Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Tengfei Zhang, Le Wang, Arzigul Saidamat, Long Xiao, Jun Huang. Evolution History of Mesas in the Southern Utopia Planitia and Implications for the Ancient Oceans on Mars. Journal of Earth Science, 2023, 34(3): 940-950. doi: 10.1007/s12583-022-1776-0
Citation: Tengfei Zhang, Le Wang, Arzigul Saidamat, Long Xiao, Jun Huang. Evolution History of Mesas in the Southern Utopia Planitia and Implications for the Ancient Oceans on Mars. Journal of Earth Science, 2023, 34(3): 940-950. doi: 10.1007/s12583-022-1776-0

Evolution History of Mesas in the Southern Utopia Planitia and Implications for the Ancient Oceans on Mars

doi: 10.1007/s12583-022-1776-0
More Information
  • Corresponding author: Huang Jun, junhuang@cug.edu.cn
  • Received Date: 26 Sep 2022
  • Accepted Date: 03 Nov 2022
  • Available Online: 08 Jun 2023
  • Issue Publish Date: 30 Jun 2023
  • As one of the prominent landforms in the Zhurong landing region, mesas are geological features with flat tops and steep marginal cliffs. The mesas are widely distributed along the dichotomy boundary. There are various interpreted origins proposed for the mesas, such as the erosion of sedimentary layers, tuyas eruptions, or surface collapse due to the catastrophic release of groundwater. We investigate the detailed morphological characteristics of the mesas on the Late Hesperian Lowland unit within the Utopia Planitia. We observe morphological evidence for both the ice-bearing interior mesas and the sedimentary origin, including (1) small pits on the crater wall and mesa cliff formed by the release of volatiles like ice; (2) lobate flows at the base of mesas formed by the melting of subsurface ice; (3) layered mesas indicating sedimentary origin; (4) grooves on the top surface of mesas formed by the volumetric compaction of sedimentary deposits. The results indicate that the mesas in the study area are formed by the erosion of sedimentary layers and representative of the Noachian oceanic sediments. We propose an evolutionary model for the mesas. This study will provide some insights into future research of ancient ocean hypothesis of Mars and interesting targets for the exploration of the Zhurong rover.

     

  • loading
  • Achilles, C. N., Downs, R. T., Ming, D. W., et al., 2017. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars. Journal of Geophysical Research: Planets, 122(11): 2344–2361. https://doi.org/10.1002/2017je005262
    Billingsley, G. H., Block, D., Redsteer, M. H., 2013. Geologic Map of the Winslow 30′ × 60′ Quadrangle, Coconino and Navajo Counties, Northern Arizona. US Geological Survey Scientific Investigations, Map 3247
    Buczkowski, D. L., Seelos, K. D., Cooke, M. L., 2012. Giant Polygons and Circular Graben in Western Utopia Basin, Mars: Exploring Possible Formation Mechanisms. Journal of Geophysical Research: Planets, 117(E8). https://doi.org/10.1029/2011je003934
    Carr, M. H., 1979. Formation of Martian Flood Features by Release of Water from Confined Aquifers. Journal of Geophysical Research, 84(B6): 2995. https://doi.org/10.1029/jb084ib06p02995
    Carr, M. H., Head, J. W. III, 2010. Geologic History of Mars. Earth and Planetary Science Letters, 294(3/4): 185–203. https://doi.org/10.1016/j.epsl.2009.06.042
    Chapman, M. G., 2002. Layered, Massive and Thin Sediments on Mars: Possible Late Noachian to Late Amazonian Tephra? Geological Society, London, Special Publications, 202(1): 273–293. https://doi.org/10.1144/gsl.sp.2002.202.01.14
    Chapman, M. G., Tanaka, K. L., 2001. Interior Trough Deposits on Mars: Subice Volcanoes? Journal of Geophysical Research: Planets, 106(E5): 10087–10100. https://doi.org/10.1029/2000je001303
    Dickson, J., Kerber, L., Fassett, C., et al., 2018. A Global, Blended CTX Mosaic of Mars with Vectorized Seam Mapping: A New Mosaicking Pipeline Using Principles of Non-Destructive Image Editing. 49th Lunar and Planetary Science Conference, March 19–23, 2018, Woodlands, Texas. LPI Contribution No. 2083, 2480
    Edwards, B. R., Gudmundsson, M. T., Russell, J. K., 2015. Glaciovolcanism. The Encyclopedia of Volcanoes. Elsevier, Amsterdam. 377–393. https://doi.org/10.1016/b978-0-12-385938-9.00020-1
    Ehlmann, B. L., Edgett, K. S., Sutter, B., et al., 2017. Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations. Journal of Geophysical Research Planets, 122(12): 2510–2543. https://doi.org/10.1002/2017je005267
    Fergason, R., Hare, T., Laura, J., 2018. HRSC and MOLA Blended Digital Elevation Model at 200 m v2, Astrogeology PDS Annex. US Geological Survey. [2022-8-31]. http://bit.ly/HRSC_MOLA_Blend_v0
    Gallagher, C., Balme, M. R., Conway, S. J., et al., 2011. Sorted Clastic Stripes, Lobes and Associated Gullies in High-Latitude Craters on Mars: Landforms Indicative of very Recent, Polycyclic Ground-Ice Thaw and Liquid Flows. Icarus, 211(1): 458–471. https://doi.org/10.1016/j.icarus.2010.09.010
    Gou, S., Yue, Z. Y., Di, K. C., et al., 2022. Transverse Aeolian Ridges in the Landing Area of the Tianwen-1 Zhurong Rover on Utopia Planitia, Mars. Earth and Planetary Science Letters, 595: 117764. https://doi.org/10.1016/j.epsl.2022.117764
    Hack, J. T., 1942. Sedimentation and Volcanism in the Hopi Buttes, Arizona. Geological Society of America Bulletin, 53(2): 335–372. https://doi.org/10.1130/gsab-53-335
    Head, J., Forget, F., Wordsworth, R., et al., 2018. Two Oceans on Mars? History, Problems, and Prospects. 49th Lunar and Planetary Science Conference, March 19–23, 2018, Woodlands, Texas. LPI Contribution No. 2083, 2194
    Head, J. W. III, Hiesinger, H., Ivanov, M. A., et al., 1999. Possible Ancient Oceans on Mars: Evidence from Mars Orbiter Laser Altimeter Data. Science, 286(5447): 2134–2137. https://doi.org/10.1126/science. 286.5447.2134 doi: 10.1126/science.286.5447.2134
    Irwin, R. P., 2004. Sedimentary Resurfacing and Fretted Terrain Development along the Crustal Dichotomy Boundary, Aeolis Mensae, Mars. Journal of Geophysical Research, 109(E9): E09011. https://doi.org/10.1029/2004je002248
    Ivanov, M. A., Erkeling, G., Hiesinger, H., et al., 2017. Topography of the Deuteronilus Contact on Mars: Evidence for an Ancient Water/Mud Ocean and Long-Wavelength Topographic Readjustments. Planetary and Space Science, 144: 49–70. https://doi.org/10.1016/j.pss.2017.05.012
    Ivanov, M. A., Hiesinger, H., Erkeling, G., et al., 2014. Mud Volcanism and Morphology of Impact Craters in Utopia Planitia on Mars: Evidence for the Ancient Ocean. Icarus, 228: 121–140. https://doi.org/10.1016/j.icarus.2013.09.018
    Jakobsson, S., Gudmundsson, M., 2008. Subglacial and Intraglacial Volcanic Formations in Iceland. Jokull, 58: 179–196 http://www.raunvis.hi.is/~bryndis/JOKULL/50-59/J58p179.pdf
    Jaumann, R., Neukum, G., Behnke, T., et al., 2007. The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planetary and Space Science, 55(7/8): 928–952. https://doi.org/10.1016/j.pss.2006.12.003
    Johnsson, A., Reiss, D., Hauber, E., et al., 2012. Periglacial Mass-Wasting Landforms on Mars Suggestive of Transient Liquid Water in the Recent Past: Insights from Solifluction Lobes on Svalbard. Icarus, 218(1): 489–505. https://doi.org/10.1016/j.icarus.2011.12.021
    Kellerer-Pirklbauer, A., 2018. Solifluction Rates and Environmental Controls at Local and Regional Scales in Central Austria. Norsk Geografisk Tidsskrift—Norwegian Journal of Geography, 72(1): 37–56. https://doi.org/10.1080/00291951.2017.1399164
    Kreslavsky, M. A., Head, J. W. III, 2002a. Mars: Nature and Evolution of Young Latitude-Dependent Water-Ice-Rich Mantle. Geophysical Research Letters, 29(15): 1–4. https://doi.org/10.1029/2002gl015392
    Kreslavsky, M. A., Head, J. W. III, 2002b. Fate of Outflow Channel Effluents in the Northern Lowlands of Mars: The Vastitas Borealis Formation as a Sublimation Residue from Frozen Ponded Bodies of Water. Journal of Geophysical Research: Planets, 107(E12): 1–25. https://doi.org/10.1029/2001je001831
    Lin, Y., Zhao, J. N., Wang, L., et al., 2022. Evaluation of Small-Sized Mounds Formation Mechanisms in China's Zhurong Landing Region. Icarus, 389: 115256. https://doi.org/10.1016/j.icarus.2022.115256
    Liu, J. J., Li, C. L., Zhang, R. Q., et al., 2022. Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars. Nature Astronomy, 6(1): 65–71. https://doi.org/10.1038/s41550-021-01519-5
    Malin, M. C., Edgett, K. S., 2000. Sedimentary Rocks of Early Mars. Science, 290(5498): 1927–1937. https://doi.org/10.1126/science.290.5498.1927
    Malin, M. C., Bell, J. F. III., Cantor, B. A., et al., 2007. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112(E5): E05S04. https://doi.org/10.1029/2006je002808
    Mangold, N., 2018. Surface Processes. In: Rossi, A. P., van Gasselt, S., eds., Planetary Geology. Springer International Publishing, Cham. 185–219. https://doi.org/10.1007/978-3-319-65179-8_9
    Martínez-Alonso, S., Mellon, M. T., Banks, M. E., et al., 2011. Evidence of Volcanic and Glacial Activity in Chryse and Acidalia Planitiae, Mars. Icarus, 212(2): 597–621. https://doi.org/10.1016/j.icarus.2011.01.004
    Mathews, W. H., 1947. "Tuyas" Flat-Topped Volcanoes in Northern British Columbia. American Journal of Science, 245(9): 560–570. https://doi.org/10.2475/ajs.245.9.560
    McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al., 2007. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 112: E05S02. https://doi.org/10.1029/2005JE002605
    McGill, G. E., 1989. Buried Topography of Utopia, Mars: Persistence of a Giant Impact Depression. Journal of Geophysical Research: Solid Earth, 94(B3): 2753–2759. https://doi.org/10.1029/jb094ib03p02753
    McNeil, J. D., Fawdon, P., Balme, M. R., et al., 2021. Morphology, Morphometry and Distribution of Isolated Landforms in Southern Chryse Planitia, Mars. Journal of Geophysical Research: Planets, 126(5): e2020JE006775. https://doi.org/10.1029/2020je006775
    Meng, Q. Y., Wang, D., Wang, X. D., et al., 2021. High Resolution Imaging Camera (HiRIC) on China's First Mars Exploration Tianwen-1 Mission. Space Science Reviews, 217(3): 42. https://doi.org/10.1007/s11214-021-00823-w
    Meresse, S., Costard, F., Mangold, N., et al., 2008. Formation and Evolution of the Chaotic Terrains by Subsidence and Magmatism: Hydraotes Chaos, Mars. Icarus, 194(2): 487–500. https://doi.org/10.1016/j.icarus.2007.10.023
    Migoń, P., Duszyński, F., Jancewicz, K., et al., 2020. Late Evolutionary Stages of Residual Hills in Tablelands (Elbsandsteingebirge, Germany). Geomorphology, 367: 107308. https://doi.org/10.1016/j.geomorph.2020.107308
    Orgel, C., Hauber, E., Gasselt, S., et al., 2019. Grid Mapping the Northern Plains of Mars: A New Overview of Recent Water- and Ice-Related Landforms in Acidalia Planitia. Journal of Geophysical Research: Planets, 124(2): 454–482. https://doi.org/10.1029/2018je005664
    Palumbo, A. M., Head, J. W., 2019. Oceans on Mars: The Possibility of a Noachian Groundwater-Fed Ocean in a Sub-Freezing Martian Climate. Icarus, 331: 209–225. https://doi.org/10.1016/j.icarus.2019.04.022
    Parker, T. J., Stephen Saunders, R., Schneeberger, D. M., 1989. Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary. Icarus, 82(1): 111–145. https://doi.org/10.1016/0019-1035(89)90027-4
    Parker, T. J., Gorsline, D. S., Saunders, R. S., et al., 1993. Coastal Geomorphology of the Martian Northern Plains. Journal of Geophysical Research, 98(E6): 11061. https://doi.org/10.1029/93je00618
    Price, L. W., 1974. The Developmental Cycle of Solifluction Lobes. Annals of the Association of American Geographers, 64(3): 430–438. https://doi.org/10.1111/j.1467-8306.1974.tb00991.x
    Russell, J. K., Edwards, B. R., Porritt, L., et al., 2014. Tuyas: A Descriptive Genetic Classification. Quaternary Science Reviews, 87: 70–81. https://doi.org/10.1016/j.quascirev.2014.01.001
    Shi, Y., Yang, Y., Zhao, J., et al., 2022. Current Status, Problems and Prospects of Mars Canyon Network Research. Earth Science, 1–24. https://doi.org/10.3799/dqkx.2022.124 (in Chinese with English Abstract)
    Sholes, S. F., Rivera-Hernández, F., 2022. Constraints on the Uncertainty, Timing, and Magnitude of Potential Mars Oceans from Topographic Deformation Models. Icarus, 378: 114934. https://doi.org/10.1016/j.icarus.2022.114934
    Smith, D. E., Zuber, M. T., Frey, H. V., et al., 2001. Mars Orbiter Laser Altimeter: Experiment Summary after the First Year of Global Mapping of Mars. Journal of Geophysical Research: Planets, 106(E10): 23689–23722. https://doi.org/10.1029/2000je001364
    Tanaka, K. L., Robbins, S. J., Fortezzo, C. M., et al., 2014. The Digital Global Geologic Map of Mars: Chronostratigraphic Ages, Topographic and Crater Morphologic Characteristics, and Updated Resurfacing History. Planetary and Space Science, 95: 11–24. https://doi.org/10.1016/j.pss.2013.03.006
    Thiéblemont, D., Liégeois, J. P., Fernandez-Alonso, M., et al., 2016. Geological Map of Africa at 1: 10 M Scale. Geological Map. CGMW-BRGM
    Wordsworth, R., Forget, F., Millour, E., et al., 2013. Global Modelling of the Early Martian Climate under a Denser CO2 Atmosphere: Water Cycle and Ice Evolution. Icarus, 222(1): 1–19. https://doi.org/10.1016/j.icarus.2012.09.036
    Wu, B., Dong, J., Wang, Y. R., et al., 2021. Characterization of the Candidate Landing Region for Tianwen-1—China's First Mission to Mars. Earth and Space Science, 8(6). https://doi.org/10.1029/2021ea001670
    Wu, X., Liu, Y., Zhang, C. L., et al., 2021. Geological Characteristics of China's Tianwen-1 Landing Site at Utopia Planitia, Mars. Icarus, 370: 114657. https://doi.org/10.1016/j.icarus.2021.114657
    Ye, B. L., Qian, Y. Q., Xiao, L., et al., 2021. Geomorphologic Exploration Targets at the Zhurong Landing Site in the Southern Utopia Planitia of Mars. Earth and Planetary Science Letters, 576: 117199. https://doi.org/10.1016/j.epsl.2021.117199
    Zhao, J. N., Xiao, Z. J., Huang, J., et al., 2021. Geological Characteristics and Targets of High Scientific Interest in the Zhurong Landing Region on Mars. Geophysical Research Letters, 48(20). https://doi.org/10.1029/2021gl094903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(156) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return