experiment, Theory, and Application 1. American Mineralogist, 50(9): 1228–1272 http://ci.nii.ac.jp/naid/10016754118 |
De la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 29(1/2/3/4): 183–210. https://doi.org/10.1016/0009-2541(80)90020-0 |
Deer, W. A., Howie, R. A., Zussman, J., 1992. An Introduction to the Rock-Forming Minerals. 2nd Edition. Longman Group, Harlow. 1–232 |
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662–665. https://doi.org/10.1038/347662a0 |
Dong, H. X., Liu, J., Wang, H. T., 2017. Research on the Extension Module of Drawing Function Based on VBA CorelDraw. Geomatics & Spatial Information Technology, 40(10): 188–189, 192 (in Chinese with English Abstract) doi: 10.3969/j.issn.1672-5867.2017.10.057 |
Dupuis, C., Beaudoin, G., 2011. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types. Mineralium Deposita, 46(4): 319–335. https://doi.org/10.1007/s00126-011-0334-y |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)020<641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<641:csotat>2.3.co;2 |
El Bouseily, A. M., El Sokkary, A. A., 1975. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 16(3): 207–219. https://doi.org/10.1016/0009-2541(75)90029-7 |
Epstein, S., Sharp, R. P., Gow, A. J., 1965. Six-Year Record of Oxygen and Hydrogen Isotope Variations in South Pole Firn. Journal of Geophysical Research, 70(8): 1809–1814. https://doi.org/10.1029/jz070i008p01809 |
Epstein, S., Sharp, R. P., Gow, A. J., 1970. Antarctic Ice Sheet: Stable Isotope Analyses of Byrd Station Cores and Interhemispheric Climatic Implications. Science, 168(3939): 1570–1572. https://doi.org/10.1126/science.168.3939.1570 |
Eugster, H. P., Wones, D. R., 1962. Stability Relations of the Ferruginous Biotite, Annite. Journal of Petrology, 3(1): 82–125. https://doi.org/10.1093/petrology/3.1.82 |
Ewart, A., 1982. The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks: With Special Reference to the Andesitic-Basaltic Compositional Range. In: Thorpe, R. S., ed., Andesites. John Wiley and Sons, New York. 25–95 |
Feiss, P. G., 1978. Magmatic Sources of Copper in Porphyry Copper Deposits. Economic Geology, 73(3): 397–404. https://doi.org/10.2113/gsecongeo.73.3.397 |
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0 |
Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral Micas. US Geological Survey, Professional Paper, 354-B: 11–49 |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033 |
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9 |
Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67–81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 |
Henry, D. J., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2/3): 316–328. https://doi.org/10.2138/am.2005.1498 |
Herron, M. M., 1988. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. Journal of Sedimentary Research, 58(5): 820–829. https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d |
Hong, D. W., Wang, S. K., Han, B. F., et al., 1995. Classification of the Tectonic Environment of Alkaline Granite and Its Identification Marks. Science in China (Series B), 25(4): 418–426 (in Chinese) doi: 10.3321/j.issn:1006-9240.1995.04.001 |
Hu, B., Zeng, L. P., Liao, W., et al., 2022. The Origin and Discrimination of High-Ti Magnetite in Magmatic-Hydrothermal Systems: Insight from Machine Learning Analysis. Economic Geology, 117(7): 1613–1627. https://doi.org/10.5382/econgeo.4946 |
Huang, Y. Q., Jiang, Y. D., Yu, Y., et al., 2020. Nd-Hf Isotopic Decoupling of the Silurian—Devonian Granitoids in the Chinese Altai: A Consequence of Crustal Recycling of the Ordovician Accretionary Wedge? Journal of Earth Science, 31(1): 102–114. https://doi.org/10.1007/s12583-019-1217-x |
Hyndman, D. W., 1985. Petrology of Igneous and Metamorphic Rocks. McGraw-Hill, New York |
Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055 |
Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/s0009-2541(98)00197-1 |
Janousek, V., Farrow, C. M., Erban, V., 2003. GCDkit: New PC Software for Interpretation of Whole-Rock Geochemical Data from Igneous Rocks. Geochimica et Cosmochimica Acta, 67(18): 186 |
Jiang, C. Y., An, S. Y., 1984. On Chemical Characteristics of Calcic Amphiboles from Igneous Rocks and Their Petrogenesis Significance. Mineralogy and Petrology, 4(3): 1–9 (in Chinese with English Abstract) http://search.cnki.net/down/default.aspx?filename=KWYS198403000&dbcode=CJFD&year=1984&dflag=pdfdown |
Jiang, H. Y., He, Z. Y., 2022. Petrogenesis and Tectonic Implications of Late Paleozoic Granite-Diorite from the Southern Beishan Orogen. Earth Science, 47(9): 3270–3284. https://doi.org/10.3799/dqkx.2021.191 (in Chinese with English Abstract) |
Laurent, O., Zeh, A., Gerdes, A., et al., 2017. How do Granitoid Magmas Mix with each Other? Insights from Textures, Trace Element and Sr-Nd Isotopic Composition of Apatite and Titanite from the Matok Pluton (South Africa). Contributions to Mineralogy and Petrology, 172(9): 1–22. https://doi.org/10.1007/s00410-017-1398-1 |
Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford. 193 |
Le Maitre, R. W., 2002. Igneous Rocks: A Classification and Glossary of Terms (2nd Edition). Cambridge University Press, Cambridge. 1–236 |
Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623–651. https://doi.org/10.1127/ejm/9/3/0623 |
Li, J. Y., Qian, Y., Li, Y. J., et al., 2020. Highly Fractionated Granitic Pegmatite of Early Stage of Early Cretaceous in Liaodong Peninsula: Petrogenesis and Tectonic Setting. Earth Science, 45(11): 4054–4071. https://doi.org/10.3799/dqkx.2020.998 (in Chinese with English Abstract) |
Li, Z. X., 2017. Comprehensive Research on Automatic Smoothing of GIS Spatial Line Data Based on Coreldraw VBA. Technology Innovation and Application, (34): 16–18 (in Chinese) |
Lin, S. Z., 1982. A Contribution to the Chemistry, Origin and Evolution of Magnetite. Acta Mineralogica Sinica, (3): 166–174 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB198203001.htm |
Liu, J. H., 1986. Genetic Classification of Hornblendes and Its Application. Journal of Jiling University (Earth Science Edition), 16(1): 41–48, 124 (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ198601005.htm |
Liu, J. W., Li, L., Li, S. R., et al., 2022. Apatite as a Fingerprint of Granite Fertility and Gold Mineralization: Evidence from the Xiaoqinling Goldfield, North China Craton. Ore Geology Reviews, 142: 104720. https://doi.org/10.1016/j.oregeorev.2022.104720 |
Liu, L. Z., Wang, J. Z., 2016. Research on the Map Colouring Automatically Based on Coreldraw VBA. Surveying and Mapping, 39(5): 220–222 (in Chinese with English Abstract) |
Liu, Y. N., Fan, Y., Zhou, T. F., et al., 2022. Trace Element Evolution of Magnetite in Iron Oxide-Apatite Deposits: Case Study of Daling Deposit, Eastern China. Ore Geology Reviews, 144: 104842. https://doi.org/10.1016/j.oregeorev.2022.104842 |
Lu, Y. F., 2004. GeoKit―A Geochemical Toolkit for Microsoft Excel. Geochimica, 33(5): 459–464. https://doi.org/10.19700/j.0379-1726. 2004.05.004 (in Chinese with English Abstract) doi: 10.19700/j.0379-1726.2004.05.004 |
Ludwig, K. R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. 4: 74 |
Ma, C. Q., Yang, K. G., Tang, Z. H., et al., 1994. Theoretical Method of Granite-Like Magma Dynamics and an Example of Granite-Like in Eastern Hubei. China University of Geosciences Press, Wuhan. 1–260 (in Chinese) |
MacDonald, G. A., Katsura, T., 1964. Chemical Composition of Hawaiian Lavas1. Journal of Petrology, 5(1): 82–133. https://doi.org/10.1093/petrology/5.1.82 |
Mai, Y. J., Zhu, L. D., Yang, W. G., et al., 2021. Zircon U⁃Pb and Hf Isotopic Composition of Permian Felsic Tuffs in Southeastern Margin of Lhasa, Tibet. Earth Science, 46(11): 3880–3891. https://doi.org/10.3799/dqkx.2020.397 (in Chinese with English Abstract) |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 |
McLennan, S. M., 1989. Chapter 7. Rare Earth Elements in Sedimentary Rocks: Influence of Province and Sedimentary Processes. In: Lipin, B. R., McKay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. De Gruyter, San Francisco. 169–200. |
Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3/4): 207–218. https://doi.org/10.1016/0009-2541(86)90004-5 |
Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks. Longman, London. 1–266 |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9 |
Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321–355. https://doi.org/10.2475/ajs.274.4.321 |
Morimoto, N., Fabries, J., Ferguson, A. K., et al., 1988. Nomenclature of Pyroxenes. Mineralogical Magazine, 52(367): 535–550. https://doi.org/10.1180/minmag.1988.052.367.15 |
Mullen, E. D., 1983. MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters, 62(1): 53–62. https://doi.org/10.1016/0012-821x(83)90070-5 |
Murray, R. W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90(3/4): 213–232. https://doi.org/10.1016/0037-0738(94)90039-6 |
Nadoll, P., Angerer, T., Mauk, J. L., et al., 2014. The Chemistry of Hydrothermal Magnetite: A Review. Ore Geology Reviews, 61: 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013 |
Nadoll, P., Mauk, J. L., Leveille, R. A., et al., 2015. Geochemistry of Magnetite from Porphyry Cu and Skarn Deposits in the Southwestern United States. Mineralium Deposita, 50(4): 493–515. https://doi.org/10.1007/s00126-014-0539-y |
Nakada, S., Takahashi, M., 1979. Regional Variationin Chemistry of the Miocene Intermediate to Felsic Magmas in the Outer Zone and the Setouchi Province of Southwest Japan. The Geological Society of Japan, 85(9): 571–582 (in Japanese with English Abstract) doi: 10.5575/geosoc.85.571 |
Nathwani, C. L., Loader, M. A., Wilkinson, J. J., et al., 2020. Multi-Stage Arc Magma Evolution Recorded by Apatite in Volcanic Rocks. Geology, 48(4): 323–327. https://doi.org/10.1130/g46998.1 |
Nisbet, E. G., Pearce, J. A., 1977. Clinopyroxene Composition in Mafic Lavas from Different Tectonic Settings. Contributions to Mineralogy and Petrology, 63(2): 149–160. https://doi.org/10.1007/bf00398776 |
O'Connor, J., 1965. A Classification for Quartz-Rich Igneous Rock Based on Feldspar Ratios. US Geological Survey Professional Paper, 525: 79–84 |
Pearce, J. A., 1976. Statistical Analysis of Major Element Patterns in Basalts. Journal of Petrology, 17(1): 15–43. https://doi.org/10.1093/petrology/17.1.15 |
Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley & Sons, Chichester. 525–548 |
Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290–300. https://doi.org/10.1016/0012-821x(73)90129-5 |
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192 |
Pearce, T. H., Gorman, B. E., Birkett, T. C., 1975. The TiO2-K2O-P2O5 Diagram: A Method of Discriminating between Oceanic and Non-Oceanic Basalts. Earth and Planetary Science Letters, 24(3): 419–426. https://doi.org/10.1016/0012-821x(75)90149-1 |
Pearce, T. H., Gorman, B. E., Birkett, T. C., 1977. The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks. Earth and Planetary Science Letters, 36(1): 121–132. https://doi.org/10.1016/0012-821x(77)90193-5 |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745 |
Petrelli, M., Poli, G., Perugini, D., et al., 2005. PetroGraph: A New Software to Visualize, Model, and Present Geochemical Data in Igneous Petrology. Geochemistry, Geophysics, Geosystems, 6(7): 542–557. https://doi.org/10.1029/2005gc000932 |
Pettijohn, F. J., Potter, P. E., Siever, R., 1972. Sand and Sandstone. Spring-Verlag, New York. |
Qiu, J. T., Song, W. J., Jiang, C. X., et al., 2013. CGDK: An Extensible CorelDRAW VBA Program for Geological Drafting. Computers & Geosciences, 51: 34–48. https://doi.org/10.1016/j.cageo.2012.07.020 |
Qiu, J. X., Liao, Q. A., 1996. Petrogenesis and Cpx Mineral Chemistry of the Cenozoic Basalts from Zhejiang and Fujian in Eastern China. Volcanology & Mineral Resources, 17(1/2): 16–25 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ1996Z1001.htm |
Qiu, Z., Tao, H. F., Lu, B., et al., 2021. Controlling Factors on Organic Matter Accumulation of Marine Shale across the Ordovician-Silurian Transition in South China: Constraints from Trace-Element Geochemistry. Journal of Earth Science, 32(4): 887–900. https://doi.org/10.1007/s12583-020-1359-x |
Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247–263. https://doi.org/10.1016/0024-4937(89)90028-5 |
Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas: An Overview, New Thermobarometric Formulations and Application to Subduction-Related Volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66. https://doi.org/10.1007/s00410-009-0465-7 |
Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. Journal of Geology, 94(5): 635–650. https://doi.org/10.1086/629071 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Treatise on Geochemistry. Elsevier, Amsterdam. 1–64. |
Sheppard, S. M. F., 1981. Stable Isotope Geochemistry of Fluids. Physics and Chemistry of the Earth, 13: 419–445 |
Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101–118. https://doi.org/10.1016/0012-821x(82)90120-0 |
Stanton, R. L., 1987. Constitutional Features and Some Exploration Implications of Three Zinc-Bearing Stratiform Skarns of Eastern Australia. Transactions of the Institution of Mining and Metallurgy: B, Applied Earth Science, 96: 37–57 |
Su, Y. J., Langmuir, C. H., Asimow, P. D., 2003. PetroPlot: A Plotting and Data Management Tool Set for Microsoft Excel. Geochemistry, Geophysics, Geosystems, 4(3): 1030–1043. https://doi.org/10.1029/2002gc000323 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Taylor, D., MacKenzie, W. S., 1975. A Contribution to the Pseudoleucite Problem. Contributions to Mineralogy and Petrology, 49(4): 321–333. https://doi.org/10.1007/bf00376184 |
Taylor, S. R., McLennan, S. M., 1981. The Composition and Evolution of the Continental Crust: Rare Earth Element Evidence from Sedimentary Rocks. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 301(1461): 381–399. https://doi.org/10.1098/rsta.1981.0119 |
Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480(7375): 79–82. https://doi.org/10.1038/nature10655 |
Tuttle, O. F., Bowen, N. L., 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America Memoirs, 74: 1–146. https://doi.org/10.1130/mem74-P1 |
Vervoort, J. D., Jonathan, P. P., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717–3733. https://doi.org/10.1016/0016-7037(96)00201-3 |
Wang, X. R., Ma, W. F., Gao, S., et al., 2008. GCDPlot: An Extensible Microsoft Excel VBA Program for Geochemical Discrimination Diagrams. Computers & Geosciences, 34(12): 1964–1969. https://doi.org/10.1016/j.cageo.2007.10.014 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202 |
Wickman, F. E., Rickard, D., 1981. Chemistry and Geochemistry of Solutions at High Temperatures and Pressures. Physics and Chemistry of the Earth, 13/14: 1–8. https://doi.org/10.1016/0079-1946(81)90003-3 |
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2 |
Wood, D. A., 1979. A Variably Veined Suboceanic Upper Mantle—Genetic Significance for Mid-Ocean Ridge Basalts from Geochemical Evidence. Geology, 7(10): 499–503. https://doi.org/10.1130/0091-7613(1979)7<499:avvsum>2.0.co;2 doi: 10.1130/0091-7613(1979)7<499:avvsum>2.0.co;2 |
Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. https://doi.org/10.1016/0012-821x(80)90116-8 |
Wright, J. B., 1969. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis. Geological Magazine, 106(4): 370–384. https://doi.org/10.1017/s0016756800058222 |
Wu, J. S., Geng, Y. S., Xu, H. F., et al., 1989. Metamorphic Geology of the Fuping Group. Journal of the Institute of Geology, Chinese Academy of Geological Sciences, 19: 1–231 (in Chinese) http://www.researchgate.net/publication/307948453_Metamorphic_geology_of_fuping_group |
Xie, Y. W., Zhang, Y. Q., 1990. Peculiarities and Genetic Significance of Hornblende from Granite in the Hengduansan Region. Acta Mineralo-gica Sinica, 10(1): 35–45. https://doi.org/10.16461/j.cnki.1000-4734.1990.01.006 (in Chinese with English Abstract) |
Xu, B., Hou, Z. Q., Griffin, W. L., et al., 2021. Recycled Volatiles Determine Fertility of Porphyry Deposits in Collisional Settings. American Mineralogist, 106(4): 656–661. https://doi.org/10.2138/am-2021-7714 |
Yao, G., Wang, S. H., 2014. Discussion on Application of CorelDRAW Drawing Software in Geoscience Journals. Research on Chinese Science and Technology Periodicals, 25(4): 499–501 (in Chinese with English Abstract) |
Yu, B. S., Zhao, Z. D., Su, S. G., et al., 2012. Petrology (Second Edition). Geological Publishing House, Beijing. 37 (in Chinese) |
Yu, Q. Y., Bagas, L., Yang, P. H., et al., 2019. GeoPyTool: A Cross-Platform Software Solution for Common Geological Calculations and Plots. Geoscience Frontiers, 10(4): 1437–1447. https://doi.org/10.1016/j.gsf.2018.08.001 |
Zartman, R. E., Doe, B. R., 1981. Plumbotectonics—The Model. Tectonophysics, 75(1/2): 135–162. https://doi.org/10.1016/0040-1951(81)90213-4 |
Zhang, J. W., 2020. CorelDraw VBA Draws the Rosette of Joints in Structural Geology. Computer Knowledge and Technology, 16(14): 267–268. https://doi.org/10.14004/j.cnki.ckt.2020.1587 (in Chinese) |
Zhao, C. H., 1989. The ATK Diagram of Basic-Intermediate Volcanic Rocks and Tectonic Environment. Geological Science and Technology Information, 8(4): 1–5 (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ198904000.htm |
Zhao, Z. H., Zhao, H. L., Yang, W. H., et al., 1987. Trace Element Geochemical Characteristics of cambrian-Ordovician Boundary Strata in the Duibian and Wushan Profiles. Geochimica, 16(2): 99–112. https://doi.org/10.19700/j.0379-1726.1987.02.001 (in Chinese with English Abstract) |
Zhou, J. B., Li, X. H., 2006. GeoPlot: An Excel VBA Program for Geochemical Data Plotting. Computers & Geosciences, 32(4): 554–560. https://doi.org/10.1016/j.cageo.2005.07.005 |
Zhou, X., Lu, J., Jin, Y., 2018. Research and Development of the Lithogeochemical Plot Software Based on WPF. Geophysical and Geochemical Exploration, 42(4): 811–816 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-WTYH201804024.htm |
Zhou, Z. X., 1986. The Origin of Intrusive Mass in Fengshandong, Hubei Province. Acta Petrologica Sinica, 2(1): 59–70 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB198601007.htm |
Zhu, B. Q., 1998. Theory and Application of Isotope Systems in Earth Science-Also on the Evolution of China's Continental Crust and Mantle. Science Press, Beijing. 1–328 (in Chinese) |
Zhu, B. Q., 2001. Geochemical Province and Geochemical Shock Belt. Science Press, Beijing. 1–118 (in Chinese) |
Zhu, B. Q., Zhang, J. L., Tu, X. L., et al., 2001. Pb, Sr, and Nd Isotopic Features in Organic Matter from China and Their Implications for Petroleum Generation and Migration. Geochimica et Cosmochimica Acta, 65(15): 2555–2570. https://doi.org/10.1016/s0016-7037(01)00608-1 |
Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425 |