Citation: | Tengfei Zhang, Le Wang, Arzigul Saidamat, Long Xiao, Jun Huang. Evolution History of Mesas in the Southern Utopia Planitia and Implications for the Ancient Oceans on Mars. Journal of Earth Science, 2023, 34(3): 940-950. doi: 10.1007/s12583-022-1776-0 |
As one of the prominent landforms in the Zhurong landing region, mesas are geological features with flat tops and steep marginal cliffs. The mesas are widely distributed along the dichotomy boundary. There are various interpreted origins proposed for the mesas, such as the erosion of sedimentary layers, tuyas eruptions, or surface collapse due to the catastrophic release of groundwater. We investigate the detailed morphological characteristics of the mesas on the Late Hesperian Lowland unit within the Utopia Planitia. We observe morphological evidence for both the ice-bearing interior mesas and the sedimentary origin, including (1) small pits on the crater wall and mesa cliff formed by the release of volatiles like ice; (2) lobate flows at the base of mesas formed by the melting of subsurface ice; (3) layered mesas indicating sedimentary origin; (4) grooves on the top surface of mesas formed by the volumetric compaction of sedimentary deposits. The results indicate that the mesas in the study area are formed by the erosion of sedimentary layers and representative of the Noachian oceanic sediments. We propose an evolutionary model for the mesas. This study will provide some insights into future research of ancient ocean hypothesis of Mars and interesting targets for the exploration of the Zhurong rover.
Achilles, C. N., Downs, R. T., Ming, D. W., et al., 2017. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars. Journal of Geophysical Research: Planets, 122(11): 2344–2361. https://doi.org/10.1002/2017je005262 |
Billingsley, G. H., Block, D., Redsteer, M. H., 2013. Geologic Map of the Winslow 30′ × 60′ Quadrangle, Coconino and Navajo Counties, Northern Arizona. US Geological Survey Scientific Investigations, Map 3247 |
Buczkowski, D. L., Seelos, K. D., Cooke, M. L., 2012. Giant Polygons and Circular Graben in Western Utopia Basin, Mars: Exploring Possible Formation Mechanisms. Journal of Geophysical Research: Planets, 117(E8). |
Carr, M. H., 1979. Formation of Martian Flood Features by Release of Water from Confined Aquifers. Journal of Geophysical Research, 84(B6): 2995. https://doi.org/10.1029/jb084ib06p02995 |
Carr, M. H., Head, J. W. III, 2010. Geologic History of Mars. Earth and Planetary Science Letters, 294(3/4): 185–203. https://doi.org/10.1016/j.epsl.2009.06.042 |
Chapman, M. G., 2002. Layered, Massive and Thin Sediments on Mars: Possible Late Noachian to Late Amazonian Tephra? Geological Society, London, Special Publications, 202(1): 273–293. |
Chapman, M. G., Tanaka, K. L., 2001. Interior Trough Deposits on Mars: Subice Volcanoes? Journal of Geophysical Research: Planets, 106(E5): 10087–10100. |
Dickson, J., Kerber, L., Fassett, C., et al., 2018. A Global, Blended CTX Mosaic of Mars with Vectorized Seam Mapping: A New Mosaicking Pipeline Using Principles of Non-Destructive Image Editing. 49th Lunar and Planetary Science Conference, March 19–23, 2018, Woodlands, Texas. LPI Contribution No. 2083, 2480 |
Edwards, B. R., Gudmundsson, M. T., Russell, J. K., 2015. Glaciovolcanism. The Encyclopedia of Volcanoes. Elsevier, Amsterdam. 377–393. https://doi.org/10.1016/b978-0-12-385938-9.00020-1 |
Ehlmann, B. L., Edgett, K. S., Sutter, B., et al., 2017. Chemistry, Mineralogy, and Grain Properties at Namib and High Dunes, Bagnold Dune Field, Gale Crater, Mars: A Synthesis of Curiosity Rover Observations. Journal of Geophysical Research Planets, 122(12): 2510–2543. https://doi.org/10.1002/2017je005267 |
Fergason, R., Hare, T., Laura, J., 2018. HRSC and MOLA Blended Digital Elevation Model at 200 m v2, Astrogeology PDS Annex. US Geological Survey. [2022-8-31]. |
Gallagher, C., Balme, M. R., Conway, S. J., et al., 2011. Sorted Clastic Stripes, Lobes and Associated Gullies in High-Latitude Craters on Mars: Landforms Indicative of very Recent, Polycyclic Ground-Ice Thaw and Liquid Flows. Icarus, 211(1): 458–471. https://doi.org/10.1016/j.icarus.2010.09.010 |
Gou, S., Yue, Z. Y., Di, K. C., et al., 2022. Transverse Aeolian Ridges in the Landing Area of the Tianwen-1 Zhurong Rover on Utopia Planitia, Mars. Earth and Planetary Science Letters, 595: 117764. https://doi.org/10.1016/j.epsl.2022.117764 |
Hack, J. T., 1942. Sedimentation and Volcanism in the Hopi Buttes, Arizona. Geological Society of America Bulletin, 53(2): 335–372. https://doi.org/10.1130/gsab-53-335 |
Head, J., Forget, F., Wordsworth, R., et al., 2018. Two Oceans on Mars? History, Problems, and Prospects. 49th Lunar and Planetary Science Conference, March 19–23, 2018, Woodlands, Texas. LPI Contribution No. 2083, 2194 |
Head, J. W. III, Hiesinger, H., Ivanov, M. A., et al., 1999. Possible Ancient Oceans on Mars: Evidence from Mars Orbiter Laser Altimeter Data. Science, 286(5447): 2134–2137. https://doi.org/10.1126/science. 286.5447.2134 doi: 10.1126/science.286.5447.2134 |
Irwin, R. P., 2004. Sedimentary Resurfacing and Fretted Terrain Development along the Crustal Dichotomy Boundary, Aeolis Mensae, Mars. Journal of Geophysical Research, 109(E9): E09011. https://doi.org/10.1029/2004je002248 |
Ivanov, M. A., Erkeling, G., Hiesinger, H., et al., 2017. Topography of the Deuteronilus Contact on Mars: Evidence for an Ancient Water/Mud Ocean and Long-Wavelength Topographic Readjustments. Planetary and Space Science, 144: 49–70. https://doi.org/10.1016/j.pss.2017.05.012 |
Ivanov, M. A., Hiesinger, H., Erkeling, G., et al., 2014. Mud Volcanism and Morphology of Impact Craters in Utopia Planitia on Mars: Evidence for the Ancient Ocean. Icarus, 228: 121–140. https://doi.org/10.1016/j.icarus.2013.09.018 |
Jakobsson, S., Gudmundsson, M., 2008. Subglacial and Intraglacial Volcanic Formations in Iceland. Jokull, 58: 179–196 http://www.raunvis.hi.is/~bryndis/JOKULL/50-59/J58p179.pdf |
Jaumann, R., Neukum, G., Behnke, T., et al., 2007. The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planetary and Space Science, 55(7/8): 928–952. https://doi.org/10.1016/j.pss.2006.12.003 |
Johnsson, A., Reiss, D., Hauber, E., et al., 2012. Periglacial Mass-Wasting Landforms on Mars Suggestive of Transient Liquid Water in the Recent Past: Insights from Solifluction Lobes on Svalbard. Icarus, 218(1): 489–505. https://doi.org/10.1016/j.icarus.2011.12.021 |
Kellerer-Pirklbauer, A., 2018. Solifluction Rates and Environmental Controls at Local and Regional Scales in Central Austria. Norsk Geografisk Tidsskrift—Norwegian Journal of Geography, 72(1): 37–56. https://doi.org/10.1080/00291951.2017.1399164 |
Kreslavsky, M. A., Head, J. W. III, 2002a. Mars: Nature and Evolution of Young Latitude-Dependent Water-Ice-Rich Mantle. Geophysical Research Letters, 29(15): 1–4. https://doi.org/10.1029/2002gl015392 |
Kreslavsky, M. A., Head, J. W. III, 2002b. Fate of Outflow Channel Effluents in the Northern Lowlands of Mars: The Vastitas Borealis Formation as a Sublimation Residue from Frozen Ponded Bodies of Water. Journal of Geophysical Research: Planets, 107(E12): 1–25. https://doi.org/10.1029/2001je001831 |
Lin, Y., Zhao, J. N., Wang, L., et al., 2022. Evaluation of Small-Sized Mounds Formation Mechanisms in China's Zhurong Landing Region. Icarus, 389: 115256. https://doi.org/10.1016/j.icarus.2022.115256 |
Liu, J. J., Li, C. L., Zhang, R. Q., et al., 2022. Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars. Nature Astronomy, 6(1): 65–71. https://doi.org/10.1038/s41550-021-01519-5 |
Malin, M. C., Edgett, K. S., 2000. Sedimentary Rocks of Early Mars. Science, 290(5498): 1927–1937. https://doi.org/10.1126/science.290.5498.1927 |
Malin, M. C., Bell, J. F. III., Cantor, B. A., et al., 2007. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 112(E5): E05S04. https://doi.org/10.1029/2006je002808 |
Mangold, N., 2018. Surface Processes. In: Rossi, A. P., van Gasselt, S., eds., Planetary Geology. Springer International Publishing, Cham. 185–219. |
Martínez-Alonso, S., Mellon, M. T., Banks, M. E., et al., 2011. Evidence of Volcanic and Glacial Activity in Chryse and Acidalia Planitiae, Mars. Icarus, 212(2): 597–621. https://doi.org/10.1016/j.icarus.2011.01.004 |
Mathews, W. H., 1947. "Tuyas" Flat-Topped Volcanoes in Northern British Columbia. American Journal of Science, 245(9): 560–570. https://doi.org/10.2475/ajs.245.9.560 |
McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al., 2007. Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 112: E05S02. https://doi.org/10.1029/2005JE002605 |
McGill, G. E., 1989. Buried Topography of Utopia, Mars: Persistence of a Giant Impact Depression. Journal of Geophysical Research: Solid Earth, 94(B3): 2753–2759. https://doi.org/10.1029/jb094ib03p02753 |
McNeil, J. D., Fawdon, P., Balme, M. R., et al., 2021. Morphology, Morphometry and Distribution of Isolated Landforms in Southern Chryse Planitia, Mars. Journal of Geophysical Research: Planets, 126(5): e2020JE006775. https://doi.org/10.1029/2020je006775 |
Meng, Q. Y., Wang, D., Wang, X. D., et al., 2021. High Resolution Imaging Camera (HiRIC) on China's First Mars Exploration Tianwen-1 Mission. Space Science Reviews, 217(3): 42. https://doi.org/10.1007/s11214-021-00823-w |
Meresse, S., Costard, F., Mangold, N., et al., 2008. Formation and Evolution of the Chaotic Terrains by Subsidence and Magmatism: Hydraotes Chaos, Mars. Icarus, 194(2): 487–500. https://doi.org/10.1016/j.icarus.2007.10.023 |
Migoń, P., Duszyński, F., Jancewicz, K., et al., 2020. Late Evolutionary Stages of Residual Hills in Tablelands (Elbsandsteingebirge, Germany). Geomorphology, 367: 107308. https://doi.org/10.1016/j.geomorph.2020.107308 |
Orgel, C., Hauber, E., Gasselt, S., et al., 2019. Grid Mapping the Northern Plains of Mars: A New Overview of Recent Water- and Ice-Related Landforms in Acidalia Planitia. Journal of Geophysical Research: Planets, 124(2): 454–482. https://doi.org/10.1029/2018je005664 |
Palumbo, A. M., Head, J. W., 2019. Oceans on Mars: The Possibility of a Noachian Groundwater-Fed Ocean in a Sub-Freezing Martian Climate. Icarus, 331: 209–225. https://doi.org/10.1016/j.icarus.2019.04.022 |
Parker, T. J., Stephen Saunders, R., Schneeberger, D. M., 1989. Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary. Icarus, 82(1): 111–145. https://doi.org/10.1016/0019-1035(89)90027-4 |
Parker, T. J., Gorsline, D. S., Saunders, R. S., et al., 1993. Coastal Geomorphology of the Martian Northern Plains. Journal of Geophysical Research, 98(E6): 11061. https://doi.org/10.1029/93je00618 |
Price, L. W., 1974. The Developmental Cycle of Solifluction Lobes. Annals of the Association of American Geographers, 64(3): 430–438. https://doi.org/10.1111/j.1467-8306.1974.tb00991.x |
Russell, J. K., Edwards, B. R., Porritt, L., et al., 2014. Tuyas: A Descriptive Genetic Classification. Quaternary Science Reviews, 87: 70–81. https://doi.org/10.1016/j.quascirev.2014.01.001 |
Shi, Y., Yang, Y., Zhao, J., et al., 2022. Current Status, Problems and Prospects of Mars Canyon Network Research. Earth Science, 1–24. https://doi.org/10.3799/dqkx.2022.124 (in Chinese with English Abstract) |
Sholes, S. F., Rivera-Hernández, F., 2022. Constraints on the Uncertainty, Timing, and Magnitude of Potential Mars Oceans from Topographic Deformation Models. Icarus, 378: 114934. https://doi.org/10.1016/j.icarus.2022.114934 |
Smith, D. E., Zuber, M. T., Frey, H. V., et al., 2001. Mars Orbiter Laser Altimeter: Experiment Summary after the First Year of Global Mapping of Mars. Journal of Geophysical Research: Planets, 106(E10): 23689–23722. https://doi.org/10.1029/2000je001364 |
Tanaka, K. L., Robbins, S. J., Fortezzo, C. M., et al., 2014. The Digital Global Geologic Map of Mars: Chronostratigraphic Ages, Topographic and Crater Morphologic Characteristics, and Updated Resurfacing History. Planetary and Space Science, 95: 11–24. https://doi.org/10.1016/j.pss.2013.03.006 |
Thiéblemont, D., Liégeois, J. P., Fernandez-Alonso, M., et al., 2016. Geological Map of Africa at 1: 10 M Scale. Geological Map. CGMW-BRGM |
Wordsworth, R., Forget, F., Millour, E., et al., 2013. Global Modelling of the Early Martian Climate under a Denser CO2 Atmosphere: Water Cycle and Ice Evolution. Icarus, 222(1): 1–19. https://doi.org/10.1016/j.icarus.2012.09.036 |
Wu, B., Dong, J., Wang, Y. R., et al., 2021. Characterization of the Candidate Landing Region for Tianwen-1—China's First Mission to Mars. Earth and Space Science, 8(6). |
Wu, X., Liu, Y., Zhang, C. L., et al., 2021. Geological Characteristics of China's Tianwen-1 Landing Site at Utopia Planitia, Mars. Icarus, 370: 114657. https://doi.org/10.1016/j.icarus.2021.114657 |
Ye, B. L., Qian, Y. Q., Xiao, L., et al., 2021. Geomorphologic Exploration Targets at the Zhurong Landing Site in the Southern Utopia Planitia of Mars. Earth and Planetary Science Letters, 576: 117199. https://doi.org/10.1016/j.epsl.2021.117199 |
Zhao, J. N., Xiao, Z. J., Huang, J., et al., 2021. Geological Characteristics and Targets of High Scientific Interest in the Zhurong Landing Region on Mars. Geophysical Research Letters, 48(20). |