Citation: | Hang Yang, Shao-Cong Lai, Jiang-Feng Qin, Fang-Yi Zhang, Ren-Zhi Zhu, Yu Zhu, Min Liu, Shao-Wei Zhao, Zhen Yang. Geochronology, Geochemical and Sr-Nd-Pb Isotope of Syenites in the North Daba Mountains, South Qinling Belt: Constraints on Petrogenetic Evolution and Tectonic Implication. Journal of Earth Science, 2025, 36(5): 2193-2207. doi: 10.1007/s12583-022-1784-0 |
A-type rocks have drawn considerable attention in the past few decades due to their distinctive mineralogical and geochemical fingerprints and prospective utility for geodynamic reconstruction of the lithosphere. A comprehensive study, involving zircon U-Pb geochronology, whole-rock elemental and Sr-Nd-Pb isotopic geochemistry, was undertaken to elucidate the origin and evolutionary process for syenites from the Daguiping area in the North Daba mountains, South Qinling belt. The syenites revealed an Ordovician igneous crystallization age of 454.4 ± 17 Ma, coeval with the neighboring mafic rocks. All samples show high SiO2, LREEs, and HFSEs (Nb, Ta, Zr and Hf) contents, with negative to slightly positive Eu (Eu/Eu* = 0.78–1.08) anomalies. The geochemical characteristics of the Daguiping syenites imply that they are of A1-type magmatic affinity, which is confirmed by their high total alkali levels (8.57 wt.%–11.94 wt.%), Zr + Nb + Ce + Y contents (738.00 ppm–1 734.78 ppm), and 10 000 × Ga/Al ratios (3.25–4.22), as well as low Y/Nb ratios (0.30–0.40). Our samples exhibit a wide range of initial 87Sr/86Sr ratios of 0.701 943 to 0.709 802 and a narrow range of 143Nd/144Nd ratios of 0.512 205–0.512 246 with
Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007 |
Cabero, M. T., Mecoleta, S., López-Moro, F. J., 2012. OPTIMASBA: A Microsoft Excel Work-Book to Optimise the Mass-Balance Modelling Applied to Magmatic Differentiation Processes and Subsolidus Overprints. Computers and Geosciences, 42(5): 206–211. https://doi.org/10.1016/j.cageo.2011.10.013 |
Charlier, B., Namur, O., Grove, T. L., 2013. Compositional and Kinetic Controls on Liquid Immiscibility in Ferrobasalt-Rhyolite Volcanic and Plutonic Series. Geochimica et Cosmochimica Acta, 113: 79–93. https://doi.org/10.1016/j.gca.2013.03.017 |
Charlier, B., Namur, O., Toplis, M. J., et al., 2011. Large-Scale Silicate Liquid Immiscibility during Differentiation of Tholeiitic Basalt to Granite and the Origin of the Daly Gap. Geology, 39(10): 907–910. https://doi.org/10.1130/g32091.1 |
Chen, H., Tian, M., Wu, G. L., et al., 2014. The Early Paleozoic Alkaline and Mafic Magmatic Events in Southern Qinling Belt, Central China: Evidences for the Break-Up of the Paleo-Tethyan Ocean. Geological Review, 60: 1437–1452 (in Chinese with English Abstract) |
Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895 |
Dai, F. Q., Zhao, Z. F., Zheng, Y. F., 2017. Partial Melting of the Orogenic Lower Crust: Geochemical Insights from Post-Collisional Alkaline Volcanics in the Dabie Orogen. Chemical Geology, 454: 25–43. https://doi.org/10.1016/j.chemgeo.2017.0 2.022 doi: 10.1016/j.chemgeo.2017.02.022 |
Dall'Agnol, R., Frost, C. D., Rämö, O. T., 2012. IGCP Project 510 "A-Type Granites and Related Rocks through Time": Project Vita, Results, and Contribution to Granite Research. Lithos, 151: 1–16. https://doi.org/10.1016/j.lithos.2012.08.003 |
Davies, G. R., Lloyd, F. E., 1989. Pb-Sr-Nd Isotope and Trace Element Data Bearing on the Origin of the Potassic Subcontinental Lithosphere beneath South-West Uganda. Kimberlites and Related Rocks. Geological Society of Australia, Sydney |
Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002 |
Dong, Y. P., Zhang, X. N., Liu, X. M., et al., 2015. Propagation Tectonics and Multiple Accretionary Processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104: 84–98. https://doi.org/10.1016/j.jseaes.2014.10.007 |
Eby, G. N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/1 0.1016/0024-4937(90)90043-z |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 |
Ersoy, Y., Helvacı, C., 2010. FC-AFC-FCA and Mixing Modeler: A Microsoft® Excel© Spreadsheet Program for Modeling Geochemical Differentiation of Magma by Crystal Fractionation, Crustal Assimilation and Mixing. Computers & Geosciences, 36(3): 383–390. https://doi.org/10.1016/j.cageo.2009.06.007 |
Foley, S. F., 1992. Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas. Lithos, 28(3/4/5/6): 435–453. https://doi.org/10.1016/0024-4937(92)900 18-t doi: 10.1016/0024-4937(92)90018-t |
Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065–1073. https://doi.org/10.211 3/gscanmin.38.5.1065 doi: 10.2113/gscanmin.38.5.1065 |
Grant, T. B., Milke, R., Pandey, S., et al., 2013. The Heldburg Phonolite, Central Germany: Reactions between Phonolite and Xenocrysts from the Upper Mantle and Lower Crust. Lithos, 182/183: 86–101. https://doi.org/10.1016/j.lithos.2013.09.012 |
Gudmundson, A., Loetveit, I. F., 2005. Dyke Emplacement in a Layered and Faulted Rift Zone. Journal of Volcanology and Geothermal Research, 144(1/2/3/4): 311–327. https://doi.org/10.1016/j.jvolgeores.2004.11.027 |
Guo, X. Q., Wang, Z. Q., Yan, Z., 2017. Alkali Volcanism and Zinc-Fluorite Mineralization of Pingli-Zhenping Area, North Daba Mountains. Journal of Geological Sciences, 38: 21–24 (in Chinese with English Abstract) |
Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1/2): 33–45. https://doi.org/10.1016/0012-821x(86)90038-5 |
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2 113/0530027 doi: 10.2113/0530027 |
Huang, Y. H., 1993. Mineralogical Characteristics of Phlogopite-Amphibole-Pyroxenite Mantle Xenoliths Included in the Alkali Mafic-Ultramafic Subvolcanic Complex from Langao Country, China. Acta Petrologica Sinica, 9: 367–378 (in Chinese with English Abstract) |
Huang, Y. H., Ren, Y. X., Xia, L. Q., et al., 1992. Early Palaeozoic Bimodal Igneous Suite on Northern Daba Mountains Gaotan Diabase and Haoping Trachyte as Examples. Acta Petrologica Sinica, 8(3): 243–256 (in Chinese with English Abstract) |
Kaszuba, J. P., Wendlandt, R. F., 2000. Effect of Carbon Dioxide on Dehydration Melting Reactions and Melt Compositions in the Lower Crust and the Origin of Alkaline Rocks. Journal of Petrology, 41(3): 363–386. https://doi.org/10.1093/petrology/41. 3.363 doi: 10.1093/petrology/41.3.363 |
Laporte, D., Lambart, S., Schiano, P., et al., 2014. Experimental Derivation of Nepheline Syenite and Phonolite Liquids by Partial Melting of Upper Mantle Peridotites. Earth and Planetary Science Letters, 404: 319–331. https://doi.org/10.1016/j.epsl.2 014.08.002 doi: 10.1016/j.epsl.2014.08.002 |
Li, Y., 2018. Temperature and Pressure Effects on the Partitioning of V and Sc between Clinopyroxene and Silicate Melt: Implications for Mantle Oxygen Fugacity. American Mineralogist, 103(5): 819–823. https://doi.org/10.2138/am-2018-6464 |
Loiselle, M. C., Wones, D., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 46 |
Luo, K. L., Duanmu, H. S., 2001. Timing of Early Paleozoic Basic Igneous Rocks in the Daba Mountain. Regional Geology of China, 20: 262–266 (in Chinese with English Abstract) |
Ma, R. H., Yin, K. Y., Wang, Z. D., 1998. Stratigraphy (Lithostratic) of Shaanxi Province. China University of Geosciences Press, Wuhan (in Chinese with English Abstract) |
Martin, R. F., 2006. A-Type Granites of Crustal Origin Ultimately Result from Open-System Fenitization-Type Reactions in an Extensional Environment. Lithos, 91(1/2/3/4): 125–136. https://doi.org/10.1016/j.lithos.2006.03.012 |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 |
Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183–196. https://doi.org/10.1016/s0040-1951(00)0010 6-2 doi: 10.1016/s0040-1951(00)00106-2 |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9 |
Minh, P., Hieu, P. T., Hoang, N. K., 2018. Geochemical and Geochronological Studies of the Muong Hum Alkaline Granitic Pluton from the Phan Si Pan Zone, Northwest Vietnam: Implications for Petrogenesis and Tectonic Setting. Island Arc, 27(4): e12250. https://doi.org/10.1111/iar.12250 |
Nie, X., Wang, Z. Q., Chen, L., et al., 2020. Mineralogical Constraints on Nb-REE Mineralization of the Zhujiayuan Nb (-REE) Deposit in the North Daba Mountain, South Qinling, China. Geological Journal, 55(6): 4845–4863. https://doi.org/10.1002/gj.3710 |
Panter, K. S., Castillo, P., Krans, S., et al., 2018. Melt Origin across a Rifted Continental Margin: A Case for Subduction-Related Metasomatic Agents in the Lithospheric Source of Alkaline Basalt, NW Ross Sea, Antarctica. Journal of Petrology, 59(3): 517–558. https://doi.org/10.10 93/petrology/egy036 doi: 10.1093/petrology/egy036 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192 |
Peccerillo, A., Barberio, M. R., Yirgu, G., et al., 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003–2032. https://doi.org/10.1093/petrology/egg068 |
Pilet, S., 2015. Generation of Low-Silica Alkaline Lavas: Petrological Constraints, Models and Thermal Implications. In: Foulger, G. R., Lustrino, M., King, S., eds., The Interdisciplinary Earth: In Honor of Don L. Anderson. Geological Society of America, Special Papers 514. |
Putirka, K., 2016. Rates and Styles of Planetary Cooling on Earth, Moon, Mars, and Vesta, Using New Models for Oxygen Fugacity, Ferric-Ferrous Ratios, Olivine-Liquid Fe-Mg Exchange, and Mantle Potential Temperature. American Mineralogist, 101(4): 819–840. https://doi.org/10.2138/am-2016-5402 |
Qin, J. F., Lai, S. C., Long, X. P., et al., 2020. Thermotectonic Evolution of the Paleozoic Granites along the Shangdan Suture Zone (Central China): Crustal Growth and Differentiation by Magma Underplating in an Orogenic Belt. Geological Society of America Bulletin, 133. https://doi.org/10.1130/b35466.1 |
Qin, Z., Wu, Y., Siaebel, W., et al., 2015. Genesis of Adakitic Granitoids by Partial Melting of Thickened Lower Crust and Its Implications for Early Crustal Growth: A Case Study from the Huichizi Pluton, Qinling Orogen, Central China. Lithos, 238: 1–12. https://doi.org/10.1016/j.lith os.2015.09.017 doi: 10.1016/j.lithos.2015.09.017 |
Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53. https://doi.org/10.1016/s0040-1951(03)00053-2 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust, Treatise on Geochemistry. Elsevier Pergamon, Oxford, 1–64. |
Shellnutt, J. G., Zhou, M. F., 2007. Permian Peralkaline, Peraluminous and Metaluminous A-Type Granites in the Panxi District, SW China: Their Relationship to the Emeishan Mantle Plume. Chemical Geology, 243(3/4): 286–316. https://doi.org/10.1016/j.chemgeo.2007.05.022 |
Sheir, F., Li, W., Zhang, L., et al., 2024. Structural Geology and Chronology of Shear Zones along the Shangdan Suture in Qinling Orogenic Belt, China: Implications for Late Mesozoic Intra-Continental Deformation of East Asia. Journal of Earth Science, 35(2): 376–393. https://doi.org/10.1007/s12583-022-1753-7 |
Sisson, T. W., 1994. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 117(1/2/3/4): 331–344. https://doi.org/10.1016/0009-2541(94)90135-x |
Su, J. H., Zhao, X. F., Li, X. C., et al., 2021. Fingerprinting REE Mineralization and Hydrothermal Remobilization History of the Carbonatite-Alkaline Complexes, Central China: Constraints from in situ Elemental and Isotopic Analyses of Phosphate Minerals. American Mineralogist, 106(10): 1545–1558. https://doi.org/10.2138/am-2021-7746 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. |
Turner, S., Sandiford, M., Foden, J., 1992. Some Geodynamic and Compositional Constraints on "Postorogenic" Magmatism. Geology, 20(10): 931. https://doi.org/10.1130/0091-7613(1992)0200931:sgacco>2.3.co;2 doi: 10.1130/0091-7613(1992)0200931:sgacco>2.3.co;2 |
Wang, G., 2014. Metallogeny of the Mesozoic and Paleozoic Volcanic Igneous Event in Ziyang-Langao Areas, North Daba Mountain: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract) |
Wang, K. M., 2014. Research on the Petrogenesis, Tectonic and Metallogeny for Mafic Rocks in the Ziyang-Langao Area, Shaanxi Province: [Dissertation]. Chinese Academy of Geological Sciences, Beijing (in Chinese with English Abstract) |
Wang, K. M., Wang, Z. Q., Zhang, Y. L., et al., 2015. Geochronology and Geochemistry of Mafic Rocks in the Xuhe, Shaanxi, China: Implications for Petrogenesis and Mantle Dynamics. Acta Geologica Sinica-English Edition, 89(1): 187–202. https://doi.org/10.1111/1755-6724.12404 |
Wang, K., Wang, L. X., Ma, C. Q., et al., 2021. Mineralogy and Geochemistry of the Zhuxi Nb-Rich Trachytic Rocks, South Qinling (China): Insights into the Niobium Mineralization during Magmatic-Hydrothermal Processes. Ore Geology Reviews, 138: 104346. https://doi.org/10.1016/j.oregeorev.2021.104346 |
Wang, R. R., Xu, Z. Q., Santosh, M., et al., 2017. Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Tectonophysics, 712/713: 270–288. https://doi.org/10.1016/j.tecto.2017.05.021 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202 |
Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. https://doi.org/10.1016/0012-821x(80)90 116-8 doi: 10.1016/0012-821x(80)90116-8 |
Xiang, Z. J., Yan, Q. R., Song, B., et al., 2016. New Evidence for the Ages of Ultramafic to Mafic Dikes and Alkaline Volcanic Complexes in the North Daba Mountains and Its Geological Implication. Acta Geologica Sinica, 90(5): 896–916 (in Chinese with English Abstract) |
Xu, X. Y., Huang, Y. H., Xia, L. Q., et al., 1997. Phlogopite-Amphibole-Pyroxenite Xenoliths in Langao, Shaanxi Province: Evidences for Mantle Metasomatism. Acta Petrologica Sinica, 13: 1–13 (in Chinese with English Abstract) |
Yang, H., Lai, S. C., Qin, J. F., et al., 2021. Early Palaeozoic Alkaline Trachytes in the North Daba Mountains, South Qinling Belt: Petrogenesis and Geological Implications. International Geology Review, 63(16): 2037–2056. https://doi.org/10.1080/00206814. 2020.1818302 doi: 10.1080/00206814.2020.1818302 |
Yang, H., Lai, S. C., Qin, J. F., et al., 2022. Petrogenetic Evolution of Early Paleozoic Trachytic Rocks in the South Qinling Belt, Central China: Insights from Mineralogy, Geochemistry, and Thermodynamic Modeling. Lithos, 418/419: 106683. https://doi.org/10.1016/j.lithos.2022.106683 |
Yang, Y. Z., Wang, Y., Siebel, W., et al., 2020. Zircon U-Pb-Hf, Geochemical and Sr-Nd-Pb Isotope Systematics of Late Mesozoic Granitoids in the Lantian-Xiaoqinling Region: Implications for Tectonic Setting and Petrogenesis. Lithos, 374/375: 105709. https://doi.org/10.1016/j.lithos.2020.105709 |
Zhang, C. L., Gao, S., Yu, H. L., et al., 2007. Sr-Nd-Pb Isotopes of the Early Paleozoic Maficultrama-Fic Dykes and Basalts from South Qinling Belt and Their Implications for Mantle Composition. Science China-Earth Sciences, 50: 1293–1301. https://doi.org/10.1007/s11430-007-0088-7 |
Zhang, C. L., Gao, S., Zhang, G. W., et al., 2002. Geochemistry and Significance of the Early Paleozoic Alkaline Mafic Dyke in Qinling. Science in China (Series D: Geoscience), 32: 819–829 (in Chinese with English Abstract) |
Zhang, F. Y., Lai, S. C., Qin, J. F., et al., 2020a. Vein-Plus-Wall Rock Melting Model for the Origin of Early Paleozoic Alkali Diabases in the South Qinling Belt, Central China. Lithos, 370/371: 105619. https://doi.org/10.1016/j.lithos.2020.105619 |
Zhang, F. Y., Lai, S. C., Qin, J. F., et al., 2020b. Magma Source and Evolution Process of Early Paleozoic Basalts in the South Qinling Belt. Acta Petrologica Sinica, 36: 2149–2162 (in Chinese with English Abstract) doi: 10.18654/1000-0569/2020.07.15 |
Zhang, G. W., Meng, Q. R., Yu, Z. P., et al., 1996. Orogenic Process and Dynamic Characteristics of Qinling Orogenic Belt, Science in China (Series D), 26: 193–200 (in Chinese with English Abstract) |
Zhang, R. Y., Ao, W. H., Zhao, Y., 2023. U-Pb Zircon Ages and Geochemistry of the Metasedimentary Rocks from the Foping Area in the South Qinling Belt: Evidence for Early Devonian Amalgamation between North China and South China Blocks. Journal of Earth Science, 34(4): 1112–1127.https://doi.org/10.1 007/s12583-022-1608-2 doi: 10.1007/s12583-022-1608-2 |
Zhang, Z. Z., Qin, J. F., Lai, S. C., et al., 2019. Origin of Late Permian Syenite and Gabbro from the Panxi Rift, SW China: The Fractionation Process of Mafic Magma in the Inner Zone of the Emeishan Mantle Plume. Lithos, 346/347: 105160. https://doi.org/10.1016/j.lithos.2019.105160 |
Zhu, Y. X., Wang, L. X., Xiong, Q. H., et al., 2020. Origin and Evolution of Ultrapotassic Intermediate Magma: The Songxian Syenite Massif, Central China. Lithos, 366/367: 105554. https://doi.org/10.1016/j.lithos.2020.105554 |