Citation: | Mohamed Abd El Monsef, Mabrouk Sami, Fatma Toksoy-Köksal, Rainer Abart, Martin Ondrejka, Khaled M. Abdelfadil. Role of Magmatism and Related-Exsolved Fluids during Ta-Nb-Sn Concentration in the Central Eastern Desert of Egypt: Evidences from Mineral Chemistry and Fluid Inclusions. Journal of Earth Science, 2023, 34(3): 674-689. doi: 10.1007/s12583-022-1778-y |
The rare metals of Abu Dabbab area in the Central Eastern Desert of Egypt have been investigated for their mineralogy and conditions of precipitation using combination of EMPA and fluid inclusions studies, in order to delineate the source, mechanism of formation and evolutionary model for these economic metals. The (Ta-Nb-Sn)-bearing minerals at the Abu Dabbab area include columbite group minerals (CGMs), wodginite and cassiterite. In both granitic intrusion and its enclosed quartz veins, most of zoned CGMs and cassiterite grains are commonly characterized by a well-developed two-stage texture. Hence, columbite-(Mn) (CGM-Ⅰ) represents the early formed phase of CGMs that is characterized by high Mn# values (0.64–0.92) with quite low Ta# values (0.13–0.49). It was invaded by Ta-rich phases including tantalite-(Mn) (CGM-Ⅱ; Ta# = 0.13–0.49) and wodginite, which contain high Ta2O5 and SnO2 (17.91 wt.%). In regard to cassiterite, there are distinct compositional differences between the early-phase cassiterite (Cst-Ⅰ) and the late-phase one (Cst-Ⅱ), where the latter is enriched in Ta2O5, Nb2O5 and FeO. The chemistry and textural criteria of the early stage CGM-Ⅰ and Cst-Ⅰ, all are indicative of magmatic origin. While, the latter CGM-Ⅱ, wodginite and Cst-Ⅱ were influenced by the late magmatic Ta-rich fluids. Fluid inclusions microthermometry shows criteria of phase separation represented by both boiling and fluid immiscibility. The initial fluid was supposed to be of magmatic origin (magmatic CH4), that was consequently influenced by fluid mixing/dilution with post-hydrothermal/meteoric water with respect to the decompression process during uplift. Isochore construction gave rise to an estimate
Abdalla, H. M., Matsueda, H., Obeid, M. A., et al., 2008. Chemistry of Cassiterite in Rare Metal Granitoids and the Associated Rocks in the Eastern Desert, Egypt. Journal of Mineralogical and Petrological Sciences, 103(5): 318–326. https://doi.org/10.2465/jmps.070528a |
Abdel-Karim, A. A., Azer, M., Sami, M., 2021. Petrogenesis and Tectonic Implications of the Maladob Ring Complex in the South Eastern Desert, Egypt: New Insights from Mineral Chemistry and Whole-Rock Geochemistry. International Journal of Earth Sciences, 110(1): 53–80. https://doi.org/10.1007/s00531-020-01937-2 |
Abdelfadil, K. M., Saleh, G. M., Putiš, M., et al., 2022. Mantle Source Characteristics of the Late Neoproterozoic Post-Collisional Gabbroic Intrusion of Wadi Abu Hadieda, North Arabian-Nubian Shield, Egypt. Journal of African Earth Sciences, 194: 104607. https://doi.org/10.1016/j.jafrearsci.2022.104607 |
Ali, S., Ntaflos, T., Sami, M., 2021. Geochemistry of Khor Um-Safi Ophiolitic Serpentinites, Central Eastern Desert, Egypt: Implications for Neopro-terozoic Arc-Basin System in the Arabian-Nubian Shield. Geochemistry, 81(1): 125690. https://doi.org/10.1016/j.chemer. 2020.125690 doi: 10.1016/j.chemer.2020.125690 |
Azer, M. K., Abdelfadil, K. M., Ramadan, A. A., 2019. Geochemistry and Petrogenesis of Late Ediacaran Rare-Metal Albite Granite of the Nubian Shield: Case Study of Nuweibi Intrusion, Eastern Desert, Egypt. The Journal of Geology, 127(6): 665–689. https://doi.org/10.1086/705328 |
Bakker, R. J., 1999. Optimal Interpretation of Microthermometrical Data from Fluid Inclusions: Thermodynamic Modelling and Computer Programming: [Dissertation]. Ruprecht-Karls-University, Habilitation |
Bakker, R. J., 2003. Package FLUIDS 1. Computer Programs for Analysis of Fluid Inclusion Data and for Modelling Bulk Fluid Properties. Chemical Geology, 194(1/2/3): 3–23. https://doi.org/10.1016/s0009-2541(02)00268-1 |
Belkasmi, M., Cuney, M., Pollard, P. J., et al., 2000. Chemistry of the Ta-Nb-Sn-W Oxide Minerals from the Yichun Rare Metal Granite (SE China): Genetic Implications and Comparison with Moroccan and French Hercynian Examples. Mineralogical Magazine, 64(3): 507–523. https://doi.org/10.1180/002646100549391 |
Bettencourt, J. S., Leite, W. B. Jr., Goraieb, C. L., et al., 2005. Sn-Polymetallic Greisen-Type Deposits Associated with Late-Stage Rapakivi Granites, Brazil: Fluid Inclusion and Stable Isotope Characteristics. Lithos, 80(1/2/3/4): 363–386. https://doi.org/10.1016/j.lithos.2004.03.060 |
Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684. https://doi.org/10.1016/0016-7037(93)90378-a |
Breiter, K., Škoda, R., Uher, P., 2007. Nb-Ta-Ti-W-Sn-Oxide Minerals as Indicators of a Peraluminous P- and F-Rich Granitic System Evolution: Podlesí, Czech Republic. Mineralogy and Petrology, 91(3): 225–248. https://doi.org/10.1007/s00710-007-0197-1 |
Brown, P. E., 1998. Fluid Inclusion Modeling for Hydrothermal Systems. In: Richards, J. P., Larson, P. B., eds., Techniques in Hydrothermal Ore Deposits Geology. Society of Economic Geologists. Reviews in Economic Geology, 10. |
Burruss, R. C., 1981. Analysis of Fluid Inclusions: Phase Equilibrium at Contrast Volume. American Journal of Science, 281(8): 1104–1126. https://doi.org/10.2475/ajs.281.8.1104 |
Canosa, F., Martin-Izard, A., Fuertes-Fuente, M., 2012. Evolved Granitic Systems as a Source of Rare-Element Deposits: The Ponte Segade Case (Galicia, NW Spain). Lithos, 153: 165–176. https://doi.org/10.1016/j.lithos.2012.06.029 |
Černý, P., Ercit, T. S., 1985. Some Recent Advances in the Mineralogy and Geochemistry of Nb and Ta in Rare-Element Granitic Pegmatites. Bulletin de Minéralogie, 108(3): 499–532. https://doi.org/10.3406/bulmi.1985.7846 |
Černý, P., Ercit, T. S., 1989. Mineralogy of Niobium and Tantalum: Crystal Chemical Relationships, Paragenetic Aspects and Their Economic Implications. Lanthanides, Tantalum and Niobium. Springer Berlin Heidelberg, Berlin, Heidelberg. 27–79. |
Černý, P., Goad, B. E., Hawthorne, F. C., et al., 1986. Fractionation Trends of the Nb- and Ta-Bearing Oxide Minerals in the Greer Lake Pegmatitic Granite and Its Pegmatite Aureole, Southeastern Manitoba. American Mineralogist, 71(3): 501–517 |
Collins, P. L. F., 1979. Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity. Economic Geology, 74(6): 1435–1444. https://doi.org/10.2113/gsecongeo.74.6.1435 |
Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz-Lepidolite Albite Granite (Massif Central, France): The Disseminated Magmatic Sn-Li-Ta-Nb-Be Mineralization. Economic Geology, 87(7): 1766–1794. https://doi.org/10.2113/gsecongeo.87.7.1766 |
Diamond, L. W., 1992. Stability of CO2 Clathrate Hydrate + CO2 Liquid + CO2 Vapour + Aqueous KCl-NaCl Solutions: Experimental Determi-nation and Application to Salinity Estimates of Fluid Inclusions. Geochimica et Cosmochimica Acta, 56(1): 273–280. https://doi.org/10.1016/0016-7037(92)90132-3 |
Dostal, J., Kontak, D. J., Gerel, O., et al., 2015. Cretaceous Ongonites (Topaz-Bearing Albite-Rich Microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of Extreme Magmatic Fractionation and Pervasive Metasomatic Fluid: Rock Interaction. Lithos, 236/237: 173–189. https://doi.org/10.1016/j.lithos.2015.08.003 |
Duan, Z. H., Møller, N., Weare, J. H., 1992. An Equation of State for the CH4-CO2-H2O System: I. Pure Systems from 0 to 1 000 ℃ and 0 to 8 000 bar. Geochimica et Cosmochimica Acta, 56(7): 2605–2617. https://doi.org/10.1016/0016-7037(92)90347-l |
Duan, Z. H., Møller, N., Weare, J., 1996. A General Equation of State for Supercritical Fluid Mixtures and Molecular Dynamics Simulation of Mixture PVTX Properties. Geochimica et Cosmochimica Acta, 60: 1209–1216. https://doi.org/10.1016/0016-7037(96)00004-x |
Dubois, M., Marignac, C., 1997. The H2O-NaCl-MgCl2 Ternary Phase Diagram with Special Application to Fluid Inclusion Studies. Economic Geology, 92(1): 114–119. https://doi.org/10.2113/gsecongeo.92.1.114 |
Fall, A., Tattitch, B., Bodnar, R. J., 2011. Combined Microthermometric and Raman Spectroscopic Technique to Determine the Salinity of H2O-CO2-NaCl Fluid Inclusions Based on Clathrate Melting. Geochimica et Cosmochimica Acta, 75(4): 951–964. https://doi.org/10.1016/j.gca. 2010.11.021 doi: 10.1016/j.gca.2010.11.021 |
Fawzy, M. M., Mahdy, N. M., Sami, M., 2020. Mineralogical Characterization and Physical Upgrading of Radioactive and Rare Metal Minerals from Wadi Al-Baroud Granitic Pegmatite at the Central Eastern Desert of Egypt. Arabian Journal of Geosciences, 13(11): 1–15. https://doi.org/10.1007/s12517-020-05381-z |
Galliski, M. A., Marquez-Zavalía, M. F., Černý, P., et al., 2008. The Ta-Nb-Sn-Ti Oxide-Mineral Paragenesis from La Viquita, a Spodumene-Bearing Rare-Element Granitic Pegmatite, San Luis, Argentina. The Canadian Mineralogist, 46(2): 379–393. https://doi.org/10.3749/canmin.46.2.379 |
Heikal, M. T. S., Khedr, M. Z., Abd El Monsef, M., et al., 2019. Petrogenesis and Geodynamic Evolution of Neoproterozoic Abu Dabbab Albite Granite, Central Eastern Desert of Egypt: Petrological and Geochemical Constraints. Journal of African Earth Sciences, 158: 103518. https://doi.org/10.1016/j.jafrearsci.2019.103518 |
Helba, H., Trumbull, R. B., Morteani, G., et al., 1997. Geochemical and Petrographic Studies of Ta Mineralization in the Nuweibi Albite Granite Complex, Eastern Desert, Egypt. Mineralium Deposita, 32(2): 164–179. https://doi.org/10.1007/s001260050082 |
Hollister, L. S., Crawford, M. L., Roedder E. W., et al., 1981. Practical Aspects of Microthermometry. Mineral. Assoc. Canada Short Course Handbook, 6: 278–304 http://www.researchgate.net/publication/292399246_Practical_aspects_of_microthermometry |
Hollister, L. S., Burruss, R. C., 1976. Phase Equilibria in Fluid Inclusions from the Khtada Lake Metamorphic Complex. Geochimica et Cosmochimica Acta, 40(2): 163–175. https://doi.org/10.1016/0016-7037(76)90174-5 |
Holten, T., Jamtveit, B., Meakin, P., et al., 1997. Statistical Characteristics and Origin of Oscillatory Zoning in Crystals. American Mineralogist, 82(5/6): 596–606. https://doi.org/10.2138/am-1997-5-619 |
Huang, X. L., Wang, R. C., Chen, X. M., et al., 2002. Vertical Variations in the Mineralogy of the Yichun Topaz Lepidolite Granite, Jiangxi Province, Southern China. The Canadian Mineralogist, 40(4): 1047–1068. https://doi.org/10.2113/gscanmin.40.4.1047 |
Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian-Ediacaran History of the Arabian-Nubian Shield: A Review of Deposi-tional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3): 167–232. https://doi.org/10.1016/j.jafrearsci. 2011.07.003 doi: 10.1016/j.jafrearsci.2011.07.003 |
Krumrei, T. V., Pernicka, E., Kaliwoda, M., et al., 2007. Volatiles in a Peralkaline System: Abiogenic Hydrocarbons and F-Cl-Br Systematics in the Naujaite of the Ilímaussaq Intrusion, South Greenland. Lithos, 95(3/4): 298–314. https://doi.org/10.1016/j.lithos.2006.08.003 |
Küster, D., 2009. Granitoid-Hosted Ta Mineralization in the Arabian-Nubian Shield: Ore Deposit Types, Tectono-Metallogenetic Setting and Petrogenetic Framework. Ore Geology Reviews, 35(1): 68–86. https://doi.org/10.1016/j.oregeorev.2008.09.008 |
Lehmann, B., Zoheir, B. A., Neymark, L. A., et al., 2020. Monazite and Cassiterite U Pb Dating of the Abu Dabbab Rare-Metal Granite, Egypt: Late Cryogenian Metalliferous Granite Magmatism in the Arabian-Nubian Shield. Gondwana Research, 84: 71–80. https://doi.org/10.1016/ j.gr.2020.03.001 doi: 10.1016/j.gr.2020.03.001 |
Linnen, R. L., Samson, I. M., Williams-Jones, A. E., et al., 2014. Geochemistry of the Rare-Earth Element, Nb, Ta, Hf, and Zr Deposits. Treatise on Geochemistry. Elsevier, Amsterdam. 543–568. |
Llorens, T., Moro, M. C., 2012. Oxide Minerals in the Granitic Cupola of the Jálama Batholith, Salamanca, Spain. Part Ⅰ: Accessory Sn, Nb, Ta and Ti Minerals in Leucogranites, Aplites and Pegmatites. Journal of Geosciences, 57(1): 25–43. https://doi.org/10.3190/jgeosci.113 |
London, D., 2014. A Petrologic Assessment of Internal Zonation in Granitic Pegmatites. Lithos, 184–187: 74–104. https://doi.org/10.1016/j.lithos.2013.10.025 |
Mahdy, N. M., Ntaflos, T., Pease, V., et al., 2020. Combined Zircon U-Pb Dating and Chemical Th-U-Total Pb Chronology of Monazite and Thorite, Abu Diab A-Type Granite, Central Eastern Desert of Egypt: Constraints on the Timing and Magmatic-Hydrothermal Evolution of Rare Metal Granitic Magmatism in the Arabian Nubian Shield. Geochemistry, 80(4): 125669. https://doi.org/10.1016/j.chemer.2020.125669 |
Melcher, F., Graupner, T., Gäbler, H. E., et al., 2015. Tantalum-(Niobium-Tin) Mineralisation in African Pegmatites and Rare Metal Granites: Constraints from Ta-Nb Oxide Mineralogy, Geochemistry and U-Pb Geochronology. Ore Geology Reviews, 64: 667–719. https://doi.org/10.1016/j.oregeorev.2013.09.003 |
Mohamed, F. H., 1993. Rare Metal-Bearing and Barren Granites, Eastern Desert of Egypt: Geochemical Characterization and Metallogenetic Aspects. Journal of African Earth Sciences (and the Middle East), 17(4): 525–539. https://doi.org/10.1016/0899-5362(93)90009-f |
Pollard, P. J., 1989. Geochemistry of Granites Associated with Tantalum and Niobium Mineralization. In: Möller, P., Černý, P., Saupé, F., eds., Lanthanides, Tantalum and Niobium: Mineralogy, Geochemistry, Characteristics of Primary Ore Deposits, Prospecting. Processing and Applications Proceedings of a workshop in Berlin, November 1986. Springer Berlin Heidelberg, Berlin, Heidelberg. 145–168 |
Potter, J., Rankin, A. H., Treloar, P. J., 2004. Abiogenic Fischer? Tropsch Synthesis of Hydrocarbons in Alkaline Igneous Rocks; Fluid Inclusion, Textural and Isotopic Evidence from the Lovozero Complex, N. W. Russia. Lithos, 75(3/4): 311–330. https://doi.org/10.1016/j.lithos.2004. 03.003 doi: 10.1016/j.lithos.2004.03.003 |
Pouchou, J. -L., Pichoir, F., 1991. Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model "PAP". In: Heinrich, K. F. J., Newbury, D. E., eds., Electron Probe Quantitation. Springer, Boston. 31–75 |
Ramboz, C., Pichavant, M., Weisbrod, A., 1982. Fluid Immiscibility in Natural Processes: Use and Misuse of Fluid Inclusion Data. Chemical Geology, 37(1/2): 29–48. https://doi.org/10.1016/0009-2541(82)90065-1 |
René, M., Škoda, R., 2011. Nb-Ta-Ti Oxides Fractionation in Rare-Metal Granites: Krásno-Horní Slavkov Ore District, Czech Republic. Mineralogy and Petrology, 103(1/2/3/4): 37–48. https://doi.org/10.1007/s00710-011-0152-z |
Renno, A., 1997. Zur Petrogenese der Albitgranite von Abu Dabbab und Nuweibi, Central Eastern Desert, Ägypten: [Dissertation]. Technisches Universität Berlin, Berlin. 216 |
Rettich, T. R., Handa, Y. P., Battino, R., et al., 1981. Solubility of Gases in Liquids. 13. High-Precision Determination of Henry's Constants for Methane and Ethane in Liquid Water at 275 to 328 K. The Journal of Physical Chemistry, 85(22): 3230–3237. https://doi.org/10.1021/j150622a006 |
Roedder, E., Bodnar, R. J., 1980. Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth and Planetary Sciences, 8: 263–301. https://doi.org/10.1146/annurev.ea.08.050180.001403 |
Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, 12: 1–644 doi: 10.2465/minerj.12.1 |
Rub, A. K., Štemprok, M., Rub, M. G., 1998. Tantalum Mineralization in the Apical Part of the Cínovec (Zinnwald) Granite Stock. Mineralogy and Petrology, 63(3/4): 199–222. https://doi.org/10.1007/bf01164151 |
Ryabchikov, I. D., Kogarko, L. N., 2006. Magnetite Compositions and Oxygen Fugacities of the Khibina Magmatic System. Lithos, 91(1/2/3/4): 35–45. https://doi.org/10.1016/j.lithos.2006.03.007 |
Salvi, S., Williams-Jones, A. E., 1997. Fluid-Inclusion Volatile Analysis by Gas Chromatography: Application of a Wide-Bore Porous-Polymer Capillary Column to the Separation of Organic and Inorganic Compounds. Canadian Mineralogist, 35(6): 1391–1414 http://canmin.geoscienceworld.org/content/35/6/1391 |
Sami, M., Abd El Monsef, M., Abart, R., et al., 2022. Unraveling the Genesis of Highly Fractionated Rare-Metal Granites in the Nubian Shield via the Rare-Earth Elements Tetrad Effect, Sr-Nd Isotope Systematics, and Mineral Chemistry. ACS Earth and Space Chemistry, 6(10): 2368–2384. https://doi.org/10.1021/acsearthspacechem.2c00125 |
Sami, M., Mahdy, N. M., Ntaflos, T., et al., 2020. Composition and Origin of Ti-Nb-Ta-Zr Bearing Minerals in the Abu Diab Highly Evolved Granite from the Central Eastern Desert of Egypt. Journal of African Earth Sciences, 165: 103808.https://doi.org/10.1016/j.jafrearsci.2020. 103808 doi: 10.1016/j.jafrearsci.2020.103808 |
Sami, M., Ntaflos, T., Farahat, E. S., et al., 2017. Mineralogical, Geochemical and Sr-Nd Isotopes Characteristics of Fluorite-Bearing Granites in the Northern Arabian-Nubian Shield, Egypt: Constraints on Petrogenesis and Evolution of Their Associated Rare Metal Minerali-zation. Ore Geology Reviews, 88: 1–22. https://doi.org/10.1016/j.oregeorev.2017.04.015 |
Sami, M., Ntaflos, T., Farahat, E. S., et al., 2018. Petrogenesis and Geodynamic Implications of Ediacaran Highly Fractionated A-Type Granitoids in the North Arabian-Nubian Shield (Egypt): Constraints from Whole-Rock Geochemistry and Sr-Nd Isotopes. Lithos, 304–307: 329–346. https://doi.org/10.1016/j.lithos.2018.02.015 |
Schwartz, M. O., 1992. Geochemical Criteria for Distinguishing Magmatic and Metasomatic Albite-Enrichment in Granitoids—Examples from the Ta-Li Granite Yichun (China) and the Sn-W Deposit Tikus (Indonesia). Mineralium Deposita, 27(2): 101–108. https://doi.org/10.1007/bf00197092 |
Shepherd, T. J., Miller, M. F., Scrivener, R. C., et al., 1985. Hydrothermal Fluid Evolution in Relation to Mineralization in Southwest England with Special Reference to the Dartmoor-Bodmin Area. In: High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis Conference. 345–364 |
Swanenberg, H. E. C., 1979. Phase Equilibria in Carbonic Systems, and Their Application to Freezing Studies of Fluid Inclusions. Contributions to Mineralogy and Petrology, 68(3): 303–306. https://doi.org/10.1007/bf00371552 |
Timofeev, A., Williams-Jones, A. E., 2015. The Origin of Niobium and Tantalum Mineralization in the Nechalacho REE Deposit, NWT, Canada. Economic Geology, 110(7): 1719–1735. https://doi.org/10.2113/econgeo.110.7.1719 |
Tindle, A. G., Breaks, F. W., 2000. Columbite-Tantalite Mineral Chemistry from Rare-Element Granitic Pegmatites: Separation Lakeh Area, N. W. Ontario, Canada. Mineralogy and Petrology, 70(3): 165–198. https://doi.org/10.1007/s007100070002 |
van den Kerkhof, A. M., 1988. Phase Transitions and Molar Volumes of CO2-CH4-N2 Inclusions. Bulletin de Minéralogie, 111(3): 257–266. https://doi.org/10.3406/bulmi.1988.8046 |
Wilkinson, J. J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1/2/3/4): 229–272. https://doi.org/10.1016/s0024-4937(00)00047-5 |
Wu, C. Z., Liu, S. H., Gu, L. X., et al., 2011. Formation Mechanism of the Lanthanide Tetrad Effect for a Topaz- and Amazonite-Bearing Leuco-granite Pluton in Eastern Xinjiang, NW China. Journal of Asian Earth Sciences, 42(5): 903–916. https://doi.org/10.1016/j.jseaes.2010.09.011 |
Xie, L., Wang, R. C., Che, X. D., et al., 2016. Tracking Magmatic and Hydrothermal Nb-Ta-W-Sn Fractionation Using Mineral Textures and Composition: A Case Study from the Late Cretaceous Jiepailing Ore District in the Nanling Range in South China. Ore Geology Reviews, 78: 300–321. https://doi.org/10.1016/j.oregeorev.2016.04.003 |
Xie, L., Wang, Z. J., Wang, R. C., et al., 2018. Mineralogical Constraints on the Genesis of W-Nb-Ta Mineralization in the Laiziling Granite (Xianghualing District, South China). Ore Geology Reviews, 95: 695–712. https://doi.org/10.1016/j.oregeorev.2018.03.021 |
Yin, R., Wang, R. C., Zhang, A. C., et al., 2013. Extreme Fractionation from Zircon to Hafnon in the Koktokay No. 1 Granitic Pegmatite, Altai, Northwestern China. American Mineralogist, 98(10): 1714–1724. https://doi.org/10.2138/am.2013.4494 |
Zaraisky, G. P., Korzhinskaya, V., Kotova, N., 2010. Experimental Studies of Ta2O5 and Columbite-Tantalite Solubility in Fluoride Solutions from 300 to 550 ℃ and 50 to 100 MPa. Mineralogy and Petrology, 99(3): 287–300. https://doi.org/10.1007/s00710-010-0112-z |
Zhang, X., Nesbitt, B. E., Muehlenbachs, K., 1989. Gold Mineralization in the Okanagan Valley, Southern British Columbia: Fluid Inclusion and Stable Isotope Studies. Economic Geology, 84(2): 410–424. https://doi.org/10.2113/gsecongeo.84.2.410 |
Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl-KCl-CaCl2-H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3/4): 335–350. https://doi.org/10.1016/0009-2541(87)90012-x |
Zhu, Z. Y., Wang, R. C., Che, X. D., et al., 2015. Magmatic-Hydrothermal Rare-Element Mineralization in the Songshugang Granite (North-eastern Jiangxi, China): Insights from an Electron-Microprobe Study of Nb-Ta-Zr Minerals. Ore Geology Reviews, 65: 749–760. https://doi.org/10.1016/j.oregeorev.2014.07.021 |
Zoheir, B., Akawy, A., Hassan, I., 2008. Role of Fluid Mixing and Wallrock Sulfidation in Gold Mineralization at the Semna Mine Area, Central Eastern Desert of Egypt: Evidence from Hydrothermal Alteration, Fluid Inclusions and Stable Isotope Data. Ore Geology Reviews, 34(4): 580–596. https://doi.org/10.1016/j.oregeorev.2008.09.007 |
Zoheir, B., Lehmann, B., Emam, A., et al., 2020. Extreme Fractionation and Magmatic-Hydrothermal Transition in the Formation of the Abu Dabbab Rare-Metal Granite, Eastern Desert, Egypt. Lithos, 352/353: 105329. https://doi.org/10.1016/j.lithos.2019.105329 |