Citation: | Molei Zhao, Guoxiong Chen, Jie Yang, Yuanzhi Zhou, Qiuming Cheng. Co-Evolution of Magmatic and Sedimentary Fluxes Coupling with Supercontinents: Insight from Singularity Analysis of Deep-Time Geological Records. Journal of Earth Science, 2025, 36(5): 2308-2316. doi: 10.1007/s12583-022-1796-9 |
Continental crust is the long-term achievements of Earth's evolution across billions of years. The continental rocks could have been modified by various types of geological processes, such as metamorphism, weathering, and reworking. Therefore, physical or chemical properties of rocks through time record the composite effects of geological, biological, hydrological, and climatological processes. Temporal variations in these time series datasets could provide important clues for understanding the co-evolution of different layers on Earth. However, deciphering Earth's evolution in deep time is challenged by incompleteness, singularity, and intermittence of geological records associated with extreme geological events, hindering a rigorous assessment of the underlying coupling mechanisms. Here, we applied the recently developed local singularity analysis and wavelet analysis method to deep-time U-Pb age spectra and sedimentary abundance record across the past 3.5 Gyrs. Standard cross-correlation analysis suggests that the singularity records of marine sediment accumulations and magmatism intensity at continental margin are correlated negatively (
Alroy, J., Aberhan, M., Bottjer, D. J., et al., 2008. Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science, 321(5885): 97–100. https://doi.org/10.1126/science.1156963 |
Arndt, N., Davaille, A., 2013. Episodic Earth Evolution. Tectonophysics, 609: 661–674. https://doi.org/10.1016/j.tecto.2013.07.002 |
Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust: Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4): 457–466. https://doi.org/10.1016/j.lithos.2010.07.024 |
Bergen, K. J., Johnson, P. A., de Hoop, M. V., et al., 2019. Machine Learning for Data-Driven Discovery in Solid Earth Geoscience. Science, 363(6433): eaau0323. https://doi.org/10.1126/science.aau0323 |
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875–878. https://doi.org/10.1130/g32945.1 |
Chen, G. X., Cheng, Q. M., Peters, S. E., et al., 2022. Feedback between Surface and Deep Processes: Insight from Time Series Analysis of Sedimentary Record. Earth and Planetary Science Letters, 579: 117352. https://doi.org/10.1016/j.epsl.2021.117352 |
Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314–324. https://doi.org/10.1016/j.oregeorev.2006.10.002 |
Cheng, Q. M., 2017. Singularity Analysis of Global Zircon U-Pb Age Series and Implication of Continental Crust Evolution. Gondwana Research, 51: 51–63. https://doi.org/10.1016/j.gr.2017.07.011 |
Cheng, Q. M., 2018a. Extrapolations of Secular Trends in Magmatic Intensity and Mantle Cooling: Implications for Future Evolution of Plate Tectonics. Gondwana Research, 63: 268–273. https://doi.org/10.1016/j.gr.2018.08.001 |
Cheng, Q. M., 2018b. Mathematical Geosciences: Local Singularity Analysis of Nonlinear Earth Processes and Extreme Geo-Events. Handbook of Mathematical Geosciences. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-78999-6_10 |
Cheng, Q. M., 2018c. Singularity Analysis of Magmatic Flare-Ups Caused by India-Asia Collisions. Journal of Geochemical Exploration, 189: 25–31. https://doi.org/10.1016/j.gexplo.2017.08.012 |
Cheng, Q. M., Oberhänsli, R., Zhao, M. L., 2020. A New International Initiative for Facilitating Data-Driven Earth Science Transformation. Geological Society of London Special Publications, 499(1): 225–240. https://doi.org/10.1144/sp499-2019-158 |
Cheng, Q. M., 2022. Quantitative Simulation and Prediction of Extreme Geological Events. Science China Earth Sciences, 65(6): 1012–1029. https://doi.org/10.1007/s11430-021-9881-2 |
Clift, P., P. Vannucchi, 2004. Controls on Tectonic Accretion versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics, 42: RG2001. https://doi.org/10.1029/2003rg000127 |
Condie, K. C., 1998. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection? Earth and Planetary Science Letters, 163(1/2/3/4): 97–108. https://doi.org/10.1016/s0012-821x(98)00178-2 |
Condie, K. C., Aster, R. C., 2013. Refinement of the Supercontinent Cycle with Hf, Nd and Sr Isotopes. Geoscience Frontiers, 4(6): 667–680. https://doi.org/10.1016/j.gsf.2013.06.001 |
Dhuime, B., Hawkesworth, C. J., Storey, C. D., et al., 2011. From Sediments to Their Source Rocks: Hf and Nd Isotopes in Recent River Sediments. Geology, 39(4): 407–410. https://doi.org/10.1130/g31785.1 |
Dhuime, B., Hawkesworth, C. J., Cawood, P. A., et al., 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 335(6074): 1334–1336. https://doi.org/10.1126/science.1216066 |
Dhuime, B., Wuestefeld, A., Hawkesworth, C. J., 2015. Emergence of Modern Continental Crust about 3 Billion Years Ago. Nature Geoscience, 8(7): 552–555. https://doi.org/10.1038/ngeo2466 |
Dimanov, A., Dresen, G., Wirth, R., 1998. High-Temperature Creep of Partially Molten Plagioclase Aggregates. Journal of Geophysical Research: Solid Earth, 103(B5): 9651–9664. https://doi.org/10.1029/97jb03742 |
Domeier, M., Magni, V., Hounslow, M. W., et al., 2018. Episodic Zircon Age Spectra Mimic Fluctuations in Subduction. Scientific Reports, 8: 17471. https://doi.org/10.1038/s41598-018-35040-z |
Fan, J. X., Hou, X. D., Chen, Q., et al., 2014. Geobiodiversity Database (GBDB) in Stratigraphic, Palaeontological and Palaeogeographic Research: Graptolites as an Example. GFF, 136(1): 70–74. https://doi.org/10.1080/11035897.2014.880070 |
Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272–277. https://doi.org/10.1126/science.aax4953 |
Gorshkov, B. G., Yüksel, K., Fotiadi, A. A., et al., 2022. Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective. Sensors (Basel), 22(3): 1033. https://doi.org/10.3390/s22031033 |
Gregor, B., 1970. Denudation of the Continents. Nature, 228(5268): 273–275. https://doi.org/10.1038/228273a0 |
Hutton, J., 2021. Theory of the Earth. Beyond Books Hub, Medford. https://books.google.com.hk/books/about/theory_of_the_earth.html?id=mcm2eaaaqbaj&redir_esc=y https://books.google.com.hk/books/about/theory_of_the_earth.html?id=mcm2eaaaqbaj&redir_esc=y |
Liu, C., Knoll, A. H., Hazen, R. M., 2017. Geochemical and Mineralogical Evidence that Rodinian Assembly was Unique. Nature Communications, 8(1): 1950. https://doi.org/10.1038/s41467-017-02095-x |
Liu, H., Sun, W. D., Zartman, R., et al., 2019. Continuous Plate Subduction Marked by the Rise of Alkali Magmatism 2.1 Billion Years Ago. Nature Communications, 10(1): 3408. https://doi.org/10.1038/s41467-019-11329-z |
Lu. Z., Kwoun, O., Rykhus, R., 2007. Interferometric Synthetic Aperture Radar (InSAR): Its Past, Present and Future. Photogrammetric Engineering and Remote Sensing, 73(3): 217. https://doi.org/10.1088/0952-4746/27/1/n02 |
Lyell, C., 1854. Principles of Geology: Or, the Modern Changes of the Earth and Its Inhabitants Considered as Illustrative of Geology. D. Appleton & Company, New York |
Mayr, E., 1972. The Nature of the Darwinian Revolution: Acceptance of Evolution by Natural Selection Required the Rejection of Many Previously Held Concepts. Science, 176(4038): 981–989. https://doi.org/10.1126/science.176.4038.981 |
McPhee, J., 1981. Basin and Range. Farrar, Straus, Giroux, New York |
Nakagawa, T., Tackley, P. J., 2012. Influence of Magmatism on Mantle Cooling, Surface Heat Flow and Urey Ratio. Earth and Planetary Science Letters, 329: 1–10. https://doi.org/10.1016/j.epsl.2012.02.011 |
National Academies of Sciences, Engineering, and Medicine., 2020. A Vision for NSF Earth Sciences 2020–2030: Earth in Time. The National Academies Press, Washington, D. C. https://doi.org/10.17226/25761 |
Parman, S. W., 2015. Time-Lapse Zirconography: Imaging Punctuated Continental Evolution. Geochemical Perspectives Letters, 1(1): 43–52. https://doi.org/10.7185/geochemlet.1505 |
Peters, S. E., Husson, J. M., 2017. Sediment Cycling on Continental and Oceanic Crust. Geology, 45(4): 323–326.https://doi.org/1 0.1130/g38861.1 doi: 10.1130/G38861.1 |
Peters, S. E., Quinn, D. P., Husson, J. M., et al., 2022. Macrostratigraphy: Insights into Cyclic and Secular Evolution of the Earth-Life System. Annual Review of Earth and Planetary Sciences, 50: 419–449. https://doi.org/10.1146/annurev-earth-032320-081427 |
Peters, S. E., 2006. Macrostratigraphy of North America. The Journal of Geology, 114(4): 391–412. https://doi.org/10.1086/504176 |
Puetz, S. J., 2018. A Relational Database of Global U-Pb Ages. Geoscience Frontiers, 9(3): 877–891. https://doi.org/10.1016/j.gsf.2017.12.004 |
Reichstein, M., Camps-Valls, G., Stevens, B., et al., 2019. Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature, 566(7743): 195–204. https://doi.org/10.1038/s41586-019-0912-1 |
Saleh, M., Masson, F., Mohamed, A. S., et al., 2018. Recent Ground Deformation around Lake Nasser Using GPS and InSAR, Aswan, Egypt. Tectonophysics, 744: 310–321. https://doi.org/10.1016/j.tecto.2018.07.005 |
Spencer, C. J., Cawood, P. A., Hawkesworth, C. J., et al., 2014. Proterozoic Onset of Crustal Reworking and Collisional Tectonics: Reappraisal of the Zircon Oxygen Isotope Record. Geology, 42(5): 451–454. https://doi.org/10.1130/g35363.1 |
Walzer, U., Hendel, R., 2017. Continental Crust Formation: Numerical Modelling of Chemical Evolution and Geological Implications. Lithos, 278: 215–228. https://doi.org/10.1016/j.lithos.2016.12.014 |
Windley, B. F., Kusky, T. M., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980 |
Zhou, C. H., Wang, H., Wang, C. S., et al., 2021. Geoscience Knowledge Graph in the Big Data Era. Science China Earth Sciences, 64(7): 1105–1114. https://doi.org/10.1007/s11430-020-9750-4 |