Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 5
Oct 2023
Turn off MathJax
Article Contents
Qinjun Qiu, Bin Wang, Kai Ma, Hairong Lü, Liufeng Tao, Zhong Xie. A Practical Approach to Constructing a Geological Knowledge Graph: A Case Study of Mineral Exploration Data. Journal of Earth Science, 2023, 34(5): 1374-1389. doi: 10.1007/s12583-023-1809-3
Citation: Qinjun Qiu, Bin Wang, Kai Ma, Hairong Lü, Liufeng Tao, Zhong Xie. A Practical Approach to Constructing a Geological Knowledge Graph: A Case Study of Mineral Exploration Data. Journal of Earth Science, 2023, 34(5): 1374-1389. doi: 10.1007/s12583-023-1809-3

A Practical Approach to Constructing a Geological Knowledge Graph: A Case Study of Mineral Exploration Data

doi: 10.1007/s12583-023-1809-3
More Information
  • Corresponding author: Kai Ma, makai@ctgu.edu.cn
  • Received Date: 05 Jun 2022
  • Accepted Date: 09 Dec 2022
  • Available Online: 14 Oct 2023
  • Issue Publish Date: 30 Oct 2023
  • Open data initiatives have promoted governmental agencies and scientific organizations to publish data online for reuse. Research of geoscience focuses on processing georeferenced quantitative data (e.g., rock parameters, geochemical tests, geophysical surveys and satellite imagery) for discovering new knowledge. Geological knowledge is the cognitive result of human knowledge of the spatial distribution, evolution and interaction patterns of geological objects or processes. Knowledge graphs (KGs) can formalize unstructured knowledge into structured form and have been used in supporting decision-making recently. In this paper, we propose a novel framework that can extract the geological knowledge graph (GKG) from public reports relating to a modelling study. Based on the analysis of basic questions answered by geology, we summarize and abstract geological knowledge elements and then explore a geological knowledge representation model with three levels of "geological concepts-geological entities-geological relations" to describe semantic units of geological knowledge and their logic relations. Finally, based on the characteristics of mineral resource reports, the geological knowledge representation model oriented to "object relationships" and the hierarchical geological knowledge representation model oriented to "process relationships" are proposed with reference to the commonly used geological knowledge graph representation. The research in this paper can provide some implications for the formalization and structured representation of geological knowledge graphs.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • 4D Initiative Team, 2018. White Paper of the 4D Initiative: Deep-Time Data Driven Discovery. https://4d.carnegiescience.edu/sites/default/files/4D_materials/4D_WhitePaper.pdf. (Accessed 4 March 2020)
    Alzaidy, R., Caragea, C., Giles, C. L., 2019. Bi-LSTM-CRF Sequence Labeling for Keyphrase Extraction from Scholarly Documents. WWW'19: The World Wide Web Conference. May 13–17, 2019, San Francisco. https://doi.org/10.1145/3308558.3313642
    Ballatore, A., Bertolotto, M., Wilson, D., 2015. A Structural-Lexical Measure of Semantic Similarity for Geo-Knowledge Graphs. ISPRS Int. J. Geo-Inform. , 4: 471–492 doi: 10.3390/ijgi4020471
    Bauer, F., Kaltenböck, M., 2011. Linked Open Data: The Essentials. Mono/Monochrom. Vienna, Austria
    Bharambe, U., Durbha, S. S., 2018. Adaptive Pareto-Based Approach for Geo-Ontology Matching. Computers & Geosciences, 119: 92–108. https://doi.org/10.1016/j.cageo.2018.06.008
    Chen, Y., Goldberg, S., Wang, D. Z., et al., 2016. Ontological Pathfinding. The 2016 International Conference on Management of Data. 26 June 2016, San Francisco. https://doi.org/10.1145/2882903.2882954
    Daraio, C., Lenzerini, M., Leporelli, C., et al., 2016. The Advantages of an Ontology-Based Data Management Approach: Openness, Interoperability and Data Quality. Scientometrics, 108(1): 441–455. https://doi.org/10.1007/s11192-016-1913-6
    Deng, C., Jia, Y. T., Xu, H., et al., 2021. GAKG: A Multimodal Geoscience Academic Knowledge Graph. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. November 1–5, 2021, Virtual Event, Queensland. https://doi.org/10.1145/3459637.3482003
    Dong, X., Gabrilovich, E., Heitz, G., et al., 2014. Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 24–27, 2014, New York. https://doi.org/10.1145/2623330.2623623
    Enkhsaikhan, M., Holden, E. J., Duuring, P., et al., 2021. Understanding Ore-Forming Conditions Using Machine Reading of Text. Ore Geology Reviews, 135: 104200. https://doi.org/10.1016/j.oregeorev.2021.104200
    Fan, R. Y., Wang, L. Z., Yan, J. N., et al., 2019. Deep Learning-Based Named Entity Recognition and Knowledge Graph Construction for Geological Hazards. ISPRS International Journal of Geo-Information, 9(1): 15. https://doi.org/10.3390/ijgi9010015
    Holden, E. J., Liu, W., Horrocks, T., et al., 2019. GeoDocA-Fast Analysis of Geological Content in Mineral Exploration Reports: A Text Mining Approach. Ore Geology Reviews, 111: 102919. https://doi.org/10.1016/j.oregeorev.2019.05.005
    Jia, Y., Qi, Y. L., Shang, H. J., et al., 2018. A Practical Approach to Constructing a Knowledge Graph for Cybersecurity. Engineering, 4(1): 53–60. https://doi.org/10.1016/j.eng.2018.01.004
    Lafferty, J., McCallum, A., Pereira, F. C., 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Brodley, C. E., Danyluk, A. P., eds., Proceedings of the Eighteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. San Francisco
    Li, L., Liu, Y., Zhu, H. H., et al., 2017. A Bibliometric and Visual Analysis of Global Geo-Ontology Research. Computers & Geosciences, 99: 1–8. https://doi.org/10.1016/j.cageo.2016.10.006
    Lin, Y. K., Shen, S. Q., Liu, Z. Y., et al., 2016. Neural Relation Extraction with Selective Attention over Instances. In: Erk, k., Smith, N. A., eds., Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Berlin
    Ma, K., Tan, Y. J., Xie, Z., et al., 2022a. Chinese Toponym Recognition with Variant Neural Structures from Social Media Messages Based on BERT Methods. Journal of Geographical Systems, 24(2): 143–169. https://doi.org/10.1007/s10109-022-00375-9
    Ma, K., Tan, Y. J., Tian, M., et al., 2022b. Extraction of Temporal Information from Social Media Messages Using the BERT Model. Earth Science Informatics, 15(1): 573–584. https://doi.org/10.1007/s12145-021-00756-6
    Ma, K., Tian, M., Tan, Y. J., et al., 2022c. What is this Article About? Generative Summarization with the BERT Model in the Geosciences Domain. Earth Science Informatics, 15(1): 21–36. https://doi.org/10.1007/s12145-021-00695-2
    Ma, X. G., 2022. Knowledge Graph Construction and Application in Geosciences: A Review. Computers & Geosciences, 161: 105082. https://doi.org/10.1016/j.cageo.2022.105082
    Ma, X. G., Ma, C., Wang, C. B., 2020. A New Structure for Representing and Tracking Version Information in a Deep Time Knowledge Graph. Computers & Geosciences, 145: 104620. https://doi.org/10.1016/j.cageo.2020.104620
    Ma, Y., Xie, Z., Li, G., et al., 2022. Text Visualization for Geological Hazard Documents via Text Mining and Natural Language Processing. Earth Science Informatics, 15(1): 439–454. https://doi.org/10.1007/s12145-021-00732-0
    Nguyen, H. L., Vu, D. T., Jung, J. J., 2020. Knowledge Graph Fusion for Smart Systems: A Survey. Information Fusion, 61: 56–70. https://doi.org/10.1016/j.inffus.2020.03.014
    Nickel, M., Tresp, V., Kriegel, H. P., 2011. A Three-Way Model for Collective Learning on Multi-Relational Data. Proceedings of the 28th International Conference on Machine Learning, Bellevue
    Normile, D., 2019. Earth Scientists Plan a 'Geological Google'. Science, 363(6430): 917. https://doi.org/10.1126/science.363.6430.917
    Noy, N. F., McGuinness, D. L., 2001. Ontology Development 101: A Guide to Creating Your First Ontology. https://protege.stanford.edu/conference/2004/slides/Ontology101_tutorial.pdf
    Powers, D. M. W., 1998. Applications and Explanations of Zipf's lawProceedings of the Joint Conferences on New Methods in Language Processing and Computational Natural Language Learning-NeMLaP3/CoNLL '98. January 11–17, 1998. Sydney, Australia. Morristown, NJ, USA: Association for Computational Linguistics, Stroudsburg, PA, USA, 1998: 151–160
    Qiu, Q. J., Xie, Z., Wu, L. A., 2018a. A Cyclic Self-Learning Chinese Word Segmentation for the Geoscience Domain. Geomatica, 72(1): 16–26. https://doi.org/10.1139/geomat-2018-0007
    Qiu, Q. J., Xie, Z., Wu, L. A., et al., 2019. GNER: A Generative Model for Geological Named Entity Recognition without Labeled Data Using Deep Learning. Earth and Space Science, 6(6): 931–946. https://doi.org/10.1029/2019ea000610
    Qiu, Q. J., Xie, Z., Wu, L., et al., 2018b. DGeoSegmenter: A Dictionary-Based Chinese Word Segmenter for the Geoscience Domain. Computers & Geosciences, 121: 1–11. https://doi.org/10.1016/j.cageo.2018.08.006
    Qiu, Q. J., Xie, Z., Wu, L., et al., 2019. BiLSTM-CRF for Geological Named Entity Recognition from the Geoscience Literature. Earth Science Informatics, 12(4): 565–579. https://doi.org/10.1007/s12145-019-00390-3
    Qiu, Q. J., Xie, Z., Wu, L., et al., 2019. Geoscience Keyphrase Extraction Algorithm Using Enhanced Word Embedding. Expert Systems with Applications, 125: 157–169. https://doi.org/10.1016/j.eswa.2019.02.001
    Qiu, Q. J., Xie, Z., Zhang, D., et al., 2023. Knowledge Graph for Identifying Geological Disasters by Integrating Computer Vision with Ontology. Journal of Earth Science, 34(5): 1418–1432. https://doi.org/10.1007/s12583-022-1641-1
    Ramos, J., 2003. Using Tf-Idf to Determine Word Relevance in Document Queries. Proceedings of the First Instructional Conference on Machine Learning, 242(1): 29–48
    Schoenmackers, S., Etzioni, O., Weld, D. S., et al., 2010. Learning First-Order Horn Clauses from Web Text. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. October 9–11, 2010, Cambridge, Massachusetts. New York, ACM. 1088–1098. https://doi.org/10.5555/1870658.1870764
    Shi, L., Jianping, C., Jie, X., 2018. Prospecting Information Extraction by Text Mining Based on Convolutional Neural Networks―A Case Study of the Lala Copper Deposit, China. IEEE Access, 6: 52286–52297 doi: 10.1109/ACCESS.2018.2870203
    Singhal A. 2012. Introducing the Knowledge Graph: Things, not Strings. Google Blog. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
    Socher, R., Chen, D. Q., Manning, C. D., et al., 2013. Reasoning with Neural Tensor Networks for Knowledge Base Completion. Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 1. New York
    Sun, Z. Q., Deng, Z. H., Nie, J. Y., et al., 2019. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. arXiv: 1902.10197. https://arxiv.org/abs/1902.10197
    Wang, B., Wu, L., Li, W. J., et al., 2021. A Semi-Automatic Approach for Generating Geological Profiles by Integrating Multi-Source Data. Ore Geology Reviews, 134: 104190. https://doi.org/10.1016/j.oregeorev.2021.104190
    Wang, C. B., Ma, X. G., Chen, J. G., 2018. Ontology-Driven Data Integration and Visualization for Exploring Regional Geologic Time and Paleontological Information. Computers & Geosciences, 115: 12–19. https://doi.org/10.1016/j.cageo.2018.03.004
    Wang, C. C., Cheng, P. J., 2018. Translating Representations of Knowledge Graphs with Neighbors. SIGIR '18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. July 8–12, 2018, Ann Arbor. https://doi.org/10.1145/3209978.3210085
    Wang, D., Zou, L., Feng, Y. S., et al., 2013. S-Store: An Engine for Large RDF Graph Integrating Spatial Information. Database Systems for Advanced Applications. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37450-0_3
    Wang, S., Zhang, X. Y., Ye, P., et al., 2019. Geographic Knowledge Graph (GeoKG): A Formalized Geographic Knowledge Representation. ISPRS International Journal of Geo-Information, 8(4): 184. https://doi.org/10.3390/ijgi8040184
    Wei, Z. P., Su, J. L., Wang, Y., et al., 2019. A Novel Cascade Binary Tagging Framework for Relational Triple Extraction. arXiv: 1909.03227. https://arxiv.org/abs/1909.03227
    Wu, L. A., Xue, L., Li, C. L., et al., 2017. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data. ISPRS International Journal of Geo-Information, 6(6): 166. https://doi.org/10.3390/ijgi6060166
    Xu, H., Stenner, S. P., Doan, S., et al., 2010. MedEx: A Medication Information Extraction System for Clinical Narratives. Journal of the American Medical Informatics Association, 17(1): 19–24. https://doi.org/10.1197/jamia.M3378
    Yang, C. W., Huang, Q. Y., Li, Z. L., et al., 2017. Big Data and Cloud Computing: Innovation Opportunities and Challenges. International Journal of Digital Earth, 10(1): 13–53. https://doi.org/10.1080/17538947.2016.1239771
    Zaslavsky, I., Valentine, D., Richard, S., et al., 2017. EarthCube Data Discovery Hub: Enhancing, Curating and Finding Data across Multiple Geoscience Data Sources. AGU Fall Meeting, New Orleans
    Zhang, S. J., Boukamp, F., Teizer, J., 2015. Ontology-Based Semantic Modeling of Construction Safety Knowledge: Towards Automated Safety Planning for Job Hazard Analysis (JHA). Automation in Construction, 52: 29–41. https://doi.org/10.1016/j.autcon.2015.02.005
    Zhang, X. Y., Huang, Y., Zhang, C. J., et al., 2022. Geoscience Knowledge Graph (GeoKG): Development, Construction and Challenges. Transactions in GIS, 26(6): 2480–2494. https://doi.org/10.1111/tgis.12985
    Zhang, X. Y., Zhang, C. J., Wu, M. G., et al., 2020. Spatiotemporal Features Based Geographical Knowledge Graph Construction. Scientia Sinica (Informationis), 50(7): 1019–1032 (in Chinese with English Abstract) doi: 10.1360/SSI-2019-0269
    Zheng, K., Xie, M., Zhang, J., et al., 2022. A Knowledge Representation Model Based on the Geographic Spatiotemporal Process. International Journal of Geographical Information Science, 36(4): 674–691. https://doi.org/10.1080/13658816.2021.1962527
    Zhou, C. H., Wang, H., Wang, C. S., et al., 2021. Geoscience Knowledge Graph in the Big Data Era. Science China Earth Sciences, 64(7): 1105–1114. https://doi.org/10.1007/s11430-020-9750-4
    Zhou, P., Shi, W., Tian, J., et al., 2016. Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification. In: Erk, k., Smith, N. A., eds., Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, Berlin
    Zhu, Y. Q., Zhou, W. W., Xu, Y., et al., 2017. Intelligent Learning for Knowledge Graph towards Geological Data. Scientific Programming, 2017: 1–13. https://doi.org/10.1155/2017/5072427
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(229) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return