Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Hang Yang, Shao-Cong Lai, Jiang-Feng Qin, Fang-Yi Zhang, Ren-Zhi Zhu, Yu Zhu, Min Liu, Shao-Wei Zhao, Zhen Yang. Geochronology, Geochemical and Sr-Nd-Pb Isotope of Syenites in the North Daba Mountains, South Qinling Belt: Constraints on Petrogenetic Evolution and Tectonic Implication. Journal of Earth Science, 2025, 36(5): 2193-2207. doi: 10.1007/s12583-022-1784-0
Citation: Hang Yang, Shao-Cong Lai, Jiang-Feng Qin, Fang-Yi Zhang, Ren-Zhi Zhu, Yu Zhu, Min Liu, Shao-Wei Zhao, Zhen Yang. Geochronology, Geochemical and Sr-Nd-Pb Isotope of Syenites in the North Daba Mountains, South Qinling Belt: Constraints on Petrogenetic Evolution and Tectonic Implication. Journal of Earth Science, 2025, 36(5): 2193-2207. doi: 10.1007/s12583-022-1784-0

Geochronology, Geochemical and Sr-Nd-Pb Isotope of Syenites in the North Daba Mountains, South Qinling Belt: Constraints on Petrogenetic Evolution and Tectonic Implication

doi: 10.1007/s12583-022-1784-0
More Information
  • Corresponding author: Shao-Cong Lai, shaocong@nwu.edu.cn
  • Received Date: 24 Sep 2021
  • Accepted Date: 22 Feb 2022
  • Available Online: 14 Oct 2025
  • Issue Publish Date: 30 Oct 2025
  • A-type rocks have drawn considerable attention in the past few decades due to their distinctive mineralogical and geochemical fingerprints and prospective utility for geodynamic reconstruction of the lithosphere. A comprehensive study, involving zircon U-Pb geochronology, whole-rock elemental and Sr-Nd-Pb isotopic geochemistry, was undertaken to elucidate the origin and evolutionary process for syenites from the Daguiping area in the North Daba mountains, South Qinling belt. The syenites revealed an Ordovician igneous crystallization age of 454.4 ± 17 Ma, coeval with the neighboring mafic rocks. All samples show high SiO2, LREEs, and HFSEs (Nb, Ta, Zr and Hf) contents, with negative to slightly positive Eu (Eu/Eu* = 0.78–1.08) anomalies. The geochemical characteristics of the Daguiping syenites imply that they are of A1-type magmatic affinity, which is confirmed by their high total alkali levels (8.57 wt.%–11.94 wt.%), Zr + Nb + Ce + Y contents (738.00 ppm–1 734.78 ppm), and 10 000 × Ga/Al ratios (3.25–4.22), as well as low Y/Nb ratios (0.30–0.40). Our samples exhibit a wide range of initial 87Sr/86Sr ratios of 0.701 943 to 0.709 802 and a narrow range of 143Nd/144Nd ratios of 0.512 205–0.512 246 with εNd(t) values from +3.0 to +3.8. These rocks display (206Pb/204Pb)initial, (207Pb/204Pb)initial, and (208Pb/204Pb)initial ratios range from 17.96 to 18.62, 15.55 to 15.59, and 36.87 to 38.22, respectively. All of the isotopic data indicate that the syenites were essentially mantle-derived. A cogenetic source for the Daguiping syenites and coeval mafic rocks in the South Qinling belt is supported by their uniform Sr-Nd-Pb isotope data and linear major/trace elemental changes, with prolonged fractional crystallization considered as the essential mechanism for these geochemical discrepancies. Mass-balance and Rayleigh fractionation modeling estimate ~85 vol% fractional crystallization involving amphibole, clinopyroxene, plagioclase, K-feldspar, biotite, Fe-Ti oxide, and quartz, to reproduce the compositional varieties between a coeval mafic rock and the Daguiping syenites. The Daguiping syenites and associated alkaline rocks were likely related to a rifting episode triggered by asthenospheric upwelling, which led to the South Qinling detaching from the South China Block along the Mianlue suture during the Early Paleozoic.

     

  • Electronic Supplementary Materials: Supplementary materials (Supplementary Analytical Method; Tables S1–S4) are available in the online version of this article at https://doi.org/10.1007/s12583-022-1784-0.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007
    Cabero, M. T., Mecoleta, S., López-Moro, F. J., 2012. OPTIMASBA: A Microsoft Excel Work-Book to Optimise the Mass-Balance Modelling Applied to Magmatic Differentiation Processes and Subsolidus Overprints. Computers and Geosciences, 42(5): 206–211. https://doi.org/10.1016/j.cageo.2011.10.013
    Charlier, B., Namur, O., Grove, T. L., 2013. Compositional and Kinetic Controls on Liquid Immiscibility in Ferrobasalt-Rhyolite Volcanic and Plutonic Series. Geochimica et Cosmochimica Acta, 113: 79–93. https://doi.org/10.1016/j.gca.2013.03.017
    Charlier, B., Namur, O., Toplis, M. J., et al., 2011. Large-Scale Silicate Liquid Immiscibility during Differentiation of Tholeiitic Basalt to Granite and the Origin of the Daly Gap. Geology, 39(10): 907–910. https://doi.org/10.1130/g32091.1
    Chen, H., Tian, M., Wu, G. L., et al., 2014. The Early Paleozoic Alkaline and Mafic Magmatic Events in Southern Qinling Belt, Central China: Evidences for the Break-Up of the Paleo-Tethyan Ocean. Geological Review, 60: 1437–1452 (in Chinese with English Abstract)
    Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895
    Dai, F. Q., Zhao, Z. F., Zheng, Y. F., 2017. Partial Melting of the Orogenic Lower Crust: Geochemical Insights from Post-Collisional Alkaline Volcanics in the Dabie Orogen. Chemical Geology, 454: 25–43. https://doi.org/10.1016/j.chemgeo.2017.0 2.022 doi: 10.1016/j.chemgeo.2017.02.022
    Dall'Agnol, R., Frost, C. D., Rämö, O. T., 2012. IGCP Project 510 "A-Type Granites and Related Rocks through Time": Project Vita, Results, and Contribution to Granite Research. Lithos, 151: 1–16. https://doi.org/10.1016/j.lithos.2012.08.003
    Davies, G. R., Lloyd, F. E., 1989. Pb-Sr-Nd Isotope and Trace Element Data Bearing on the Origin of the Potassic Subcontinental Lithosphere beneath South-West Uganda. Kimberlites and Related Rocks. Geological Society of Australia, Sydney
    Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002
    Dong, Y. P., Zhang, X. N., Liu, X. M., et al., 2015. Propagation Tectonics and Multiple Accretionary Processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104: 84–98. https://doi.org/10.1016/j.jseaes.2014.10.007
    Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/1 0.1016/0024-4937(90)90043-z
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
    Ersoy, Y., Helvacı, C., 2010. FC-AFC-FCA and Mixing Modeler: A Microsoft® Excel© Spreadsheet Program for Modeling Geochemical Differentiation of Magma by Crystal Fractionation, Crustal Assimilation and Mixing. Computers & Geosciences, 36(3): 383–390. https://doi.org/10.1016/j.cageo.2009.06.007
    Foley, S. F., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3/4/5/6): 435–453. https://doi.org/10.1016/0024-4937(92)900 18-t doi: 10.1016/0024-4937(92)90018-t
    Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065–1073. https://doi.org/10.211 3/gscanmin.38.5.1065 doi: 10.2113/gscanmin.38.5.1065
    Grant, T. B., Milke, R., Pandey, S., et al., 2013. The Heldburg Phonolite, Central Germany: Reactions between Phonolite and Xenocrysts from the Upper Mantle and Lower Crust. Lithos, 182/183: 86–101. https://doi.org/10.1016/j.lithos.2013.09.012
    Gudmundson, A., Loetveit, I. F., 2005. Dyke Emplacement in a Layered and Faulted Rift Zone. Journal of Volcanology and Geothermal Research, 144(1/2/3/4): 311–327. https://doi.org/10.1016/j.jvolgeores.2004.11.027
    Guo, X. Q., Wang, Z. Q., Yan, Z., 2017. Alkali Volcanism and Zinc-Fluorite Mineralization of Pingli-Zhenping Area, North Daba Mountains. Journal of Geological Sciences, 38: 21–24 (in Chinese with English Abstract)
    Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1/2): 33–45. https://doi.org/10.1016/0012-821x(86)90038-5
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2 113/0530027 doi: 10.2113/0530027
    Huang, Y. H., 1993. Mineralogical Characteristics of Phlogopite-Amphibole-Pyroxenite Mantle Xenoliths Included in the Alkali Mafic-Ultramafic Subvolcanic Complex from Langao Country, China. Acta Petrologica Sinica, 9: 367–378 (in Chinese with English Abstract)
    Huang, Y. H., Ren, Y. X., Xia, L. Q., et al., 1992. Early Palaeozoic Bimodal Igneous Suite on Northern Daba Mountains Gaotan Diabase and Haoping Trachyte as Examples. Acta Petrologica Sinica, 8(3): 243–256 (in Chinese with English Abstract)
    Kaszuba, J. P., Wendlandt, R. F., 2000. Effect of Carbon Dioxide on Dehydration Melting Reactions and Melt Compositions in the Lower Crust and the Origin of Alkaline Rocks. Journal of Petrology, 41(3): 363–386. https://doi.org/10.1093/petrology/41. 3.363 doi: 10.1093/petrology/41.3.363
    Laporte, D., Lambart, S., Schiano, P., et al., 2014. Experimental Derivation of Nepheline Syenite and Phonolite Liquids by Partial Melting of Upper Mantle Peridotites. Earth and Planetary Science Letters, 404: 319–331. https://doi.org/10.1016/j.epsl.2 014.08.002 doi: 10.1016/j.epsl.2014.08.002
    Li, Y., 2018. Temperature and Pressure Effects on the Partitioning of V and Sc between Clinopyroxene and Silicate Melt: Implications for Mantle Oxygen Fugacity. American Mineralogist, 103(5): 819–823. https://doi.org/10.2138/am-2018-6464
    Loiselle, M. C., Wones, D., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 46
    Luo, K. L., Duanmu, H. S., 2001. Timing of Early Paleozoic Basic Igneous Rocks in the Daba Mountain. Regional Geology of China, 20: 262–266 (in Chinese with English Abstract)
    Ma, R. H., Yin, K. Y., Wang, Z. D., 1998. Stratigraphy (Lithostratic) of Shaanxi Province. China University of Geosciences Press, Wuhan (in Chinese with English Abstract)
    Martin, R. F., 2006. A-Type Granites of Crustal Origin Ultimately Result from Open-System Fenitization-Type Reactions in an Extensional Environment. Lithos, 91(1/2/3/4): 125–136. https://doi.org/10.1016/j.lithos.2006.03.012
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183–196. https://doi.org/10.1016/s0040-1951(00)0010 6-2 doi: 10.1016/s0040-1951(00)00106-2
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
    Minh, P., Hieu, P. T., Hoang, N. K., 2018. Geochemical and Geochronological Studies of the Muong Hum Alkaline Granitic Pluton from the Phan Si Pan Zone, Northwest Vietnam: Implications for Petrogenesis and Tectonic Setting. Island Arc, 27(4): e12250. https://doi.org/10.1111/iar.12250
    Nie, X., Wang, Z. Q., Chen, L., et al., 2020. Mineralogical Constraints on Nb-REE Mineralization of the Zhujiayuan Nb (-REE) Deposit in the North Daba Mountain, South Qinling, China. Geological Journal, 55(6): 4845–4863. https://doi.org/10.1002/gj.3710
    Panter, K. S., Castillo, P., Krans, S., et al., 2018. Melt Origin across a Rifted Continental Margin: A Case for Subduction-Related Metasomatic Agents in the Lithospheric Source of Alkaline Basalt, NW Ross Sea, Antarctica. Journal of Petrology, 59(3): 517–558. https://doi.org/10.10 93/petrology/egy036 doi: 10.1093/petrology/egy036
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192
    Peccerillo, A., Barberio, M. R., Yirgu, G., et al., 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003–2032. https://doi.org/10.1093/petrology/egg068
    Pilet, S., 2015. Generation of Low-Silica Alkaline Lavas: Petrological Constraints, Models and Thermal Implications. In: Foulger, G. R., Lustrino, M., King, S., eds., The Interdisciplinary Earth: In Honor of Don L. Anderson. Geological Society of America, Special Papers 514. https://doi.org/10.1130/2015.251417
    Putirka, K., 2016. Rates and Styles of Planetary Cooling on Earth, Moon, Mars, and Vesta, Using New Models for Oxygen Fugacity, Ferric-Ferrous Ratios, Olivine-Liquid Fe-Mg Exchange, and Mantle Potential Temperature. American Mineralogist, 101(4): 819–840. https://doi.org/10.2138/am-2016-5402
    Qin, J. F., Lai, S. C., Long, X. P., et al., 2020. Thermotectonic Evolution of the Paleozoic Granites along the Shangdan Suture Zone (Central China): Crustal Growth and Differentiation by Magma Underplating in an Orogenic Belt. Geological Society of America Bulletin, 133. https://doi.org/10.1130/b35466.1
    Qin, Z., Wu, Y., Siaebel, W., et al., 2015. Genesis of Adakitic Granitoids by Partial Melting of Thickened Lower Crust and Its Implications for Early Crustal Growth: A Case Study from the Huichizi Pluton, Qinling Orogen, Central China. Lithos, 238: 1–12. https://doi.org/10.1016/j.lith os.2015.09.017 doi: 10.1016/j.lithos.2015.09.017
    Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53. https://doi.org/10.1016/s0040-1951(03)00053-2
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust, Treatise on Geochemistry. Elsevier Pergamon, Oxford, 1–64. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
    Shellnutt, J. G., Zhou, M. F., 2007. Permian Peralkaline, Peraluminous and Metaluminous A-Type Granites in the Panxi District, SW China: Their Relationship to the Emeishan Mantle Plume. Chemical Geology, 243(3/4): 286–316. https://doi.org/10.1016/j.chemgeo.2007.05.022
    Sheir, F., Li, W., Zhang, L., et al., 2024. Structural Geology and Chronology of Shear Zones along the Shangdan Suture in Qinling Orogenic Belt, China: Implications for Late Mesozoic Intra-Continental Deformation of East Asia. Journal of Earth Science, 35(2): 376–393. https://doi.org/10.1007/s12583-022-1753-7
    Sisson, T. W., 1994. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 117(1/2/3/4): 331–344. https://doi.org/10.1016/0009-2541(94)90135-x
    Su, J. H., Zhao, X. F., Li, X. C., et al., 2021. Fingerprinting REE Mineralization and Hydrothermal Remobilization History of the Carbonatite-Alkaline Complexes, Central China: Constraints from in situ Elemental and Isotopic Analyses of Phosphate Minerals. American Mineralogist, 106(10): 1545–1558. https://doi.org/10.2138/am-2021-7746
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Turner, S., Sandiford, M., Foden, J., 1992. Some Geodynamic and Compositional Constraints on "Postorogenic" Magmatism. Geology, 20(10): 931. https://doi.org/10.1130/0091-7613(1992)0200931:sgacco>2.3.co;2 doi: 10.1130/0091-7613(1992)0200931:sgacco>2.3.co;2
    Wang, G., 2014. Metallogeny of the Mesozoic and Paleozoic Volcanic Igneous Event in Ziyang-Langao Areas, North Daba Mountain: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Wang, K. M., 2014. Research on the Petrogenesis, Tectonic and Metallogeny for Mafic Rocks in the Ziyang-Langao Area, Shaanxi Province: [Dissertation]. Chinese Academy of Geological Sciences, Beijing (in Chinese with English Abstract)
    Wang, K. M., Wang, Z. Q., Zhang, Y. L., et al., 2015. Geochronology and Geochemistry of Mafic Rocks in the Xuhe, Shaanxi, China: Implications for Petrogenesis and Mantle Dynamics. Acta Geologica Sinica-English Edition, 89(1): 187–202. https://doi.org/10.1111/1755-6724.12404
    Wang, K., Wang, L. X., Ma, C. Q., et al., 2021. Mineralogy and Geochemistry of the Zhuxi Nb-Rich Trachytic Rocks, South Qinling (China): Insights into the Niobium Mineralization during Magmatic-Hydrothermal Processes. Ore Geology Reviews, 138: 104346. https://doi.org/10.1016/j.oregeorev.2021.104346
    Wang, R. R., Xu, Z. Q., Santosh, M., et al., 2017. Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Tectonophysics, 712/713: 270–288. https://doi.org/10.1016/j.tecto.2017.05.021
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. https://doi.org/10.1016/0012-821x(80)90 116-8 doi: 10.1016/0012-821x(80)90116-8
    Xiang, Z. J., Yan, Q. R., Song, B., et al., 2016. New Evidence for the Ages of Ultramafic to Mafic Dikes and Alkaline Volcanic Complexes in the North Daba Mountains and Its Geological Implication. Acta Geologica Sinica, 90(5): 896–916 (in Chinese with English Abstract)
    Xu, X. Y., Huang, Y. H., Xia, L. Q., et al., 1997. Phlogopite-Amphibole-Pyroxenite Xenoliths in Langao, Shaanxi Province: Evidences for Mantle Metasomatism. Acta Petrologica Sinica, 13: 1–13 (in Chinese with English Abstract)
    Yang, H., Lai, S. C., Qin, J. F., et al., 2021. Early Palaeozoic Alkaline Trachytes in the North Daba Mountains, South Qinling Belt: Petrogenesis and Geological Implications. International Geology Review, 63(16): 2037–2056. https://doi.org/10.1080/00206814. 2020.1818302 doi: 10.1080/00206814.2020.1818302
    Yang, H., Lai, S. C., Qin, J. F., et al., 2022. Petrogenetic Evolution of Early Paleozoic Trachytic Rocks in the South Qinling Belt, Central China: Insights from Mineralogy, Geochemistry, and Thermodynamic Modeling. Lithos, 418/419: 106683. https://doi.org/10.1016/j.lithos.2022.106683
    Yang, Y. Z., Wang, Y., Siebel, W., et al., 2020. Zircon U-Pb-Hf, Geochemical and Sr-Nd-Pb Isotope Systematics of Late Mesozoic Granitoids in the Lantian-Xiaoqinling Region: Implications for Tectonic Setting and Petrogenesis. Lithos, 374/375: 105709. https://doi.org/10.1016/j.lithos.2020.105709
    Zhang, C. L., Gao, S., Yu, H. L., et al., 2007. Sr-Nd-Pb Isotopes of the Early Paleozoic Maficultrama-Fic Dykes and Basalts from South Qinling Belt and Their Implications for Mantle Composition. Science China-Earth Sciences, 50: 1293–1301. https://doi.org/10.1007/s11430-007-0088-7
    Zhang, C. L., Gao, S., Zhang, G. W., et al., 2002. Geochemistry and Significance of the Early Paleozoic Alkaline Mafic Dyke in Qinling. Science in China (Series D: Geoscience), 32: 819–829 (in Chinese with English Abstract)
    Zhang, F. Y., Lai, S. C., Qin, J. F., et al., 2020a. Vein-Plus-Wall Rock Melting Model for the Origin of Early Paleozoic Alkali Diabases in the South Qinling Belt, Central China. Lithos, 370/371: 105619. https://doi.org/10.1016/j.lithos.2020.105619
    Zhang, F. Y., Lai, S. C., Qin, J. F., et al., 2020b. Magma Source and Evolution Process of Early Paleozoic Basalts in the South Qinling Belt. Acta Petrologica Sinica, 36: 2149–2162 (in Chinese with English Abstract) doi: 10.18654/1000-0569/2020.07.15
    Zhang, G. W., Meng, Q. R., Yu, Z. P., et al., 1996. Orogenic Process and Dynamic Characteristics of Qinling Orogenic Belt, Science in China (Series D), 26: 193–200 (in Chinese with English Abstract)
    Zhang, R. Y., Ao, W. H., Zhao, Y., 2023. U-Pb Zircon Ages and Geochemistry of the Metasedimentary Rocks from the Foping Area in the South Qinling Belt: Evidence for Early Devonian Amalgamation between North China and South China Blocks. Journal of Earth Science, 34(4): 1112–1127.https://doi.org/10.1 007/s12583-022-1608-2 doi: 10.1007/s12583-022-1608-2
    Zhang, Z. Z., Qin, J. F., Lai, S. C., et al., 2019. Origin of Late Permian Syenite and Gabbro from the Panxi Rift, SW China: The Fractionation Process of Mafic Magma in the Inner Zone of the Emeishan Mantle Plume. Lithos, 346/347: 105160. https://doi.org/10.1016/j.lithos.2019.105160
    Zhu, Y. X., Wang, L. X., Xiong, Q. H., et al., 2020. Origin and Evolution of Ultrapotassic Intermediate Magma: The Songxian Syenite Massif, Central China. Lithos, 366/367: 105554. https://doi.org/10.1016/j.lithos.2020.105554
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(15) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return