Citation: | Yiwei Xu, Xiumian Hu, Zhong Han. Carbonate Ontology and Its Application for Integrating Microfacies Data. Journal of Earth Science, 2023, 34(5): 1328-1338. doi: 10.1007/s12583-023-1808-4 |
Carbonate rocks record essential information on changes in paleoclimate and paleoceano-graphy. Abundant geological and geochemical data of carbonate rocks have been accumulated over the past decades; however, most of the data are stored in the published literature with highly unstructured forms, and are thus difficult to reuse. The ontology is a standard knowledge model for data integration, which can promote data storage and reutilization. This study proposes a carbonate ontology that represents the concepts in carbonate microfacies. The carbonate ontology constructed by the top-down process contains 215 terms of classifications and petrographic descriptions of carbonate rocks. Furthermore, carbonate microfacies of the Cretaceous (Aptian) carbonate platform in the Betic Cordillera and Jurassic carbonate platform in Tibet provide the data from case studies for the testing and initial validation of the proposed ontology. The carbonate ontology is under continuous expansion following the bottom-up approach and open access on the website of the deep-time digital Earth (DDE) program.
Abel, M., Goldberg, K., De Ros, L. F., 2012. Ontology-Based Rock Description and Interpretation. In: Perrin, M., Rainaud, J. -F., eds., Shared Earth Modeling: Knowledge Driven Solutions for Building and Managing Subsurface 3D Geological Models. Editions Technips, Paris, 261–278 |
Abel, M., Silva, L. A. L., De Ros, L. F., et al., 2004. PetroGrapher: Managing Petrographic Data and Knowledge Using an Intelligent Database Application. Expert Systems with Applications, 26: 9–18 doi: 10.1016/S0957-4174(03)00104-0 |
Abu-Salih, B., 2020. Domain-Specific Knowledge Graphs: A Survey. arXiv: 2011.00235. |
Aliyu, I., Kana, A. F. D., Aliyue, S., 2020. Development of Knowledge Graph for University Courses Management. International Journal of Education and Management Engineering (IJEME), 10(2): 1–10 |
Amel, H., Jafarian, A., Husinec, A., et al., 2015. Microfacies, Depositional Environment and Diagenetic Evolution Controls on the Reservoir Quality of the Permian Upper Dalan Formation, Kish Gas Field, Zagros Basin. Marine and Petroleum Geology, 67: 57–71. https://doi.org/10.1016/j.marpetgeo.2015.04.012 |
Arp, R., Smith, B., Spear, A. D., 2015. Building Ontologies with Basic Formal Ontology. The MIT Press, Cambridge |
Ashburner, M., Ball, C. A., Blake, J. A., et al., 2000. Gene Ontology: Tool for the Unification of Biology. Nature Genetics, 25(1): 25–29. https://doi.org/10.1038/75556 |
Borst, W. N., 1997. Construction of Engineering Ontologies for Knowledge Sharing and Reuse: [Dissertation]. University of Twente, Enschede |
Burchette, T. P., 2012. Carbonate Rocks and Petroleum Reservoirs: A Geological Perspective from the Industry. In: Garland, J., Neilson, J., Laubach, S. E., eds., Advances in Carbonate Exploration and Reservoir Analysis. Geological Society London Special Publications, London |
Buttigieg, P. L., Mungall, C., Rueda, C., et al., 2018. SWEET Ontology Suite v3.0. 0: Development, Alignments and Use Cases. Abstract from American Association of Geographers 2018, New Orleans |
Cicconeto, F., 2021. GeoReservoir: An Ontology for Deep-Marine Depositional System Description: [Dissertation]. Universidade Federal do Rio Grande do Sul, Rio Grande do Sul |
Cicconeto, F., Vieira, L. V., Abel, M., et al., 2020. A Spatial Relation Ontology for Deep-Water Depositional System Description in Geology. ONTOBRAS, 35–47 |
Cosgrove, G. I. E., Colombera, L., Mountney, N. P., 2021a. A Database of Aeolian Sedimentary Architecture for the Characterization of Modern and Ancient Sedimentary Systems. Marine and Petroleum Geology, 127: 104983. https://doi.org/10.1016/j.marpetgeo.2021.104983 |
Cosgrove, G. I. E., Colombera, L., Mountney, N. P., 2021b. Quantitative Analysis of the Sedimentary Architecture of Eolian Successions Developed under Icehouse and Greenhouse Climatic Conditions. GSA Bulletin, 133(11/12): 2625–2644. https://doi.org/10.1130/b35918.1 |
Cox, S. J. D., Gahegan, M., 2016. Time Ontology Extended for Non-Gregorian Calendar Applications. Semantic Web, 7(2): 201–209. https://doi.org/10.3233/sw-150187 |
DiGiuseppe, N., Pouchard, L. C., Noy, N. F., 2014. SWEET Ontology Coverage for Earth System Sciences. Earth Science Informatics, 7(4): 249–264. https://doi.org/10.1007/s12145-013-0143-1 |
Dunham, R. J., 1962. Classification of Carbonate Rocks According to Depo-sitional Texture. In: Ham, W. E., eds., Classification of Carbonate Rocks, The American Association of Petroleum Geologists, Tulsa. 108–121 |
Embry, A., Klovan, J. E., 1971. A Late Devonian Reef Tract on Northeastern Banks Island, N. W. T. Bulletin of Canadian Petroleum Geology, 19: 730–781 |
Farazi, F., Salamanca, M., Mosbach, S., et al., 2020. Knowledge Graph Approach to Combustion Chemistry and Interoperability. ACS Omega, 5(29): 18342–18348. https://doi.org/10.1021/acsomega.0c02055 |
Flügel, E., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application (Second Edition), Springer-Verlag, Berlin |
Folk, R. L. F., 1959. Practical Petrographic Classification of Limestones. AAPG Bulletin, 43(1): 1–38. https://doi.org/10.1306/0bda5c36-16bd-11d7-8645000102c1865d |
Folk, R. L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin |
Friedman, G. M., 1965. Terminology of Crystallization Textures and Fabrics in Sedimentary Rocks. SEPM Journal of Sedimentary Research, 35: 643–655. https://doi.org/10.1306/74d7131b-2b21-11d7-8648000102c1865d |
Friedman, G. M., 1965. Terminology of Recrystallization Textures and Fabrics in Sedimentary Rocks. Journal of Sedimentary Research, 35: 643–655 |
Gil, Y., Garijo, D., Ratnakar, V., et al., 2017. A Controlled Crowdsourcing Approach for Practical Ontology Extensions and Metadata Annotations. International Semantic Web Conference. Springer, Cham. https://doi.org/10.1007/978-3-319-68204-4_24 |
Gruber, T. R., 1993. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 5(2): 199–220. https://doi.org/10.1006/knac.1993.1008 |
Gutierrez, C., Sequeda, J. F., 2021. Knowledge Graphs. Communications of the ACM, 64(3): 96–104. https://doi.org/10.1145/3418294 |
Han, Z., Hu, X. M., Kemp, D. B., et al., 2018. Carbonate-Platform Response to the Toarcian Oceanic Anoxic Event in the Southern Hemisphere: Implications for Climatic Change and Biotic Platform Demise. Earth and Planetary Science Letters, 489: 59–71. https://doi.org/10.1016/j.epsl.2018.02.017 |
Han, Z., Hu, X. M., Li, J., et al., 2016. Jurassic Carbonate Microfacies and Relative Sea-Level Changes in the Tethys Himalaya (Southern Tibet). Palaeogeography, Palaeoclimatology, Palaeoecology, 456: 1–20. https://doi.org/10.1016/j.palaeo.2016.05.012 |
Haussmann, S., Seneviratne, O., Chen, Y., et al., 2019. FoodKG: A Semantics-Driven Knowledge Graph for Food Recommendation. Lecture Notes in Computer Science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-30796-7_10 |
Hu, Z. C., Ren, H. L., Jiang, J. L., et al., 2023. Corpus of Carbonate Platforms with Lexical Annotations for Named Entity Recognition. Computer Modeling in Engineering & Sciences, 135(1): 91–108. https://doi.org/10.32604/cmes.2022.022268 |
James, N., Jones, B., 2015. Origin of Carbonate Sedimentary Rocks. Wiley, London. 446 |
Jerram, D. A., 2001. Visual Comparators for Degree of Grain-Size Sorting in Two and Three-Dimensions. Computers & Geosciences, 27(4): 485–492. https://doi.org/10.1016/S0098-3004(00)00077-7 |
Jiang, J. X., Hu, X. M., Li, J., et al., 2021. Discovery of the Paleocene-Eocene Thermal Maximum in Shallow-Marine Sediments of the Xigaze Forearc Basin, Tibet: A Record of Enhanced Extreme Precipitation and Siliciclastic Sediment Flux. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110095. https://doi.org/10.1016/j.palaeo.2020.110095 |
Keet, C. M., 2018. An Introduction to Ontology Engineering. Cape Town. College Publications, Paris |
Khider, D., Emile-Geay, J., McKay, N. P., et al., 2019. PaCTS 1.0: A Crowdsourced Reporting Standard for Paleoclimate Data. Paleoceanography and Paleoclimatology, 34(10): 1570–1596. https://doi.org/10.1029/2019pa003632 |
Kindler, P., Wilson, M. E., 2010. Carbonate Grain Associations: Their Use and Environmental Significance, a Brief Review. In: Mutti, M., Piller, W. E., Befzler, C., eds., Carbonate Systems during the Oligocene-Miocene Climatic Transition, Wiley-Blackwell, Malden, 35–47 |
Klemme, H. D., Ulmishek, G. F., 1991. Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors (1). AAPG Bulletin, 75: 1809–1851. https://doi.org/10.1306/0c9b2a47-1710-11d7-8645000102c1865d |
Kuznetsov, V. G., 2000. Some Features of the Evolution of Carbonate Accumulation in the Earth's History: Communication 1. Evolution of the Intensity, Mechanism, and Setting of Carbonate Accumulation. Lithology and Mineral Resources, 35(1): 32–46. https://doi.org/10.1007/bf02788283 |
Li, J., Hu, X. M., Garzanti, E., et al., 2021. Climate-Driven Hydrological Change and Carbonate Platform Demise Induced by the Paleocene–Eocene Thermal Maximum (Southern Pyrenees). Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110250. https://doi.org/10.1016/j.palaeo.2021.110250 |
Lokier, S. W., Al Junaibi, M., 2016. The Petrographic Description of Carbonate Facies: Are We all Speaking the Same Language? Sedimentology, 63(7): 1843–1885. https://doi.org/10.1111/sed.12293 |
Long, J. W., Chen, Z. P., He, W. B., et al., 2020. An Integrated Framework of Deep Learning and Knowledge Graph for Prediction of Stock Price Trend: An Application in Chinese Stock Exchange Market. Applied Soft Computing, 91: 106205. https://doi.org/10.1016/j.asoc.2020.106205 |
Ma, X. G., Ma, C., Wang, C. B., 2020. A New Structure for Representing and Tracking Version Information in a Deep Time Knowledge Graph. Computers & Geosciences, 145: 104620. https://doi.org/10.1016/j.cageo.2020.104620 |
Mazzullo, S. J., Chilingarian, G. V., Bissell, H. J., 1992. Carbonate Rock Classifications. In: Chilingarian, G. V., Mazzullo, S. J., Rieke, H. H., eds., Carbonate Reservoir Characterization: A Geologic-Engineering Analysis. Elsevier, Amsterdam |
Michel, J., Borgomano, J., Reijmer, J. J. G., 2018. Heterozoan Carbonates: When, Where and Why? A Synthesis on Parameters Controlling Carbonate Production and Occurrences. Earth-Science Reviews, 182: 50–67. https://doi.org/10.1016/j.earscirev.2018.05.003 |
Nabawy, B. S., Rashed, M. A., Mansour, A. S., et al., 2018. Petrophysical and Microfacies Analysis as a Tool for Reservoir Rock Typing and Modeling: Rudeis Formation, Off-Shore October Oil Field, Sinai. Marine and Petroleum Geology, 97: 260–276. https://doi.org/10.1016/j.marpetgeo.2018.07.011 |
Nieto, L. M., Reolid, M., Rodríguez-Tovar, F. J., et al., 2018. An Integrated Analysis (Microfacies and Ichnology) of a Shallow Carbonate-Platform Succession: Upper Aptian, Lower Cretaceous, Betic Cordillera. Facies, 64(1): 4. https://doi.org/10.1007/s10347-017-0515-y |
Noy, N. F., McGuinness, D. L., 2001. Ontology Development 101: A Guide to Creating Your First Ontology. |
Pettijohn, F., Potter, P. E., Siever, R., 1972. Sand and Sandstone. Springer-Verlag, New York. 553 |
Rainaud, J. F., 2005. A Short History of the Last 15 Year's Quest for It Interoperability in the Petroleum E & P Industry. Oil & Gas Science and Technology, 60(4): 597–605. https://doi.org/10.2516/ogst:2005042 |
Raskin, R. G., 2010. SWEET 2.1 Ontologies. 2010 AGU Fall Meeting, 13–17 December, San Francisco |
Reijmer, J., 2021. Marine Carbonate Factories: Review and Update. Sedimentology, 68(5): 1729–1796 |
Richard, S. M., CGI Interoperability Working Group, 2007. Geosciml–A Gml Application for Geoscience Information Interchange. In: DIGITAL Mapping Techniques'06, 2006, Columbus. U. S. Geological Survey, Reston |
Ronov, A. B., 1982. The Earth's Sedimentary Shell (Quantitative Patterns of Its Structure, Compositions, and Evolution). International Geology Review, 24(12): 1365–1388. https://doi.org/10.1080/00206818209467198 |
Schlager, W., 2005. Carbonate Sedimentology and Sequence Stratigraphy. SEPM, Oklahoma |
Simons, B., Duffy, T., Boisvert, E., et al., 2006. GeoSciML: Enabling the Exchange of Geological Map Data, AESC, Melbourne |
Studer, R., Benjamins, V. R., Fensel, D., 1998. Knowledge Engineering: Principles and Methods. Data & Knowledge Engineering, 25(1/2): 161–197. https://doi.org/10.1016/s0169-023x(97)00056-6 |
Tucker, M. E., 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Blackwell Science, Oxford |
Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Blackwell Science, Oxford |
Wang, C. S., Hazen, R. M., Cheng, Q. M., et al., 2021. The Deep-Time Digital Earth Program: Data-Driven Discovery in Geosciences. National Science Review, 8(9): nwab027. https://doi.org/10.1093/nsr/nwab027 |
Wentworth, C. K., 1922. A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30(5): 377–392. https://doi.org/10.1086/622910 |
Xu, Y. W., Hu, X. M., Garzanti, E., et al., 2022. Mid-Cretaceous Thick Carbonate Accumulation in Northern Lhasa (Tibet): Eustatic vs. Tectonic Control? GSA Bulletin, 134(1/2): 389–404. https://doi.org/10.1130/b35930.1 |
Yan, H. H., Yang, J., Wan, J. F., 2020. KnowIME: A System to Construct a Knowledge Graph for Intelligent Manufacturing Equipment. IEEE Access, 8: 41805–41813. https://doi.org/10.1109/access.2020.2977136 |
Yuan, W. J., Yang, L., Yang, Q., et al., 2022. Extracting Spatio-Temporal Information from Chinese Archaeological Site Text. ISPRS International Journal of Geo-Information, 11(3): 175. https://doi.org/10.3390/ijgi11030175 |
Zhou, C. H., Wang, H., Wang, C. S., et al., 2021. Geoscience Knowledge Graph in the Big Data Era. Science China Earth Sciences, 64(7): 1105–1114. https://doi.org/10.1007/s11430-020-9750-4 |