Citation: | Yuchen Liu, Changqian Ma. Origins of Two Types of Serpentinites from Hong'an, Western Dabie Orogen, Central China and Associated Fluid/Melt-Rock Interactions: Implications from Geochemistry and Mineralogy. Journal of Earth Science, 2025, 36(3): 992-1017. doi: 10.1007/s12583-022-1774-2 |
A cluster of serpentinite bodies has been recognized tectonically emplaced within the greenschist-amphibolite-facies metamorphic terrane in Hong'an, western Dabie orogen, central China. Two types of serpentinites are identified on the basis of integrated petrographic, mineralogical and geochemical study. The first type, represented by Yinshanzhai serpentinite complex (Group 1) comprises heterogeneous lithology as a massive serpentinite matrix "intruded" by antigorite-enriched serpentinite lenses. They are both pseudomorphic textured with different mineral assemblages indicating an increasing temperature-pressure condition. Serpentinite matrix (Group 1a) is chemically characterized by high MgO/SiO2 and low Al2O3/SiO2, Ti and Ca contents, suggesting a depleted mantle wedge origin. The coexistence of compositionally-heterogeneous chromite with high-Cr# (0.78–0.96) and intermediate-Cr# (0.59–0.70) pristine cores indicates extensive mantle melting. Meanwhile, extremely high Fo olivine relicts (96–97) with considerably higher MnO and lower NiO contents than mantle olivine indicate that they are metamorphic products from serpentine decomposition. Accordingly, we propose that Yinshanzhai serpentinite complex experienced two distinct episodes of hydration. The serpentinite lenses (Group 1b) show higher SiO2 and lower MgO concentrations. Nevertheless, the trace elements of groups 1a and 1b are consistent: U-shaped REE patterns, positive Eu anomalies and enrichment of LILE (i.e., Cs, U) are all identified as forearc properties. They are affected by reducing slab-derived fluids in forearc mantle, with
Alibo, D. S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3/4): 363–372. https://doi.org/10.1016/s0016-7037(98)00279-8 |
Allen, D. E., Seyfried, W. E., 2005. REE Controls in Ultramafic Hosted MOR Hydrothermal Systems: An Experimental Study at Elevated Temperature and Pressure. Geochimica et Cosmochimica Acta, 69(3): 675–683. https://doi.org/10.1016/j.gca.2004.07.016 |
Arai, S., 1980. Dunite-Harzburgite-Chromitite Complexes as Refractory Residue in the Sangun-Yamaguchi Zone, Western Japan. Journal of Petrology, 21(1): 141–165. https://doi.org/10.1093/petrology/21.1.141 |
Arai, S., 1992. Chemistry of Chromian Spinel in Volcanic Rocks as a Potential Guide to Magma Chemistry. Mineralogical Magazine, 56(383): 173–184. https://doi.org/10.1180/minmag.1992.056.383.04 |
Arai, S., 1994. Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships: Review and Interpretation. Chemical Geology, 113(3/4): 191–204. https://doi.org/10.1016/0009-2541(94)90066-3 |
Arai, S., 1997. Origin of Podiform Chromitites. Journal of Asian Earth Sciences, 15(2/3): 303–310. https://doi.org/10.1016/s0743-9547(97)00015-9 |
Augustin, N., Paulick, H., Lackschewitz, K. S., et al., 2012. Alteration at the Ultramafic-Hosted Logatchev Hydrothermal Field: Constraints from Trace Element and Sr-O Isotope Data. Geochemistry, Geophysics, Geosystems, 13(3): Q0AE07. https://doi.org/10.1029/2011GC003903 |
Bach, W., Garrido, C. J., Paulick, H., et al., 2004. Seawater-Peridotite Interactions: First Insights from ODP Leg 209, MAR 15°N. Geochemistry, Geophysics, Geosystems, 5(9): Q09F26. https://doi.org/10.1029/2004gc000744 |
Barnes, J. D., Beltrando, M., Lee, C. T A., et al., 2014. Geochemistry of Alpine Serpentinites from Rifting to Subduction: A View across Paleogeographic Domains and Metamorphic Grade. Chemical Geology, 389: 29–47. https://doi.org/10.1016/j.chemgeo.2014.09.012 |
Barnes, S. J., 1998. Chromite in Komatiites, 1. Magmatic Controls on Crystallization and Composition. Journal of Petrology, 39(10): 1689–1720. https://doi.org/10.1093/petroj/39.10.1689 |
Barnes, S. J., 2000. Chromite in Komatiites, Ⅱ. Modification during Greenschist to Mid-Amphibolite Facies Metamorphism. Journal of Petrology, 41(3): 387–409. https://doi.org/10.1093/petrology/41.3.387 |
Barnes, S. J., Roeder, P. L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology, 42(12): 2279–2302. https://doi.org/10.1093/petrology/42.12.2279 |
Beard, J. S., Frost, B. R., 2017. The Stoichiometric Effects of Ferric Iron Substitutions in Serpentine from Microprobe Data. International Geology Review, 59(5/6): 541–547. https://doi.org/10.1080/00206814.2016.1197803 |
Bebout, G. E., 1995. The Impact of Subduction-Zone Metamorphism on Mantle-Ocean Chemical Cycling. Chemical Geology, 126(2): 191–218. https://doi.org/10.1016/0009-2541(95)00118-5 |
Bebout, G. E., 2007. Metamorphic Chemical Geodynamics of Subduction Zones. Earth and Planetary Science Letters, 260(3/4): 373–393. https://doi.org/10.1016/j.epsl.2007.05.050 |
Beyer, E. E., Griffin, W. L., O'Reilly, S. Y., 2006. Transformation of Archaean Lithospheric Mantle by Refertilization: Evidence from Exposed Peridotites in the Western Gneiss Region, Norway. Journal of Petrology, 47(8): 1611–1636. https://doi.org/10.1093/petrology/egl022 |
Bodinier, J. -L., Godard, M., 2003. Orogenic, Ophiolitic, and Abyssal Peridotites. In: Carlson, R. W., Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. 103–167. |
Bretscher, A., Hermann, J., Pettke, T., 2018. The Influence of Oceanic Oxidation on Serpentinite Dehydration during Subduction. Earth and Planetary Science Letters, 499: 173–184. https://doi.org/10.1016/j.epsl.2018.07.017 |
Brueckner, H. K., Medaris, L. G., 2000. A General Model for the Intrusion and Evolution of 'Mantle' Garnet Peridotites in High-Pressure and Ultra-High-Pressure Metamorphic Terranes. Journal of Metamorphic Geology, 18(2): 123–133. https://doi.org/10.1046/j.1525-1314.2000.00250.x |
Burkhard, D. J. M., 1993. Accessory Chromium Spinels: Their Coexistence and Alteration in Serpentinites. Geochimica et Cosmochimica Acta, 57(6): 1297–1306. https://doi.org/10.1016/0016-7037(93)90066-6 |
Cannaò, E., Scambelluri, M., Agostini, S., et al., 2016. Linking Serpentinite Geochemistry with Tectonic Evolution at the Subduction Plate-Interface: The Voltri Massif Case Study (Ligurian Western Alps, Italy). Geochimica et Cosmochimica Acta, 190: 115–133. https://doi.org/10.1016/j.gca.2016.06.034 |
Cao, Y., Song, S. G., Su, L., et al., 2016. Highly Refractory Peridotites in Songshugou, Qinling Orogen: Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle. Lithos, 252/253: 234–254. https://doi.org/10.1016/j.lithos.2016.03.002 |
Chen, N. S., Han, Y. J., You, Z. D., et al., 1992. Whole Rock Sm-Nd, Rb-Sr and Single Grain Zircon Pb-Pb Dating of Complex Rocks from the Interior of the Qinling Orogenic Belt, Western Henan, and Its Crustal Evolution. Chinese Journal of Geochemistry, 11(2): 168–177. https://doi.org/10.1007/bf02872003 |
Chen, Z. H., 2004. The Neoproterozoic Tectono-thermal Events in the Qinling Orogen, and Their Geo-tectonic Significances: [Dissertation]. Chinese Academy of Geological Sciences, Beijing (in Chinese with English Abstract) |
Cheng, H., King, R. L., Nakamura, E., et al., 2009. Transitional Time of Oceanic to Continental Subduction in the Dabie Orogen: Constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichrono-metric Dating. Lithos, 110(1/2/3/4): 327–342. https://doi.org/10.1016/j.lithos.2009.01.013 |
Cheng, H., DuFrane, S. A., Vervoort, J. D., et al., 2010a. The Triassic Age for Oceanic Eclogites in the Dabie Orogen: Entrainment of Oceanic Fragments in the Continental Subduction. Lithos, 117(1): 82–98. https://doi.org/10.1016/j.lithos.2010.02.007 |
Cheng, H., DuFrane, S. A., Vervoort, J. D., et al., 2010b. Protracted Oceanic Subduction Prior to Continental Subduction: New Lu-Hf and Sm-Nd Geochronology of Oceanic-Type High-Pressure Eclogite in the Western Dabie Orogen. American Mineralogist, 95(8/9): 1214–1223. https://doi.org/10.2138/am.2010.3307 |
Choi, S. H., Shervais, J. W., Mukasa, S. B., 2008. Supra-Subduction and Abyssal Mantle Peridotites of the Coast Range Ophiolite, California. Contributions to Mineralogy and Petrology, 156(5): 551–576. https://doi.org/10.1007/s00410-008-0300-6 |
Colás, V., González-Jiménez, J. M., Griffin, W. L., et al., 2014. Fingerprints of Metamorphism in Chromite: New Insights from Minor and Trace Elements. Chemical Geology, 389: 137–152. https://doi.org/10.1016/j.chemgeo.2014.10.001 |
Coleman, R. G., Keith, T. E., 1971. A Chemical Study of Serpentinization—Burro Mountain, California. Journal of Petrology, 12(2): 311–328. https://doi.org/10.1093/petrology/12.2.311 |
De Hoog, J. C. M., Gall, L., Cornell, D. H., 2010. Trace-Element Geochemistry of Mantle Olivine and Application to Mantle Petro-genesis and Geothermobarometry. Chemical Geology, 270(1/2/3/4): 196–215. https://doi.org/10.1016/j.chemgeo.2009.11.017 |
Debret, B., Andreani, M., Godard, M., et al., 2013. Trace Element Behavior during Serpentinization/de-Serpentinization of an Eclogitized Oceanic Lithosphere: A LA-ICPMS Study of the Lanzo Ultramafic Massif (Western Alps). Chemical Geology, 357: 117–133. https://doi.org/10.1016/j.chemgeo.2013.08.025 |
Deschamps, F., Godard, M., Guillot, S., et al., 2012. Behavior of Fluid-Mobile Elements in Serpentines from Abyssal to Subduction Environments: Examples from Cuba and Dominican Republic. Chemical Geology, 312/313: 93–117. https://doi.org/10.1016/j.chemgeo.2012.04.009 |
Deschamps, F., Godard, M., Guillot, S., et al., 2013. Geochemistry of Subduction Zone Serpentinites: A Review. Lithos, 178: 96–127. https://doi.org/10.1016/j.lithos.2013.05.019 |
Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54–76. https://doi.org/10.1007/bf00373711 |
Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.1016/j.gr.2015.06.009 |
Droop, G. T. R., 1987. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine, 51(361): 431–435. https://doi.org/10.1180/minmag.1987.051.361.10 |
Evans, B. W., Frost, B. R., 1975. Chrome-Spinel in Progressive Metamorphism—A Preliminary Analysis. Geochimica et Cosmochimica Acta, 39(6/7): 959–972. https://doi.org/10.1016/0016-7037(75)90041-1 |
Evans, B. W., 2010. Lizardite versus Antigorite Serpentinite: Magnetite, Hydrogen, and Life(?). Geology, 38(10): 879–882. https://doi.org/10.1130/g31158.1 |
Evans, B. W., Hattori, K., Baronnet, A., 2013. Serpentinite: What, Why, Where? Elements, 9(2): 99–106. https://doi.org/10.2113/gselements.9.2.99 |
Fu, B., Zheng, Y. F., Touret, J. L. R., 2002. Petrological, Isotopic and Fluid Inclusion Studies of Eclogites from Sujiahe, NW Dabie Shan (China). Chemical Geology, 187(1/2): 107–128. https://doi.org/10.1016/s0009-2541(02)00014-1 |
Gamal El Dien, H., Arai, S., Doucet, L. S., et al., 2019. Cr-Spinel Records Metasomatism not Petrogenesis of Mantle Rocks. Nature Communications, 10: 5103. https://doi.org/10.1038/s41467-019-13117-1 |
González-Jiménez, J. M., Proenza, J. A., Gervilla, F., et al., 2011. High-Cr and High-Al Chromitites from the Sagua de Tánamo District, Mayarí-Cristal Ophiolitic Massif (Eastern Cuba): Constraints on Their Origin from Mineralogy and Geochemistry of Chromian Spinel and Platinum-Group Elements. Lithos, 125(1/2): 101–121. https://doi.org/10.1016/j.lithos.2011.01.016 |
Guillot, S., Hattori, K. H., de Sigoyer, J., et al., 2001. Evidence of Hydration of the Mantle Wedge and Its Role in the Exhumation of Eclogites. Earth and Planetary Science Letters, 193(1/2): 115–127. https://doi.org/10.1016/s0012-821x(01)00490-3 |
Guillot, S., Hattori, K., Agard, P., et al., 2009. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. In: Frontiers in Earth Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg. 175–205. |
Guillot, S., Hattori, K., 2013. Serpentinites: Essential Roles in Geodynamics, Arc Volcanism, Sustainable Development, and the Origin of Life. Elements, 9(2): 95–98. https://doi.org/10.2113/gselements.9.2.95 |
Guillot, S., Schwartz, S., Reynard, B., et al., 2015. Tectonic Significance of Serpentinites. Tectonophysics, 646: 1–19. https://doi.org/10.1016/j.tecto.2015.01.020 |
Hart, S. R., Zindler, A., 1986. In Search of a Bulk-Earth Composition. Chemical Geology, 57(3/4): 247–267. https://doi.org/10.1016/0009-2541(86)90053-7 |
Hattori, K. H., Guillot, S., 2003. Volcanic Fronts Form as a Consequence of Serpentinite Dehydration in the Forearc Mantle Wedge. Geology, 31(6): 525-528. https://doi.org/10.1130/0091-7613(2003)031<0525:vffaac>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0525:vffaac>2.0.co;2 |
Hattori, K. H., Guillot, S., 2007. Geochemical Character of Serpentinites Associated with High- to Ultrahigh-Pressure Metamorphic Rocks in the Alps, Cuba, and the Himalayas: Recycling of Elements in Subduction Zones. Geochemistry, Geophysics, Geosystems, 8(9): Q09010. https://doi.org/10.1029/2007gc001594 |
Hellebrand, E., Snow, J. E., Dick, H. J. B., et al., 2001. Coupled Major and Trace Elements as Indicators of the Extent of Melting in Mid-Ocean-Ridge Peridotites. Nature, 410: 677–681. https://doi.org/10.1038/35070546 |
Herzberg, C., 2004. Geodynamic Information in Peridotite Petrology. Journal of Petrology, 45(12): 2507–2530. https://doi.org/10.1093/petrology/egh039 |
Xin, H. -T., Tian, J., Teng, X. -J., et al., 2023. Petrology, Zircon Chronology and Geochemistry of the Late Silurian Ophiolitic Mélanges and the Baiyunshan Forearc Complex in the Central Beishan Orogenic Belt, NE China. Journal of Earth Science, 34(2): 444–455. https://doi.org/10.1007/s12583-020-1377-8 |
Ionov, D. A., Doucet, L. S., Ashchepkov, I. V., 2010. Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. Journal of Petrology, 51(11): 2177–2210. https://doi.org/10.1093/petrology/egq053 |
Irvine, T. N., 1967. Chromian Spinel as a Petrogenetic Indicator: Part 2. Petrologic Applications. Canadian Journal of Earth Sciences, 4(1): 71–103. https://doi.org/10.1139/e67-004 |
Ishii, T., Robinson, P. T., Maekawa, H., et al., 1992. Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogasawara-Mariana Forearc, Leg 125. Proceedings of the Ocean Drilling Program, Scientific Results, 125: 445–485. https://doi.org/10.2973/odp.proc.sr.125.129.1992 |
Ishiwatari, A., 1985. Igneous Petrogenesis of the Yakuno Ophiolite (Japan) in the Context of the Diversity of Ophiolites. Contributions to Mineralogy and Petrology, 89: 155–167. https://doi.org/10.1007/bf00379450 |
Iyer, K., Austrheim, H., John, T., et al., 2008. Serpentinization of the Oceanic Lithosphere and some Geochemical Consequences: Constraints from the Leka Ophiolite Complex, Norway. Chemical Geology, 249(1/2): 66–90. https://doi.org/10.1016/j.chemgeo.2007.12.005 |
Jagoutz, E., Palme, H., Baddenhausen, H., et al., 1979. The Abundances of Major, Minor and Trace Elements in the Earth's Mantle as Derived from Primitive Ultramafic Nodules. In: 10th Lunar and Planetary Science Conference, March 19–23, 1979, Houston. 2031–2050 |
Jahn, B. M., Liu, X. C., Yui, T. F., et al., 2005. High-Pressure/Ultrahigh-Pressure Eclogites from the Hong'an Block, East-Central China: Geochemical Characterization, Isotope Disequilibrium and Geochronological Controversy. Contributions to Mineralogy and Petrology, 149(5): 499–526. https://doi.org/10.1007/s00410-005-0668-5 |
Janecky, D. R., Seyfried, W. E., 1986. Hydrothermal Serpentinization of Peridotite within the Oceanic Crust: Experimental Investigations of Mineralogy and Major Element Chemistry. Geochimica et Cosmochimica Acta, 50(7): 1357–1378. https://doi.org/10.1016/0016-7037(86)90311-X |
Kamenetsky, V. S., Crawford, A. J., Meffre, S., 2001. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4): 655–671. https://doi.org/10.1093/petrology/42.4.655 |
Kempf, E. D., Hermann, J., Reusser, E., et al., 2020. The Role of the Antigorite + Brucite to Olivine Reaction in Subducted Serpentinites (Zermatt, Switzerland). Swiss Journal of Geosciences, 113(1): 16. https://doi.org/10.1186/s00015-020-00368-0 |
Keppler, H., 1996. Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids. Nature, 380: 237–240. https://doi.org/10.1038/380237a0 |
Kodolanyi, J., Pettke, T., 2011. Loss of Trace Elements from Serpentinites during Fluid-Assisted Transformation of Chrysotile to Antigorite—An Example from Guatemala. Chemical Geology, 284(3/4): 351–362. https://doi.org/10.1016/j.chemgeo.2011.03.016 |
Kodolanyi, J., Pettke, T., Spandler, C., et al., 2012. Geochemistry of Ocean Floor and Fore-Arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones. Journal of Petrology, 53(2): 235–270. https://doi.org/10.1093/petrology/egr058 |
Lafay, R., Deschamps, F., Schwartz, S., et al., 2013. High-Pressure Serpentinites, a Trap-and-Release System Controlled by Metamorphic Conditions: Example from the Piedmont Zone of the Western Alps. Chemical Geology, 343: 38–54. https://doi.org/10.1016/j.chemgeo.2013.02.008 |
Leblanc, M., 1995. Chromitite and Ultramafic Rock Compositional Zoning through a Paleotransform Fault, Poum, New Caledonia. Economic Geology, 90(7): 2028–2039. https://doi.org/10.2113/gsecongeo.90.7.2028 |
Lee, C. T. A., Brandon, A. D., Norman, M., 2003. Vanadium in Peridotites as a Proxy for Paleo-fO2 during Partial Melting. Geochimica et Cosmochimica Acta, 67(16): 3045–3064. https://doi.org/10.1016/s0016-7037(03)00268-0 |
Lee, C. T. A., Leeman, W. P., Canil, D., et al., 2005. Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of Their Mantle Source Regions. Journal of Petrology, 46(11): 2313–2336. https://doi.org/10.1093/petrology/egi056 |
Li, X. P., Rahn, M., Bucher, K., 2004. Serpentinites of the Zermatt-Saas Ophiolite Complex and Their Texture Evolution. Journal of Metamorphic Geology, 22(3): 159–177. https://doi.org/10.1111/j.1525-1314.2004.00503.x |
Liu, L., Liao, X., Zhang, C., et al., 2013. Multi-matemorphic Timings of HP-UHP Rocks in the North Qinling and Their Geological Implications. Acta Petrologica Sinica, 29(5): 1634–1656 (in Chinese with English Abstract) |
Liu, X., Wei, C., Li, S., et al., 2004. Thermobaric Structure of a Traverse across Western Dabieshan: Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons. Journal of Metamorphic Geology, 22(4): 361–379. https://doi.org/10.1111/j.1525-1314.2004.00519.x |
Liu, X. C., Wu, Y. B., Gao, S., et al., 2011. Zircon U-Pb and Hf Evidence for Coupled Subduction of Oceanic and Continental Crust during the Carboniferous in the Huwan Shear Zone, Western Dabie Orogen, Central China. Journal of Metamorphic Geology, 29(2): 233–249. https://doi.org/10.1111/j.1525-1314.2010.00914.x |
Liu, X. C., Li, S. Z., Jahn, B. M., 2015. Tectonic Evolution of the Tongbai-Hong'an Orogen in Central China: From Oceanic Subduction/Accretion to Continent-Continent Collision. Science China Earth Sciences, 58(9): 1477–1496. https://doi.org/10.1007/s11430-015-5145-z |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Mevel, C., 2003. Serpentinization of Abyssal Peridotites at Mid-Ocean Ridges. Comptes Rendus Geoscience, 335(10): 825–852. https://doi.org/10.1016/j.crte.2003.08.006 |
Michael, P. J., Bonatti, E., 1985. Peridotite Composition from the North Atlantic: Regional and Tectonic Variations and Implications for Partial Melting. Earth and Planetary Science Letters, 73(1): 91–104. https://doi.org/10.1016/0012-821x(85)90037-8 |
Moody, J. B., 1976. Serpentinization: A Review. Lithos, 9(2): 125–138. https://doi.org/10.1016/0024-4937(76)90030-x |
Morishita, T., Tani, K., Shukuno, H., et al., 2011. Diversity of Melt Conduits in the Izu-Bonin-Mariana Forearc Mantle: Implications for the Earliest Stage of Arc Magmatism. Geology, 39(4): 411–414. https://doi.org/10.1130/g31706.1 |
Mothersole, F. E., Evans, K., Frost, B. R., 2017. Abyssal and Hydrated Mantle Wedge Serpentinised Peridotites: A Comparison of the 15º20'N Fracture Zone and New Caledonia Serpentinites. Contributions to Mineralogy and Petrology, 172(8): 69. https://doi.org/10.1007/s00410-017-1381-x |
Niu, Y. L., 1997. Mantle Melting and Melt Extraction Processes beneath Ocean Ridges: Evidence from Abyssal Peridotites. Journal of Petrology, 38(8): 1047–1074. https://doi.org/10.1093/petroj/38.8.1047 |
Niu, Y. L., Hékinian, R., 1997. Spreading-Rate Dependence of the Extent of Mantle Melting beneath Ocean Ridges. Nature, 385: 326–329. https://doi.org/10.1038/385326a0 |
Niu, Y. L., Langmuir, C. H., Kinzler, R. J., 1997. The Origin of Abyssal Peridotites: A New Perspective. Earth and Planetary Science Letters, 152(1/2/3/4): 251–265. https://doi.org/10.1016/s0012-821x(97)00119-2 |
Niu, Y. L., 2004. Bulk-Rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-Melting Processes beneath Mid-Ocean Ridges. Journal of Petrology, 45(12): 2423–2458. https://doi.org/10.1093/petrology/egh068 |
O'Hanley, D. S., Dyar, M. D., 1993. The Composition of Lizardite 1T and the Formation of Magnetite in Serpentinites. American Mineralogist, 78(3/4): 391–404. https://doi.org/10.3749/canmin.49.4.1045 |
Olivier, N., Boyet, M., 2006. Rare Earth and Trace Elements of Microbialites in Upper Jurassic Coral- and Sponge-Microbialite Reefs. Chemical Geology, 230(1/2): 105–123. https://doi.org/10.1016/j.chemgeo.2005.12.002 |
Parkinson, I. J., Pearce, J. A., Thirlwall, M. F., et al., 1992. Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana Forearc, Leg 125. Proceedings of the Ocean Drilling Program, Scientific Results, 125: 487–506. https://doi.org/10.2973/odp.proc.sr.125.183.1992 |
Parkinson, I. J., Hawkesworth, C. J., Cohen, A. S., 1998. Ancient Mantle in a Modern Arc: Osmium Isotopes in Izu-Bonin-Mariana Forearc Peridotites. Science, 281(5385): 2011–2013. https://doi.org/10.1126/science.281.5385.2011 |
Parkinson, I. J., Pearce, J. A., 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting. Journal of Petrology, 39(9): 1577–1618. https://doi.org/10.1093/petroj/39.9.1577 |
Parkinson, I. J., Arculus, R. J., 1999. The Redox State of Subduction Zones: Insights from Arc-Peridotites. Chemical Geology, 160(4): 409–423. https://doi.org/10.1016/s0009-2541(99)00110-2 |
Paulick, H., Bach, W., Godard, M., et al., 2006. Geochemistry of Abyssal Peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): Implications for Fluid/Rock Interaction in Slow Spreading Environments. Chemical Geology, 234(3/4): 179–210. https://doi.org/10.1016/j.chemgeo.2006.04.011 |
Pearce, J. A., van der Laan, S. R., Arculus, R. J., et al., 1992. Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction. Proceedings of the Ocean Drilling Program, Scientific Results, 125: 623–659. https://doi.org/10.2973/odp.proc.sr.125.172.1992 |
Pearce, J. A., Barker, P. F., Edwards, S. J., et al., 2000. Geochemistry and Tectonic Significance of Peridotites from the South Sandwich Arc-Basin System, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36–53. https://doi.org/10.1007/s004100050572 |
Peters, D., Bretscher, A., John, T., et al., 2017. Fluid-Mobile Elements in Serpentinites: Constraints on Serpentinisation Environments and Element Cycling in Subduction Zones. Chemical Geology, 466: 654–666. https://doi.org/10.1016/j.chemgeo.2017.07.017 |
Peters, T., Ayers, J. C., Gao, S., et al., 2013. The Origin and Response of Zircon in Eclogite to Metamorphism during the Multi-Stage Evolution of the Huwan Shear Zone, China: Insights from Lu-Hf and U-Pb Isotopic and Trace Element Geochemistry. Gondwana Research, 23(2): 726–747. https://doi.org/10.1016/j.gr.2012.05.008 |
Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/s0009-2541(97)00150-2 |
Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5): Q05B07. https://doi.org/10.1029/2003gc000597 |
Savov, I. P., Ryan, J. G., D'Antonio, M., et al., 2005. Geochemistry of Serpentinized Peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the Elemental Recycling at Subduction Zones. Geochemistry, Geophysics, Geosystems, 6(4): Q04J15. https://doi.org/10.1029/2004gc000777 |
Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., et al., 2007. Geochemistry of Hydrothermal Fluids from the Ultramafic-Hosted Logatchev Hydrothermal Field, 15°N on the Mid-Atlantic Ridge: Temporal and Spatial Investigation. Chemical Geology, 242(1/2): 1–21. https://doi.org/10.1016/j.chemgeo.2007.01.023 |
Jiang, S. Y., Xie, H. L., Ren, W. Q., et al., 2024. Discovery and Significance of Layered Chromite Mineralization in Mafic-Ultramafic Rocks from the Gayahe Area of the East Kunlun Orogenic Belt, Northwestern China. Journal of Earth Science, 35(4): 1367–1372. https://doi.org/10.1007/s12583-024-0041-0 |
Su, B., Chen, Y., Guo, S., et al., 2016. Origins of Orogenic Dunites: Petrology, Geochemistry, and Implications. Gondwana Research, 29(1): 41–59. https://doi.org/10.1016/j.gr.2015.08.001 |
Sun, W. D., Williams, I. S., Li, S. G., 2002. Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China: Evidence for Protracted Convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873–886. https://doi.org/10.1046/j.1525-1314.2002.00418.x |
Tao, L. R., Cao, S. Y., Li, W. Y., et al., 2024. Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust. Earth Science, 49(6): 2001–2023. https://doi.org/10.3799/dqkx.2024.007 (in Chinese with English Abstract) |
Tomoaki, M., Hnin Min, S., Hla, H., et al., 2023. Origin and Evolution of Ultramafic Rocks along the Sagaing Fault, Myanmar. Journal of Earth Science, 34(1): 122–132. https://doi.org/10.1007/s12583-021-1435-x |
Umino, S., Kitamura, K., Kanayama, K., et al., 2015. Thermal and Chemical Evolution of the Subarc Mantle Revealed by Spinel-Hosted Melt Inclusions in Boninite from the Ogasawara (Bonin) Archipelago, Japan. Geology, 43(2): 151–154. https://doi.org/10.1130/g36191.1 |
Uysal, İ., Tarkian, M., Sadiklar, M. B., et al., 2009. Petrology of Al- and Cr-Rich Ophiolitic Chromitites from the Muğla, SW Turkey: Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry. Contributions to Mineralogy and Petrology, 158(5): 659–674. https://doi.org/10.1007/s00410-009-0402-9 |
Uysal, I., Akmaz, R. M., Saka, S., et al., 2016. Coexistence of Compositionally Heterogeneous Chromitites in the Antalya-Isparta Ophiolitic Suite, SW Turkey: A Record of Sequential Magmatic Processes in the Sub-Arc Lithospheric Mantle. Lithos, 248/249/250/251: 160–174. https://doi.org/10.1016/j.lithos.2016.01.021 |
van der Laan, S., Arculus, R. J., Pearce, J. A., et al., 1992. Petrography, Mineral Chemistry, and Phase Relations of the Basement Boninite Series of Site 786, Izu-Bonin Forearc. Proceedings of the Ocean Drilling Program, Scientific Results, 125: 171–201. https://doi.org/10.2973/odp.proc.sr.125.139.1992 |
Wang, B., Xie, C. M., Dong, Y. S., et al., 2024. Origin of Serpentinite in Sumdo Area, Xizang and Its Constraint on Subduction of the Sumdo Paleo-Tethys Ocean. Earth Science, 49(3): 837–849. https://doi.org/10.3799/dqkx.2022.474 (in Chinese with English Abstract) |
Gan, W., Jin, Z. M., Fang, Z. Q., et al., 2023. Deformation of the Subcontinental Lithospheric Mantle in NE China: Constraints from Rheological and Fabric Study of Mantle Peridotite Xenoliths from Jiaohe, Jilin Province. Journal of Earth Science, 34(3): 767–775. https://doi.org/10.1007/s12583-020-1063-x |
Wu, Y. B., Gao, S., Zhang, H. F., et al., 2008. Timing of UHP Metamorphism in the Hong'an Area, Western Dabie Mountains, China: Evidence from Zircon U-Pb Age, Trace Element and Hf Isotope Composition. Contributions to Mineralogy and Petrology, 155(1): 123–133. https://doi.org/10.1007/s00410-007-0231-7 |
Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: an Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428. https://doi.org/10.1016/j.gr.2012.09.007 |
Wu, Y. B., 2009. Multistage Evolution of Continental Collision Orogen: A Case Study for Western Dabie Orogen. Chinese Science Bulletin, 54(15): 2568–2579. https://doi.org/10.1007/s11434-009-0410-1 |
Wu, Y. B., Hanchar, J. M., Gao, S., et al., 2009. Age and Nature of Eclogites in the Huwan Shear Zone, and the Multi-Stage Evolution of the Qinling-Dabie-Sulu Orogen, Central China. Earth and Planetary Science Letters, 277(3/4): 345–354. https://doi.org/10.1016/j.epsl.2008.10.031 |
Xu, Y., Yang, Z. N., Deng, X., et al., 2021. Identification of Indosinian Tectonic Mélange Belt in West Dabie Orogenic Belt and Its Geological Significance. Earth Science, 46(4): 1173–1198. https://doi.org/10.3799/dqkx.2020.311 (in Chinese with English Abstract) |
Yang, J. S., Li, T. F., Chen, S. Z., et al., 2009. Genesis of Garnet Peridotites in the Sulu UHP Belt: Examples from the Chinese Continental Scientific Drilling Project-Main Hole, PP1 and PP3 Drillholes. Tectonophysics, 475(2): 359–382. https://doi.org/10.1016/j.tecto.2009.02.032 |
Yang, J. -J., Jahn, B. -M., 2000. Deep Subduction of Mantle-Derived Garnet Peridotites from the Su-Lu UHP Metamorphic Terrane in China. Journal of Metamorphic Geology, 18(2): 167–180. https://doi.org/10.1046/j.1525-1314.2000.00249.x |
Zhang, L., Sun, W. D., Chen, R. X., 2019. Evolution of Serpentinite from Seafloor Hydration to Subduction Zone Metamorphism: Petrology and Geochemistry of Serpentinite from the Ultrahigh Pressure North Qaidam Orogen in Northern Tibet. Lithos, 346/347: 105158. https://doi.org/10.1016/j.lithos.2019.105158 |
Zhang, R. Y., Liou, J. -G., Yang, J. S., et al., 2000. Petrochemical Constraints for Dual Origin of Garnet Peridotites from the Dabie-Sulu UHP Terrane, Eastern-Central China. Journal of Metamorphic Geology, 18(2): 149–166. https://doi.org/10.1046/j.1525-1314.2000.00248.x |
Zhang, R. Y., Liou, J. G., Ernst, W. G., 2009. The Dabie-Sulu Continental Collision Zone: A Comprehensive Review. Gondwana Research, 16(1): 1–26. https://doi.org/10.1016/j.gr.2009.03.008 |
Zheng, Y. F., 2008. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 53(20): 3081–3104. https://doi.org/10.1007/s11434-008-0388-0 |
Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5–48. https://doi.org/10.1016/j.chemgeo.2012.02.005 |
Zhou, L. G., Xia, Q. X., Zheng, Y. F., et al., 2015. Tectonic Evolution from Oceanic Subduction to Continental Collision during the Closure of Paleotethyan Ocean: Geochronological and Geochemical Constraints from Metamorphic Rocks in the Hong'an Orogen. Gondwana Research, 28(1): 348–370. https://doi.org/10.1016/j.gr.2014.03.009 |
Zhou, M. F., Robinson, P. T., Bai, W. J., 1994. Formation of Podiform Chromitites by Melt/Rock Interaction in the Upper Mantle. Mineralium Deposita, 29(1): 98–101. https://doi.org/10.1007/bf03326400 |
Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1): 3–21. https://doi.org/10.1093/petrology/37.1.3 |