Citation: | Xun Yu, Gang Zeng, Xiao-Jun Wang, Fa-Jun Sun, Hui-Li Zhang. Formation of a DMM-EM2 Mixing Trend in Continental Intraplate Basalts by Variable Degrees of Melting of Hybrid Mantle Controlled by the Lithospheric Lid. Journal of Earth Science, 2025, 36(5): 2179-2192. doi: 10.1007/s12583-022-1782-2 |
Continental intraplate basalts form by partial melting of the mantle, and can provide important constraints on mantle heterogeneity. However, due to the thick overlying continental lithosphere, the origins of the geochemical characteristics of continental intraplate basalts are controversial. In this study, we examined the geochemistry of Cenozoic basalts in southeast China. These basalts which are divided into four volcanic belts exhibit a DMM-EM2 mixing trend and spatial variations in Pb isotopes from inland (i.e., thick lithosphere) to coastal (i.e., thin lithosphere) regions. In contrast to the Pb isotopic variations, there are no spatial variations in Sr-Nd-Hf isotopes. Marked correlations between Pb isotopes and major elements (i.e., MgO and SiO2) suggest the continental lithospheric lid controlled their petrogenesis. Nonetheless, other factors are needed to explain the variations in Ti/Ti* and Hf/Hf* ratios, and Nd-Hf isotopes of the southeast China basalts. The increasing Pb isotope ratios from the inner to coastal regions are associated with decreases in CaO/Al2O3 ratios and increases in FC3MS (FeOT/CaO–3 × MgO/SiO2; in wt.%) values, indicating contributions from non-peridotite components in the mantle sources. The similarly depleted Nd-Hf isotopic compositions of the basalts from the three inner belts indicate these basalts have a similar origin, whereas the more enriched isotopic features of the basalts from the outer belt suggest their mantle source contains older recycled oceanic crust. Thus, source (i.e., lithological) heterogeneity also had a significant role in controlling the geochemistry of these basalts. The DMM-EM2 mixing trend defined by the Pb isotopic compositions of continental intraplate basalts from southeast China was generated by variable degrees of melting of heterogeneous mantle that was controlled by the thickness of the continental lithospheric lid (i.e., the melting pressure). This caused variable extents of melting of enriched components in the mantle sources of the basalts (i.e., carbonated peridotite
Adams, J. V., Jackson, M. G., Spera, F. J., et al., 2021. Extreme Isotopic Heterogeneity in Samoan Clinopyroxenes Constrains Sediment Recycling. Nature Communications, 12: 1234. https://doi.org/10.1038/s41467-021-21416-9 |
An, M. J., Shi, Y., 2006. Lithospheric Thickness of the Chinese Continent. Physics of the Earth and Planetary Interiors, 159(3/4): 257–266. https://doi.org/10.1016/j.pepi.2006.08.002 |
Carlson, R. W., Lugmair, G. W., Macdougall, J. D., 1981. Columbia River Volcanism: The Question of Mantle Heterogeneity or Crustal Contamination. Geochimica et Cosmochimica Acta, 45(12): 2483–2499. https://doi.org/10.1016/0016-7037(81)90100-9 |
Chauvel, C., Lewin, E., Carpentier, M., et al., 2008. Role of Recycled Oceanic Basalt and Sediment in Generating the Hf-Nd Mantle Array. Nature Geoscience, 1(1): 64–67. https://doi.org/10.1038/ngeo.2007.51 |
Chen, C. -H., Lee, C. -Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China? Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1/2): 83–92. https://doi.org/10.1016/j.lithos.2008.06.009 |
Chen, L. -H., Zeng, G., Jiang, S. -Y., et al., 2009. Sources of Anfengshan Basalts: Subducted Lower Crust in the Sulu UHP Belt, China. Earth and Planetary Science Letters, 286(3/4): 426–435. https://doi.org/10.1016/j.epsl.2009.07.006 |
Christensen, U. R., Hofmann, A. W., 1994. Segregation of Subducted Oceanic Crust in the Convecting Mantle. Journal of Geophysical Research: Solid Earth, 99(B10): 19867–19884. https://doi.org/10.1029/93jb03403 |
Chung, S. -L., Jahn, B. -M., Chen, S. -J., 1995. Miocene Basalts in Northwestern Taiwan: Evidence for EM-Type Mantle Sources in the Continental Lithosphere. Geochimica et Cosmochimica Acta, 59(3): 549–555. https://doi.org/10.1016/0016-7037(94)00360-x |
Chung, S. -L., Sun, S. -S., 1992. A New Genetic Model for the East Taiwan Ophiolite and Its Implications for Dupal Domains in the Northern Hemisphere. Earth and Planetary Science Letters, 109(1/2): 133–145. https://doi.org/10.1016/0012-821x(92)90079-b |
Chung, S. -L., Sun, S. -S., Tu, K., et al., 1994. Late Cenozoic Basaltic Volcanism around the Taiwan Strait, SE China: Product of Lithosphere-Asthenosphere Interaction during Continental Extension. Chemical Geology, 112(1/2): 1–20. https://doi.org/10.1016/0009-2541(94)90101-5 |
Courtillot, V., Davaille, A., Besse, J., et al., 2003. Three Distinct Types of Hotspots in the Earth's Mantle. Earth and Planetary Science Letters, 205(3/4): 295–308. https://doi.org/10.1016/s0012-821x(02)01048-8 |
Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659–662. https://doi.org/10.1038/nature04612 |
Falloon, T. J., Green, D. H., Danyushevsky, L. V., et al., 1999. Peridotite Melting at 1.0 and 1.5 GPa: An Experimental Evaluation of Techniques Using Diamond Aggregates and Mineral Mixes for Determination of Near-Solidus Melts. Journal of Petrology, 40(9): 1343–1375. https://doi.org/10.1093/petroj/40.9.1343 |
Flower, M. F. J., Zhang, M., Chen, C. -Y., et al., 1992. Magmatism in the South China Basin: 2. Post-Spreading Quaternary Basalts from Hainan Island, South China. Chemical Geology, 97(1/2): 65–87. https://doi.org/10.1016/0009-2541(92)90136-s |
Foulger, G. R., Pritchard, M. J., Julian, B. R., et al., 2001. Seismic Tomography Shows that Upwelling beneath Iceland is Confined to the Upper Mantle. Geophysical Journal International, 146(2): 504–530. https://doi.org/10.1046/j.0956-540x.2001.01470.x |
Guo, P. Y., Niu, Y. L., Sun, P., et al., 2020. Lithosphere Thickness Controls Continental Basalt Compositions: An Illustration Using Cenozoic Basalts from Eastern China. Geology, 48(2): 128–133. https://doi.org/10.1130/g46710.1 |
Hanyu, T., Chen, L. H., 2021. Geochemical Diversity in the Mantle. In: Marquardt, H., Ballmer, M., Cottaar, S., eds., Mantle Convection and Surface Expressions, Geophysical Monograph 263, First Edition. American Geophysical Union. 121–150 |
Hart, S. R., 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309(5971): 753–757. https://doi.org/10.1038/309753a0 |
He, Y., Chen, L. H., Shi, J. H., et al., 2019. Light Mg Isotopic Composition in the Mantle beyond the Big Mantle Wedge beneath Eastern Asia. Journal of Geophysical Research: Solid Earth, 124(8): 8043–8056. https://doi.org/10.1029/2018jb016857 |
Hirose, K., Fei, Y. W., Ma, Y. Z., et al., 1999. The Fate of Subducted Basaltic Crust in the Earth's Lower Mantle. Nature, 397(6714): 53–56. https://doi.org/10.1038/16225 |
Hirschmann, M. M., Kogiso, T., Baker, M. B., et al., 2003. Alkalic Magmas Generated by Partial Melting of Garnet Pyroxenite. Geology, 31(6): 481–484. https://doi.org/10.1130/0091-7613(2003)0310481:amgbpm>2.0.co;2 doi: 10.1130/0091-7613(2003)0310481:amgbpm>2.0.co;2 |
Ho, K. -S., Zhang, M., Chen, C. -Y., et al., 2003. 40Ar-39Ar Dating and Geochemical Characteristics of Late Cenozoic Basaltic Rocks from the Zhejiang-Fujian Region, SE China: Eruption Ages, Magma Evolution and Petrogenesis. Chemical Geology, 197(1/2/3/4): 287–318. https://doi.org/10.1016/s0009-2541(02)00399-6 |
Hoang, N., Flower, M. F. J., Carlson, R. W., 1996. Major, Trace Element, and Isotopic Compositions of Vietnamese Basalts: Interaction of Hydrous EM1-Rich Asthenosphere with Thinned Eurasian Lithosphere. Geochimica et Cosmochimica Acta, 60(22): 4329–4351. https://doi.org/10.1016/s0016-7037(96)00247-5 |
Hoang, N., Flower, M., 1998. Petrogenesis of Cenozoic Basalts from Vietnam: Implication for Origins of a 'Diffuse Igneous Province'. Journal of Petrology, 39(3): 369–395. https://doi.org/10.1093/petroj/39.3.369 |
Hofmann, A. W., 2014. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry, Second Edition, Elsevier, Oxford, 67–101 |
Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305. https://doi.org/10.1029/2005jb004066 |
Jackson, M. G., Hart, S. R., Konter, J. G., et al., 2014. Helium and Lead Isotopes Reveal the Geochemical Geometry of the Samoan Plume. Nature, 514(7522): 355–358. https://doi.org/10.1038/nature13794 |
Kogiso, T., Hirschmann, M. M., 2006. Partial Melting Experiments of Bimineralic Eclogite and the Role of Recycled Mafic Oceanic Crust in the Genesis of Ocean Island Basalts. Earth and Planetary Science Letters, 249(3/4): 188–199. https://doi.org/10.1016/j.epsl.2006.07.016 |
Kumar, K. V., Chavan, C., Sawant, S., et al., 2010. Geochemical Investigation of a Semi-Continuous Extrusive Basaltic Section from the Deccan Volcanic Province, India: Implications for the Mantle and Magma Chamber Processes. Contributions to Mineralogy and Petrology, 159(6): 839–862. https://doi.org/10.1007/s00410-009-0458-6 |
Kuritani, T., Nakamura, E., 2002. Precise Isotope Analysis of Nanogram-Level Pb for Natural Rock Samples without Use of Double Spikes. Chemical Geology, 186(1/2): 31–43. https://doi.org/10.1016/s0009-2541(02)00004-9 |
Kuritani, T., Ohtani, E., Kimura, J. I., 2011. Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation. Nature Geoscience, 4(10): 713–716. https://doi.org/10.1038/ngeo1250 |
Li, T. D., 2010. The Principal Characteristics of the Lithosphere of China. Geoscience Frontiers, 1(1): 45–56. https://doi.org/10.1016/j.gsf.2010.08.005 |
Li, Y. Q., Zhou, Q., Robinson, P. T., et al., 2015. Recycling of Oceanic Crust from a Stagnant Slab in the Mantle Transition Zone: Evidence from Cenozoic Continental Basalts in Zhejiang Province, SE China. Lithos, 230: 146–165. https://doi.org/10.1016/j.lithos.2015.05.021 |
Li, Y. Q., Kitagawa, H., Nakamura, E., et al., 2020. Various Ages of Recycled Material in the Source of Cenozoic Basalts in SE China: Implications for the Role of the Hainan Plume. Journal of Petrology, 61(6): egaa060. https://doi.org/10.1093/petrology/egaa060 |
Li, Z. X., Li, X. H., 2007. Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179–182. https://doi.org/10.1130/g23193a.1 |
Liu, J. Q., Chen, L. H., Zeng, G., et al., 2016. Lithospheric Thickness Controlled Compositional Variations in Potassic Basalts of Northeast China by Melt-Rock Interactions. Geophysical Research Letters, 43(6): 2582–2589. https://doi.org/10.1002/2016gl068332 |
Liu, R. X., Chen, W. J., Sun, J. Z., et al., 1992. The K-Ar Age and Tectonic Environment of Cenozoic Volcanic Rock in China, In: Liu, R. X., ed., The Age and Geochemistry of Cenozoic Volcanic Rock in China. Seismol Press, Beijing (in Chinese) |
Liu, S. C., Xia, Q. K., Choi, S. H., et al., 2016. Continuous Supply of Recycled Pacific Oceanic Materials in the Source of Cenozoic Basalts in SE China: The Zhejiang Case. Contributions to Mineralogy and Petrology, 171(12): 1–31. https://doi.org/10.1007/s00410-016-1310-4 |
Ma, X. Y., Wu, D. N., 1987. Cenozoic Extensional Tectonics in China. Tectonophysics, 133(3/4): 243–255. https://doi.org/10.1016/0040-1951(87)90268-x |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Mei, S. W., Ren, Z. Y., 2019. Features and Age of Recycled Material in Mantle Source of Cenozoic Basaltic Lavas in Hainan Island: Evidence from Hf-Sr-Nd-Pb Isotopic Compositions. Geotectonica et Metallogenia, 43(5): 1036–1051 (in Chinese with English Abstract) |
Meibom, A., Anderson, D. L., Sleep, N. H., et al., 2003. Are High 3He/4He Ratios in Oceanic Basalts an Indicator of Deep-Mantle Plume Components? Earth and Planetary Science Letters, 208(3/4): 197–204. https://doi.org/10.1016/s0012-821x(03)00038-4 |
Meng, L. F., Li, Z. -X., Chen, H., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132/133: 127–140. https://doi.org/10.1016/j.lithos.2011.11.022 |
Montelli, R., Nolet, G., Dahlen, F. A., et al., 2006. A Catalogue of Deep Mantle Plumes: New Results from Finite-Frequency Tomography. Geochemistry, Geophysics, Geosystems, 7(11): Q11007. https://doi.org/10.1029/2006gc001248 |
Nishi, M., Kubo, T., Ohfuji, H., et al., 2013. Slow Si-Al Interdiffusion in Garnet and Stagnation of Subducting Slabs. Earth and Planetary Science Letters, 361: 44–49. https://doi.org/10.1016/j.epsl.2012.11.022 |
Niu, Y. L., 2005. Generation and Evolution of Basaltic Magmas: Some Basic Concepts and a New View on the Origin of Mesozoic–Cenozoic Basaltic Volcanism in Eastern China. Geological Journal of China Universities, 11(1): 9–46 (in Chinese with English Abstract) |
Niu, Y. L., Green, D. H., 2018. The Petrological Control on the Lithosphere-Asthenosphere Boundary (LAB) beneath Ocean Basins. Earth-Science Reviews, 185: 301–307. https://doi.org/10.1016/j.earscirev.2018.06.011 |
Niu, Y. L., Wilson, M., Humphreys, E. R., et al., 2011. The Origin of Intra-Plate Ocean Island Basalts (OIB): The Lid Effect and Its Geodynamic Implications. Journal of Petrology, 52(7/8): 1443–1468. https://doi.org/10.1093/petrology/egr030 |
Pearce, J. A., Stern, R. J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D. C. |
Pertermann, M., Hirschmann, M. M., 2003. Anhydrous Partial Melting Experiments on MORB-Like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2–3 GPa. Journal of Petrology, 44(12): 2173–2201. https://doi.org/10.1093/petrology/egg074 |
Pietruszka, A. J., Norman, M. D., Garcia, M. O., et al., 2013. Chemical Heterogeneity in the Hawaiian Mantle Plume from the Alteration and Dehydration of Recycled Oceanic Crust. Earth and Planetary Science Letters, 361: 298–309. https://doi.org/10.1016/j.epsl.2012.10.030 |
Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/s0009-2541(97)00150-2 |
Qian, S. P., Nichols, A. R. L., Zhang, L., et al., 2020. The Mantle Transition Zone Hosts the Missing HIMU Reservoir beneath Eastern China. Geophysical Research Letters, 47(9): e2020GL087260. https://doi.org/10.1029/2020gl087260 |
Sakuyama, T., Tian, W., Kimura, J. I., et al., 2013. Melting of Dehydrated Oceanic Crust from the Stagnant Slab and of the Hydrated Mantle Transition Zone: Constraints from Cenozoic Alkaline Basalts in Eastern China. Chemical Geology, 359: 32–48. https://doi.org/10.1016/j.chemgeo.2013.09.012 |
Salters, V. J. M., Mallick, S., Hart, S. R., et al., 2011. Domains of Depleted Mantle: New Evidence from Hafnium and Neodymium Isotopes. Geochemistry, Geophysics, Geosystems, 12(8): Q08001. https://doi.org/10.1029/2011gc003617 |
Stracke, A., 2012. Earth's Heterogeneous Mantle: A Product of Convection-Driven Interaction between Crust and Mantle. Chemical Geology, 330/331: 274–299. https://doi.org/10.1016/j.chemgeo.2012.08.007 |
Sun, P., Niu, Y., Guo, P., et al., 2017. Elemental and Sr-Nd-Pb Isotope Geochemistry of the Cenozoic Basalts in Southeast China: Insights into Their Mantle Sources and Melting Processes. Lithos, 272/273: 16–30. https://doi.org/10.1016/j.lithos.2016.12.005 |
Tatsumoto, M., Basu, A. R., Huang, W., et al., 1992. Sr, Nd, and Pb Isotopes of Ultramafic Xenoliths in Volcanic Rocks of Eastern China: Enriched Components EMI and EMII in Subcontinental Lithosphere. Earth and Planetary Science Letters, 113(1/2): 107–128. https://doi.org/10.1016/0012-821x(92)90214-g |
Tu, K., Flower, M. F. J., Carlson, R. W., et al., 1991. Sr, Nd, and Pb Isotopic Compositions of Hainan Basalts (South China): Implications for a Subcontinental Lithosphere Dupal Source. Geology, 19(6): 567–569. https://doi.org/10.1130/0091-7613(1991)0190567:snapic>2.3.co;2 doi: 10.1130/0091-7613(1991)0190567:snapic>2.3.co;2 |
Vervoort, J. D., Plank, T., Prytulak, J., et al., 2011. The Hf-Nd Isotopic Composition of Marine Sediments. Geochimica et Cosmochimica Acta, 75(20): 5903–5926. https://doi.org/10.1016/j.gca.2011.07.046 |
Walter, M. J., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 39(1): 29–60. https://doi.org/10.1093/petroj/39.1.29 |
Wang, X. -C., Li, Z. -X., Li, X. -H., et al., 2011. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones? Journal of Petrology, 53(1): 177–233. https://doi.org/10.1093/petrology/egr061 |
Wang, X. -C., Li, Z. -X., Li, X. -H., et al., 2013. Identification of an Ancient Mantle Reservoir and Young Recycled Materials in the Source Region of a Young Mantle Plume: Implications for Potential Linkages between Plume and Plate Tectonics. Earth and Planetary Science Letters, 377/378: 248–259. https://doi.org/10.1016/j.epsl.2013.07.003 |
Wang, X. J., Chen, L. -H., Hofmann, A. W., et al., 2017. Mantle Transition Zone-Derived EM1 Component beneath NE China: Geochemical Evidence from Cenozoic Potassic Basalts. Earth and Planetary Science Letters, 465: 16–28. https://doi.org/10.1016/j.epsl.2017.02.028 |
Wang, X. J., Chen, L. H., Hofmann, A. W., et al., 2018. Recycled Ancient Ghost Carbonate in the Pitcairn Mantle Plume. Proceedings of the National Academy of Sciences of the United States of America, 115(35): 8682–8687. https://doi.org/10.1073/pnas.1719570115 |
Wang, Y. J., Fan, W. M., Coward, P. A., et al., 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3/4): 297–308. https://doi.org/10.1016/j.lithos.2008.07.019 |
Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q0800. https://doi.org/10.1029/2006gc001283 |
White, W. M., Albarède, F., Télouk, P., 2000. High-Precision Analysis of Pb Isotope Ratios by Multi-Collector ICP-MS. Chemical Geology, 167(3/4): 257–270. https://doi.org/10.1016/s0009-2541(99)00182-5 |
White, W. M., Klein, E. M., 2014. Composition of the Oceanic Crust. Treatise on Geochemistry (2nd), Elsevier, Amsterdam |
Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53–72. https://doi.org/10.1016/j.epsl.2004.12.005 |
Xu, W. L., Chen, J. H., Weng, A. H., et al., 2021. Stagnant Slab Front within the Mantle Transition Zone Controls the Formation of Cenozoic Intracontinental High-Mg Andesites in Northeast Asia. Geology, 49(1): 19–24. https://doi.org/10.1130/g47917.1 |
Xu, X. S., O'reilly, S. Y., Griffin, W. L., et al., 2000. Genesis of Young Lithospheric Mantle in Southeastern China: An LAM-ICPMS Trace Element Study. Journal of Petrology, 41(1): 111–148. https://doi.org/10.1093/petrology/41.1.111 |
Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2003. Enrichment of Upper Mantle Peridotite: Petrological, Trace Element and Isotopic Evidence in Xenoliths from SE China. Chemical Geology, 198(3/4): 163–188. https://doi.org/10.1016/s0009-2541(03)00004-4 |
Xu, Y. G., 2014. Recycled Oceanic Crust in the Source of 90–40 Ma Basalts in North and Northeast China: Evidence, Provenance and Significance. Geochimica et Cosmochimica Acta, 143: 49–67. https://doi.org/10.1016/j.gca.2014.04.045 |
Xu, Y. -G., Ma, J. -L., Frey, F. A., et al., 2005. Role of Lithosphere-Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton. Chemical Geology, 224(4): 247–271. https://doi.org/10.1016/j.chemgeo.2005.08.004 |
Yan, Q. S., Shi, X. F., 2008. Olivine Chemistry of Cenozoic Basalts in the South China Sea and the Potential Temperature of the Mantle. Acta Petrologica Sinica, 24(1): 176–184 (in Chinese with English Abstract) |
Yan, Q. S., Shi, X. F., Metcalfe, I., et al., 2018. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia. Scientific Reports, 8: 2640. https://doi.org/10.1038/s41598-018-20712-7 |
Yan, Q. S., Shi, X. F., Wang, K. S., et al., 2008. Major Element, Trace Element, and Sr, Nd and Pb Isotope Studies of Cenozoic Basalts from the South China Sea. Science in China Series D: Earth Sciences, 51(4): 550–566. https://doi.org/10.1007/s11430-008-0026-3 |
Yang, J. F., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88–91. https://doi.org/10.1038/s41586-020-2045-y |
Yang, Z. F., Li, J., Liang, W. F., et al., 2016. On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China: Implications for Source Lithology and the Origin of Basalts. Earth-Science Reviews, 157: 18–31. https://doi.org/10.1016/j.earscirev.2016.04.001 |
Yu, X., Lee, C. T. A., Chen, L. H., et al., 2015. Magmatic Recharge in Continental Flood Basalts: Insights from the Chifeng Igneous Province in Inner Mongolia. Geochemistry, Geophysics, Geosystems, 16(7): 2082–2096. https://doi.org/10.1002/2015gc005805 |
Yu, X., Liu, Z., Zeng, G., et al., 2022. Mantle Plume-Stagnant Slab Interaction Controls the Generation of a Mixed Mantle Source for Continental Intraplate Basalts. Lithos, 426/427: 106795. https://doi.org/10.1016/j.lithos.2022.106795 |
Yu, X., Zeng, G., Chen, L. -H., et al., 2019. Evidence for Rutile-Bearing Eclogite in the Mantle Sources of the Cenozoic Zhejiang Basalts, Eastern China. Lithos, 324/325: 152–164. https://doi.org/10.1016/j.lithos.2018.11.003 |
Zeng, G., Chen, L. -H., Xu, X. -S., et al., 2010. Carbonated Mantle Sources for Cenozoic Intra-Plate Alkaline Basalts in Shandong, North China. Chemical Geology, 273(1/2): 35–45. https://doi.org/10.1016/j.chemgeo.2010.02.009 |
Zeng, G., He, Z. Y., Li, Z., et al., 2016. Geodynamics of Paleo-Pacific Plate Subduction Constrained by the Source Lithologies of Late Mesozoic Basalts in Southeastern China. Geophysical Research Letters, 43(19): 10189–10197. https://doi.org/10.1002/2016gl070346 |
Zeng, G., Chen, L. H., Yu, X., et al., 2017a. Magma-Magma Interaction in the Mantle beneath Eastern China. Journal of Geophysical Research: Solid Earth, 122(4): 2763–2779. https://doi.org/10.1002/2017jb014023 |
Zeng, G., Zheng, L. B., Chen, L. H., et al., 2017b. Influence of Ridge Suction on Cenozoic Basaltic Magmatism in the Surroundings of the South China Sea. Geological Journal of China Universities, 23(3): 373–382 (in Chinese with English Abstract) |
Zhang, G. L., Sun, W. D., Seward, G., 2018a. Mantle Source and Magmatic Evolution of the Dying Spreading Ridge in the South China Sea. Geochemistry, Geophysics, Geosystems, 19(11): 4385–4399. https://doi.org/10.1029/2018gc007570 |
Zhang, G. L., Luo, Q., Zhao, J., et al., 2018b. Geochemical Nature of Sub-Ridge Mantle and Opening Dynamics of the South China Sea. Earth and Planetary Science Letters, 489: 145–155. https://doi.org/10.1016/j.epsl.2018.02.040 |
Zhao, D. P., Toyokuni, G., Kurata, K., 2020. Deep Mantle Structure and Origin of Cenozoic Intraplate Volcanoes in Indochina, Hainan and South China Sea. Geophysical Journal International, 225(1): 572–588. https://doi.org/10.1093/gji/ggaa605 |
Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425 |
Zou, H. B., Zindler, A., Xu, X., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33–47. https://doi.org/10.1016/s0009-2541(00)00243-63 |