Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Fan Xiao, Qiuming Cheng, Weisheng Hou, Frederik P. Agterberg. Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit, Southern China by Weights-of-Evidence. Journal of Earth Science, 2025, 36(5): 2038-2057. doi: 10.1007/s12583-023-1822-6
Citation: Fan Xiao, Qiuming Cheng, Weisheng Hou, Frederik P. Agterberg. Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit, Southern China by Weights-of-Evidence. Journal of Earth Science, 2025, 36(5): 2038-2057. doi: 10.1007/s12583-023-1822-6

Three-Dimensional Prospectivity Modeling of Jinshan Ag-Au Deposit, Southern China by Weights-of-Evidence

doi: 10.1007/s12583-023-1822-6
More Information
  • Corresponding author: Fan Xiao, xiaofan3@mail.sysu.edu.cn
  • Received Date: 06 Dec 2022
  • Accepted Date: 31 Jan 2023
  • Available Online: 14 Oct 2025
  • Issue Publish Date: 30 Oct 2025
  • To comprehensively utilize the valuable geological map, exploration profile, borehole, and geochemical logging data and the knowledge on the formation of the Jinshan Ag-Au deposit for forecasting the exploration targets of concealed ore bodies, three-dimensional Mineral Prospectivity Modeling (MPM) of the deposit has been conducted using the weights-of-evidence (WofE) method. Conditional independence between evidence layers was tested, and the outline results using the prediction-volume (P-V) and Student's t-statistic methods for delineating favorable mineralization areas from continuous posterior probability map were critically compared. Four exploration targets delineated ultimately by the Student's t-statistic method for the discovery of minable ore bodies in each of the target areas were discussed in detail. The main conclusions include: (1) three-dimensional modeling of a deposit using multi-source reconnaissance data is useful for MPM in interpreting their relationships with known ore bodies; (2) WofE modeling can be used as a straightforward tool for integrating deposit model and reconnaissance data in MPM; (3) the Student's t-statistic method is more applicable in binarizing the continuous prospectivity map for exploration targeting than the P-V approach; and (4) two target areas within high potential to find undiscovered ore bodies were diagnosed to guide future near-mine exploration activities of the Jinshan deposit.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abedi, M., Norouzi, G. H., 2012. Integration of Various Geophysical Data with Geological and Geochemical Data to Determine Additional Drilling for Copper Exploration. Journal of Applied Geophysics, 83: 35–45. https://doi.org/10.1016/j.jappgeo.2012.05.003
    Afzal, P., Ahari, H. D., Omran, N. R., et al., 2013. Delineation of Gold Mineralized Zones Using Concentration-Volume Fractal Model in Qolqoleh Gold Deposit, NW Iran. Ore Geology Reviews, 55: 125–133. https://doi.org/10.1016/j.oregeorev.2013.05.005
    Afzal, P., Alghalandis, Y. F., Khakzad, A., et al., 2011. Delineation of Mineralization Zones in Porphyry Cu Deposits by Fractal Concentration-Volume Modeling. Journal of Geochemical Exploration, 108(3): 220–232
    Agterberg, F. P., 1974. Automatic Contouring of Geological Maps to Detect Target Areas for Mineral Exploration. Journal of the International Association for Mathematical Geology, 6(4): 373–395. https://doi.org/10.1007/bf02082358
    Agterberg, F. P., 1989. Computer Programs for Mineral Exploration. Science (New York, NY), 245(4913): 76–81. https://doi.org/10.1126/science.245.4913.76
    Agterberg, F. P., Bonham-Carter, G. F., 2005. Measuring the Performance of Mineral-Potential Maps. Natural Resources Research, 14(1): 1–17. https://doi.org/10.1007/s11053-005-4674-0
    Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q. M., et al., 1993. Weights of Evidence Modeling and Weighted Logistic Regression for Mineral Potential Mapping, In: Davis, J. C., Herzfeld, U. C., eds., Computers in Geology, 25 Years of Progress. Oxford University Press, Oxford
    Agterberg, F. P., Bonham-Carter, G. F., Wright, D. F., 1990. Statistical Pattern Integration for Mineral Exploration, In: Gaál, G., Merriam, D. F., eds., Computer Applications in Resource Estimation. Pergamon Press, Oxford. https://doi.org/10.1016/b978-0-08-037245-7.50006-8
    Agterberg, F. P., Cheng, Q. M., 2002. Conditional Independence Test for Weights-of-Evidence Modeling. Natural Resources Research, 11(4): 249–255. https://doi.org/10.1023/a:1021193827501
    Agterberg, F., 2011. A Modified Weights-of-Evidence Method for Regional Mineral Resource Estimation. Natural Resources Research, 20(2): 95–101. https://doi.org/10.1007/s11053-011-9138-0
    Apel, M., 2006. From 3D Geomodelling Systems towards 3D Geoscience Information Systems: Data Model, Query Functionality, and Data Management. Computers & Geosciences, 32(2): 222–229. https://doi.org/10.1016/j.cageo.2005.06.016
    Bonham-Carter, G. F., 1994. Geographic Information Systems for Geoscientists: Modeling with GIS, Computer Methods in the Geosciences. Pergamon, New York
    Cai, M. H., Zhan, M. G., Peng, S. B., et al., 2002. Study of Mesozoic Metallogenic Geological Setting and Dynamic Mechanism in Yunkai Area. Mineral Deposits, 21(3): 264–269 (in Chinese with English Abstract)
    Carranza, E. J. M., 2004. Weights of Evidence Modeling of Mineral Potential: A Case Study Using Small Number of Prospects, Abra, Philippines. Natural Resources Research, 13(3): 173–187. https://doi.org/10.1023/b:narr.0000046919.87758.f5
    Carranza, E. J. M., 2011. Editorial: Geocomputation of Mineral Exploration Targets. Computers & Geosciences, 37(12): 1907–1916. https://doi.org/10.1016/j.cageo.2011.11.009
    Carranza, E. J. M., Laborte, A. G., 2015. Random Forest Predictive Modeling of Mineral Prospectivity with Small Number of Prospects and Data with Missing Values in Abra (Philippines). Computers & Geosciences, 74: 60–70. https://doi.org/10.1016/j.cageo.2014.10.004
    Chen, Y. L., Wu, W., 2016. A Prospecting Cost-Benefit Strategy for Mineral Potential Mapping Based on ROC Curve Analysis. Ore Geology Reviews, 74: 26–38. https://doi.org/10.1016/j.oregeorev.2015.11.011
    Cheng, Q. M., 2015. BoostWofE: A New Sequential Weights of Evidence Model Reducing the Effect of Conditional Dependency. Mathematical Geosciences, 47(5): 591–621. https://doi.org/10.1007/s11004-014-9578-2
    Cheng, Q. M., Agterberg, F. P., 1999. Fuzzy Weights of Evidence Method and Its Application in Mineral Potential Mapping. Natural Resources Research, 8(1): 27–35. https://doi.org/10.1023/a:1021677510649
    Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The Separation of Geochemical Anomalies from Background by Fractal Methods. Journal of Geochemical Exploration, 51(2): 109–130. https://doi.org/10.1016/0375-6742(94)90013-2
    Chung, C. F., 1977. An Application of Discriminant Analysis for the Evaluation of Mineral Potential, In: Ramani, R. V., ed., Application of Computer Methods in the MineralIndustry, Proceedings of the 14th APCOM Symposium, Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers, New York
    de Kemp, E. A., 2000. 3-D Visualization of Structural Field Data: Examples from the Archean Caopatina Formation, Abitibi Greenstone Belt, Québec, Canada. Computers & Geosciences, 26(5): 509–530. https://doi.org/10.1016/s0098-3004(99)00142-9
    de Kemp, E. A., Monecke, T., Sheshpari, M., et al., 2011. 3D GIS as a Support for Mineral Discovery. Geochemistry-Exploration Environment Analysis, 11(2): 117–128
    de Kemp, E. A., Sprague, K. B., 2003. Interpretive Tools for 3-D Structural Geological Modeling Part Ⅰ: Bézier-Based Curves, Ribbons and Grip Frames. Geoinformatica, 7(1): 55–71. https://doi.org/10.1023/a:1022822227691
    Deng, H., Zheng, Y., Chen, J., et al., 2020. Deep Learning-Based 3D Prediction Model for the Dayingezhuang Gold Deposit, Shandong Province. Acta Geoscientica Sinica, 41(2): 157–165 (in Chinese with English Abstract)
    Deng, M. F., 2009. A Conditional Dependence Adjusted Weights of Evidence Model. Natural Resources Research, 18(4): 249–258. https://doi.org/10.1007/s11053-009-9101-5
    DeWolfe, Y. M., Gibson, H. L., Richardson, D., 2018. 3D Reconstruction of Volcanic and Ore-Forming Environments of a Giant VMS System: A Case Study from the Kidd Creek Mine, Canada. Ore Geology Reviews, 101: 532–555. https://doi.org/10.1016/j.oregeorev.2018.07.008
    Ding, R. X., Yu, P. P., Hu, G. M., et al., 2018. Thermochornology of Pangxidong Fault Zone in Southern Section of Qin-Hang Metallogenic Belt. Earth Science, 43(6): 1830–1838 (in Chinese with English Abstract)
    Ding, R. X., Zou, H. P., Lao, M. J., et al., 2015. Indosinian Activity Records of Ductile Shear Zones in Southern Segment of Qin-Hang Combined Belt: A Case Study of Fangcheng-Lingshan Fault Zone. Earth Science Frontiers, 22(2): 79–85 (in Chinese with English Abstract)
    Ford, A., Miller, J. M., Mol, A. G., 2016. A Comparative Analysis of Weights of Evidence, Evidential Belief Functions, and Fuzzy Logic for Mineral Potential Mapping Using Incomplete Data at the Scale of Investigation. Natural Resources Research, 25(1): 19–33. https://doi.org/10.1007/s11053-015-9263-2
    Fu, G. M., Lü, Q. T., Yan, J. Y., et al., 2021. 3D Mineral Prospectivity Modeling Based on Machine Learning: A Case Study of the Zhuxi Tungsten Deposit in Northeastern Jiangxi Province, South China. Ore Geology Reviews, 131: 104010. https://doi.org/10.1016/j.oregeorev.2021.104010
    Geng, W. H., Li, B. P., 1993. Metallogenic Regularity and Exploring Indicator for Altered Rock Type Au-Ag Deposits in Southeastern Guangxi, China. Mineral Resources and Geology, 7(3): 183–187 (in Chinese with English Abstract)
    Gholampour, O., Hezarkhani, A., Maghsoudi, A., et al., 2019. Application of Sequential Gaussian Simulation and Concentration-Volume Fractal Model to Delineate Alterations in Hypogene Zone of Miduk Porphyry Copper Deposit, SE Iran. Journal of African Earth Sciences, 150: 389–400. https://doi.org/10.1016/j.jafrearsci.2018.07.002
    Harris, D., Zurcher, L., Stanley, M., et al., 2003. A Comparative Analysis of Favorability Mappings by Weights of Evidence, Probabilistic Neural Networks, Discriminant Analysis, and Logistic Regression. Natural Resources Research, 12(4): 241–255. https://doi.org/10.1023/b:narr.0000007804.27450.e8
    Huang, X., Zheng, Y., Yu, P. P., et al., 2021. Mass Transfer during Alteration and Ore-Forming Geological Process of the Pangxidong-Jinshan Ag-Au Ore-Field in the Yunkai Area. Geochimica, 50(4): 365–380 (in Chinese with English Abstract)
    Jiao, Q. Q., Wang, L. X., Deng, T., et al., 2017. Origin of the Ore-Forming Fluids and Metals of the Hetai Goldfield in Guangdong Province of South China: Constraints from C-H-O-S-Pb-He-Ar Isotopes. Ore Geology Reviews, 88: 674–689. https://doi.org/10.1016/j.oregeorev.2017.04.005
    Karaman, M., Kumral, M., Yildirim, D. K., et al., 2021. Delineation of the Porphyry-Skarn Mineralized Zones (NW Turkey) Using Concentration-Volume Fractal Model. Geochemistry, 81(4): 125802. https://doi.org/10.1016/j.chemer.2021.125802
    Kianoush, P., Mohammadi, G., Hosseini, S. A., et al., 2022. Compressional and Shear Interval Velocity Modeling to Determine Formation Pressures in an Oilfield of SW Iran. Journal of Mining and Environment, 13(3): 851–871. https://doi.org/10.2139/ssrn.4316010
    Kreuzer, O. P., Yousefi, M., Nykänen, V., 2020. Introduction to the Special Issue on Spatial Modelling and Analysis of Ore-Forming Processes in Mineral Exploration Targeting. Ore Geology Reviews, 119: 103391. https://doi.org/10.1016/j.oregeorev.2020.103391
    Lawley, C. J. M., Tschirhart, V., Smith, J. W., et al., 2021. Prospectivity Modelling of Canadian Magmatic Ni (±Cu±Co±PGE) Sulphide Mineral Systems. Ore Geology Reviews, 132: 103985. https://doi.org/10.1016/j.oregeorev.2021.103985
    Lee, C., Oh, H. J., Cho, S. J., et al., 2019. Three-Dimensional Prospectivity Mapping of Skarn-Type Mineralization in the Southern Taebaek Area, Korea. Geosciences Journal, 23(2): 327–339. https://doi.org/10.1007/s12303-018-0035-y
    Li, H., Li, X. H., Yuan, F., et al., 2022. Knowledge-Driven Based Three-Dimensional Prospectivity Modeling of Fe-Cu Skarn Deposits: A Case Study of the Fanchang Volcanic Basin, Anhui Province, Eastern China. Ore Geology Reviews, 149: 105065. https://doi.org/10.1016/j.oregeorev.2022.105065
    Li, N., Song, X. L., Li, C. B., et al., 2019. 3D Geological Modeling for Mineral System Approach to GIS-Based Prospectivity Analysis: Case Study of an MVT Pb-Zn Deposit. Natural Resources Research, 28(3): 995–1019. https://doi.org/10.1007/s11053-018-9429-9
    Li, R. X., Wang, G. W., Carranza, E. J. M., 2016. GeoCube: A 3D Mineral Resources Quantitative Prediction and Assessment System. Computers & Geosciences, 89: 161–173. https://doi.org/10.1016/j.cageo.2016.01.012
    Li, S., Chen, J. P., Xiang, J., 2020. Applications of Deep Convolutional Neural Networks in Prospecting Prediction Based on Two-Dimensional Geological Big Data. Neural Computing and Applications, 32(7): 2037–2053. https://doi.org/10.1007/s00521-019-04341-3
    Li, X. H., Yuan, F., Zhang, M. M., et al., 2015. Three-Dimensional Mineral Prospectivity Modeling for Targeting of Concealed Mineralization within the Zhonggu Iron Orefield, Ningwu Basin, China. Ore Geology Reviews, 71: 633–654. https://doi.org/10.1016/j.oregeorev.2015.06.001
    Li, X. H., Yuan, F., Zhang, M. M., et al., 2019. 3D Computational Simulation-Based Mineral Prospectivity Modeling for Exploration for Concealed Fe-Cu Skarn-Type Mineralization within the Yueshan Orefield, Anqing District, Anhui Province, China. Ore Geology Reviews, 105: 1–17. https://doi.org/10.1016/j.oregeorev.2018.12.003
    Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163–166 (in Chinese with English Abstract)
    Lin, Z. W., Zhou, Y. Z., Qin, Y., et al., 2017. Ore-Controlling Structure Analysis of Pangxidong-Jinshan Silver-Gold Orefield, Southern Qin-Hang Belt: Implications for Further Exploration. Mineral Deposits, 36(4): 866–878 (in Chinese with English Abstract)
    Lindsay, M. D., Jessell, M. W., Ailleres, L., et al., 2013. Geodiversity: Exploration of 3D Geological Model Space. Tectonophysics, 594: 27–37. https://doi.org/10.1016/j.tecto.2013.03.013
    Liu, T. F., 1990. Geological Characteristics and Concentration Regularity of Jinshan Au-Ag Deposit, Guangxi Autonomous Region, Guangxi. Gold, 11(8): 1–7 (in Chinese with English Abstract)
    Liu, Y., Zhou, K. F., Zhang, N. N., et al., 2018. Maximum Entropy Modeling for Orogenic Gold Prospectivity Mapping in the Tangbale-Hatu Belt, Western Junggar, China. Ore Geology Reviews, 100: 133–147. https://doi.org/10.1016/j.oregeorev.2017.04.029
    Lü, W. C., Liu, X. Y., Chen, Q., et al., 2014. Geochemical Characteristics of REE of Pangxidong Electrum Deposit of Guangdong Province. Metal Mine, 3: 108–110 (in Chinese with English Abstract)
    Mahdizadeh, M., Afzal, P., Eftekhari, M., et al., 2022. Geomechanical Zonation Using Multivariate Fractal Modeling in Chadormalu Iron Mine, Central Iran. Bulletin of Engineering Geology and the Environment, 81(1): 59. https://doi.org/10.1007/s10064-021-02558-y
    Mallet, J. L., 1992. Discrete Smooth Interpolation in Geometric Modelling. Computer-Aided Design, 24(4): 178–191. https://doi.org/10.1016/0010-4485(92)90054-e
    Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267–294. https://doi.org/10.1007/s00126-012-0446-z
    Mao, X. C., Ren, J., Liu, Z. K., et al., 2019. Three-Dimensional Prospectivity Modeling of the Jiaojia-Type Gold Deposit, Jiaodong Peninsula, Eastern China: A Case Study of the Dayingezhuang Deposit. Journal of Geochemical Exploration, 203: 27–44. https://doi.org/10.1016/j.gexplo.2019.04.002
    McMillan, M., Haber, E., Peters, B., et al., 2021. Mineral Prospectivity Mapping Using a VNet Convolutional Neural Network. The Leading Edge, 40(2): 99–105
    Mirzaie, M., Afzal, P., Adib, A., et al., 2020. Detection of Zones Based on Ore and Gangue Using Fractal and Multivariate Analysis in Chah Gaz Iron Ore Deposit, Central Iran. Journal of Mining and Environment, 11(2): 453–466
    Mohammadpour, M., Bahroudi, A., Abedi, M., 2021. Three Dimensional Mineral Prospectivity Modeling by Evidential Belief Functions, a Case Study from Kahang Porphyry Cu Deposit. Journal of African Earth Sciences, 174: 104098. https://doi.org/10.1016/j.jafrearsci.2020.104098
    Nielsen, S., Partington, G., Franey, D., et al., 2019. 3D Mineral Potential Modelling of Gold Distribution at the Tampia Gold Deposit. Ore Geology Reviews, 109: 276–289
    Nykänen, V., Karinen, T., Niiranen, T., et al., 2011. Modelling the Gold Potential of Central Lapland, Northern Finland. Geological Survey of Finland, Special Paper, 49: 71–82
    Nykänen, V., Lahti, I., Niiranen, T., et al., 2015. Receiver Operating Characteristics (ROC) as Validation Tool for Prospectivity Models—A Magmatic Ni-Cu Case Study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71: 853–860. https://doi.org/10.1016/j.oregeorev.2014.09.007
    Olierook, H. K., Scalzo, R., Kohn, D., et al., 2021. Bayesian Geological and Geophysical Data Fusion for the Construction and Uncertainty Quantification of 3D Geological Models. Geoscience Frontiers, 12: 479–493
    Paganelli, F., Richards, J. P., Grunsky, E. C., 2002. Integration of Structural, Gravity, and Magnetic Data Using the Weights of Evidence Method as a Tool for Kimberlite Exploration in the Buffalo Head Hills, Northern Central Alberta, Canada. Natural Resources Research, 11(3): 219–236. https://doi.org/10.1023/a:1019936006314
    Pan, G. C., Harris, D. P., 1992. Estimating a Favorability Equation for the Integration of Geodata and Selection of Mineral Exploration Targets. Mathematical Geology, 24(2): 177–202. https://doi.org/10.1007/bf00897031
    Pan, J. Y., Zhang, Q., Zhang, B. G., et al., 1996. Metallogenic Regularity of Gold and Silver Deposits in Western Guangdong. Mineral Deposits, 15(3): 66–75 (in Chinese with English Abstract)
    Parsa, M., Carranza, E. J. M., Ahmadi, B., 2022. Deep GMDH Neural Networks for Predictive Mapping of Mineral Prospectivity in Terrains Hosting Few but Large Mineral Deposits. Natural Resources Research, 31(1): 37–50. https://doi.org/10.1007/s11053-021-09984-5
    Payne, C. E., Cunningham, F., Peters, K. J., et al., 2015. From 2D to 3D: Prospectivity Modelling in the Taupo Volcanic Zone, New Zealand. Ore Geology Reviews, 71: 558–577. https://doi.org/10.1016/j.oregeorev.2014.11.013
    Perrouty, S., Lindsay, M. D., Jessell, M. W., et al., 2014. 3D Modeling of the Ashanti Belt, Southwest Ghana: Evidence for a Litho-Stratigraphic Control on Gold Occurrences within the Birimian Sefwi Group. Ore Geology Reviews, 63: 252–264. https://doi.org/10.1016/j.oregeorev.2014.05.011
    Pirajno, F., Bagas, L., 2002. Gold and Silver Metallogeny of the South China Fold Belt: A Consequence of Multiple Mineralizing Events? Ore Geology Reviews, 20(3/4): 109–126. https://doi.org/10.1016/s0169-1368(02)00067-7
    Porwal, A. K., Kreuzer, O. P., 2010. Introduction to the Special Issue: Mineral Prospectivity Analysis and Quantitative Resource Estimation. Ore Geology Reviews, 38(3): 121–127. https://doi.org/10.1016/j.oregeorev.2010.06.002
    Porwal, A., Carranza, E. J. M., Hale, M., 2003. Knowledge-Driven and Data-Driven Fuzzy Models for Predictive Mineral Potential Mapping. Natural Resources Research, 12(1): 1–25. https://doi.org/10.1023/a:1022693220894
    Porwal, A., Carranza, E. J. M., Hale, M., 2006. A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping. Natural Resources Research, 15(1): 1–14. https://doi.org/10.1007/s11053-006-9012-7
    Qian, J. P., Xie, B. W., Chen, H. Y., et al., 2011. Analysis of Ore-Controlling Structure and Prospecting of Tectono-Geochemistry in Jinshan Au-Ag Mining Area, Guangxi. Geoscience, 25(3): 531–544 (in Chinese with English Abstract)
    Raines, G. L., 1999. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States. Natural Resources Research, 8(4): 257–276. https://doi.org/10.1023/a:1021602316101
    Schaeben, H., 2014. A Mathematical View of Weights-of-Evidence, Conditional Independence, and Logistic Regression in Terms of Markov Random Fields. Mathematical Geosciences, 46(6): 691–709. https://doi.org/10.1007/s11004-013-9513-y
    Singer, D. A., Kouda, R., 1996. Application of a Feedforward Neural Network in the Search for Kuroko Deposits in the Hokuroku District, Japan. Mathematical Geology, 28(8): 1017–1023. https://doi.org/10.1007/bf02068587
    Souza Filho, C. R., Sawatzky, D. L., Raines, G. L., et al., 2017. Spatial Data Modeler 5 (ArcSDM 5): ArcGIS Geoprocessing Tools for Spatial Data Modelling Using Weights of Evidence, Logistic Regression, Fuzzy Logic and Neural Networks, https://github.com/gtkfi/ArcSDM/wiki
    Sprague, K., de Kemp, E., Wong, W., et al., 2006. Spatial Targeting Using Queries in a 3-D GIS Environment with Application to Mineral Exploration. Computers & Geosciences, 32(3): 396–418. https://doi.org/10.1016/j.cageo.2005.07.008
    Sun, H. S., Cao, X. Z., Zhang, K., 2005. Characteristics of Ore-Controlling Faults and Rules of Ore-Controlling Faults in Pangxidong Ag(Au) Deposit, Northwestern Guangdong. Conributions to Geology and Mineral Resources Research, 20(3): 161–165 (in Chinese with English Abstract)
    Sun, T., Wu, K. X., Chen, L. K., et al., 2017. Joint Application of Fractal Analysis and Weights-of-Evidence Method for Revealing the Geological Controls on Regional-Scale Tungsten Mineralization in Southern Jiangxi Province, China. Minerals, 7: 243. https://doi.org/10.3390/min7120243
    Taylor, B. E., de Kemp, E., Grunsky, E., et al., 2014. Three-Dimensional Visualization of the Archean Horne and Quemont Au-Bearing Volcanogenic Massive Sulfide Hydrothermal Systems, Blake River Group, Quebec. Economic Geology, 109(1): 183–203. https://doi.org/10.2113/econgeo.109.1.183
    The Sixth Geological Team of Guangxi (TSGTG), 1984. Topographic and Geological Map of Jinshan Ag-Au Mining Area in Bobai County, Guangxi. Guangxi Zhuang Autonomous Region, Guigang
    Thiart, C., Bonham-Carter, G. F., Agterberg, F. P., 2003. Conditional Independence in Weights-of-Rvidence: Application of an Improved Test. Proceedings of the 2003 Annual IAMG conference, Portsmouth, England, CD-ROM
    Thiart, C., Bonham-Carter, G. F., Agterberg, F. P., et al., 2005. An Application of the New Omnibus Test for Conditional Independence in Weights of Evidence Modelling, In: Harris, J. R., ed., GIS Applications in the Earth Sciences. Geological Association of Canada Special Publication, Toronto
    Wang, G. W., Carranza, E. J. M., Zuo, R. G., et al., 2012. Mapping of District-Scale Potential Targets Using Fractal Models. Journal of Geochemical Exploration, 122: 34–46. https://doi.org/10.1016/j.gexplo.2012.06.013
    Wang, G. W., Li, R. X., Carranza, E. J. M., et al., 2015. 3D Geological Modeling for Prediction of Subsurface Mo Targets in the Luanchuan District, China. Ore Geology Reviews, 71: 592–610. https://doi.org/10.1016/j.oregeorev.2015.03.002
    Wang, H. N., Yang, J. W., Chen, H. Q., 1992. Geochemical Studies of the Pangxidong Silver Deposit in Guangdong Province. Mineral Deposits, 11(2): 179–187 (in Chinese with English Abstract)
    Wang, W. L., Zhao, J., Cheng, Q. M., et al., 2012. Tectonic-Geochemical Exploration Modeling for Characterizing Geo-Anomalies in Southeastern Yunnan District, China. Journal of Geochemical Exploration, 122: 71–80. https://doi.org/10.1016/j.gexplo.2012.06.017
    Wang, Y., Chen, J. P., Jia, D. H., 2020. Three-Dimensional Mineral Potential Mapping for Reducing Multiplicity and Uncertainty: Kaerqueka Polymetallic Deposit, QingHai Province, China. Natural Resources Research, 29(1): 365–393. https://doi.org/10.1007/s11053-019-09539-9
    Wang, Z. W., Zhou, Y. Z., 2002a. Geochemistry Character of Pangxidong-Jinshan Silver-Gold Deposit and Its Mineral Resource Evaluation Yunkai Area, South China, Beijing (in Chinese with English Abstract)
    Wang, Z. W., Zhou, Y. Z., 2002b. Geological Characteristics and Genesis of the Pangxidong-Jinshan Ag-Au Deopsit in Yunkai Terrain, South China. Geotectonic et Metallogenia, 26(2): 193–198 (in Chinese with English Abstract)
    Wang, Z. Y., Wang, J. C., Yin, Y. Q., et al., 1995. Metallogenic Law and Model of Au-Ag Deposits in Southeastern Guangxi. Mineral Resources and Geolgy, 9(4): 257–262 (in Chinese with English Abstract)
    Xia, J. L., Huang, G. C., Ding, L. X., et al., 2018. Zircon U-Pb Dating, Petrogenesis and Tectonic Background of the Early Paleozoic Nintan Gneisis Granitic Pluton, in the Yunkai Terran. Earth Science, 43(7): 2276–2293 (in Chinese with English Abstract)
    Xiang, J., Xiao, K. Y., Carranza, E. J. M., et al., 2020. 3D Mineral Prospectivity Mapping with Random Forests: A Case Study of Tongling, Anhui, China. Natural Resources Research, 29(1): 395–414. https://doi.org/10.1007/s11053-019-09578-2
    Xiao, F., Chen, J. G., Agterberg, F., et al., 2014. Element Behavior Analysis and Its Implications for Geochemical Anomaly Identification: A Case Study for Porphyry Cu-Mo Deposits in Eastern Tianshan, China. Journal of Geochemical Exploration, 145: 1–11. https://doi.org/10.1016/j.gexplo.2014.04.008
    Xiao, F., Chen, J. G., Hou, W. S., et al., 2017. Identification and Extraction of Ag-Au Mineralization Associated Geochemical Anomaly in Pangxitong District, Southern Part of the Qinzhou-Hangzhou Metallogenic Belt, China. Acta Petrologica Sinica, 33(3): 779–790 (in Chinese with English Abstract)
    Xiao, F., Chen, J. G., Hou, W. S., et al., 2018. A Spatially Weighted Singularity Mapping Method Applied to Identify Epithermal Ag and Pb-Zn Polymetallic Mineralization Associated Geochemical Anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration, 189: 122–137. https://doi.org/10.1016/j.gexplo.2017.03.017
    Xiao, F., Chen, J. G., Zhang, Z. Y., et al., 2012. Singularity Mapping and Spatially Weighted Principal Component Analysis to Identify Geochemical Anomalies Associated with Ag and Pb-Zn Polymetallic Mineralization in Northwest Zhejiang, China. Journal of Geochemical Exploration, 122: 90–100. https://doi.org/10.1016/j.gexplo.2012.04.010
    Xiao, F., Chen, W. L., Wang, J., et al., 2022. A Hybrid Logistic Regression: Gene Expression Programming Model and Its Application to Mineral Prospectivity Mapping. Natural Resources Research, 31(4): 2041–2064. https://doi.org/10.1007/s11053-021-09918-1
    Xiao, F., Wang, K. Q., Hou, W. S., et al., 2020a. Identifying Geochemical Anomaly through Spatially Anisotropic Singularity Mapping: A Case Study from Silver-Gold Deposit in Pangxidong District, SE China. Journal of Geochemical Exploration, 210: 106453. https://doi.org/10.1016/j.gexplo.2019.106453
    Xiao, F., Wang, K. Q., Hou, W. S., et al., 2020b. Prospectivity Mapping for Porphyry Cu-Mo Mineralization in the Eastern Tianshan, Xinjiang, Northwestern China. Natural Resources Research, 29(1): 89–113. https://doi.org/10.1007/s11053-019-09486-5
    Xiao, F., Wang, Y., Zhou, Y. Z., 2020c. Determining Thresholds of Arsenic and Mercury in Stream Sediment for Mapping Natural Toxic Element Anomaly Using Data-Driven Models: A Comparative Study on Probability Plots and Fractal Methods. Arabian Journal of Geosciences, 13(18): 915. https://doi.org/10.1007/s12517-020-05917-3
    Xiao, K. Y., Li, N., Porwal, A., et al., 2015. GIS-Based 3D Prospectivity Mapping: A Case Study of Jiama Copper-Polymetallic Deposit in Tibet, China. Ore Geology Reviews, 71: 611–632. https://doi.org/10.1016/j.oregeorev.2015.03.001
    Xu, D. M., Lin, Z. Y., Long, W. G., et al., 2012. Research History and Current Situation of Qinzhou-Hangzhou Metallogenic Belt, South China. Geology and Mineral Resources of South China, 28(4): 277–289 (in Chinese with English Abstract)
    Yang, M. G., Mei, Y. W., 1997. Charateristics of Geology and Metallization in the Qinzhou-Hangzhou Paleoplate Juncture. Geology and Mineral Resources of South China, 3: 52–59 (in Chinese with English Abstract)
    Yin, B. J., Zuo, R. G., Sun, S. Q., 2023. Mineral Prospectivity Mapping Using Deep Self-Attention Model. Natural Resources Research, 32(1): 37–56. https://doi.org/10.1007/s11053-022-10 142-8 doi: 10.1007/s11053-022-10142-8
    Yousefi, M., Carranza, E. J. M., 2015a. Fuzzification of Continuous-Value Spatial Evidence for Mineral Prospectivity Mapping. Computers & Geosciences, 74: 97–109. https://doi.org/10.1016/j.cageo.2014.10.014
    Yousefi, M., Carranza, E. J. M., 2015b. Prediction-Area (P-A) Plot and C-A Fractal Analysis to Classify and Evaluate Evidential Maps for Mineral Prospectivity Modeling. Computers & Geosciences, 79: 69–81. https://doi.org/10.1016/j.cageo.2015.03.007
    Yu, X. T., Xiao, F., Zhou, Y. Z., et al., 2019. Application of Hierarchical Clustering, Singularity Mapping, and Kohonen Neural Network to Identify Ag-Au-Pb-Zn Polymetallic Mineralization Associated Geochemical Anomaly in Pangxidong District. Journal of Geochemical Exploration, 203: 87–95
    Yu, Z. B., Liu, B. L., Xie, M. A., et al., 2022.3D Mineral Prospectivity Mapping of Zaozigou Gold Deposit, West Qinling, China: Deep Learning-Based Mineral Prediction. Minerals, 12(11): 1382. https://doi.org/10.3390/min12111382
    Yuan, F., Li, X. H., Zhang, M. M., et al., 2014. Three-Dimensional Weights of Evidence-Based Prospectivity Modeling: A Case Study of the Baixiangshan Mining Area, Ningwu Basin, Middle and Lower Yangtze Metallogenic Belt, China. Journal of Geochemical Exploration, 145: 82–97. https://doi.org/10.1016/j.gexplo.2014.05.012
    Zeng, C. Y., Ding, R. X., Li, H. Z., et al., 2015. Analysis of X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry of Pangxidong Composite Granitoid Pluton and Its Implications for Magmatic Differentiation. Spectroscopy and Spectral Analysis, 35(11): 3187–3191 (in Chinese with English Abstract)
    Zhang, D. J., Agterberg, F., Cheng, Q. M., et al., 2014. A Comparison of Modified Fuzzy Weights of Evidence, Fuzzy Weights of Evidence, and Logistic Regression for Mapping Mineral Prospectivity. Mathematical Geosciences, 46(7): 869–885. https://doi.org/10.1007/s11004-013-9496-8
    Zhang, K. J., Cai, J. X., 2009. NE-SW-Trending Hepu-Hetai Dextral Shear Zone in Southern China: Penetration of the Yunkai Promontory of South China into Indochina. Journal of Structural Geology, 31(7): 737–748. https://doi.org/10.1016/j.jsg.2009.04.012
    Zhang, Q. P., Chen, J. P., Xu, H., et al., 2022. Three-Dimensional Mineral Prospectivity Mapping by XGBoost Modeling: A Case Study of the Lannigou Gold Deposit, China. Natural Resources Research, 31(3): 1135–1156. https://doi.org/10.1007/s11053-022-10054-7
    Zhang, S., Carranza, E. J. M., Wei, H. T., et al., 2021. Data-Driven Mineral Prospectivity Mapping by Joint Application of Unsupervised Convolutional Auto-Encoder Network and Supervised Convolutional Neural Network. Natural Resources Research, 30(2): 1011–1031. https://doi.org/10.1007/s11053-020-09789-y
    Zhang, Z. J., Zuo, R. G., Xiong, Y. H., 2016. A Comparative Study of Fuzzy Weights of Evidence and Random Forests for Mapping Mineral Prospectivity for Skarn-Type Fe Deposits in the Southwestern Fujian Metallogenic Belt, China. Science China Earth Sciences, 59(3): 556–572. https://doi.org/10.1007/s11430-015-5178-3
    Zheng, W., Mao, J. W., Pirajno, F., et al., 2015. Geochronology and Geochemistry of the Shilu Cu-Mo Deposit in the Yunkai Area, Guangdong Province, South China and Its Implication. Ore Geology Reviews, 67: 382–398. https://doi.org/10.1016/j.oregeorev.2014.12.009
    Zheng, Y., Zhou, Y. Z., Wang, Y. J., et al., 2016. A Fluid Inclusion Study of the Hetai Goldfield in the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, South China. Ore Geology Reviews, 73: 346–353. https://doi.org/10.1016/j.oregeorev.2014.09.008
    Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2): 51–67. https://doi.org/10.1016/s0012-821x(01)00595-7
    Zhou, Y. Z., Li, X. Y., Zheng, Y., et al., 2017. Geological Settings and Metallogenesis of Qinzhou Bay-Hangzhou Bay Orogenic Juncture Belt, South China. Acta Petrologica Sinica, 33(3): 667–681 (in Chinese with English Abstract)
    Zhou, Y. Z., Zheng, Y., Zeng, C. Y., et al., 2015. On the Understanding of Qinzhou Bay-Hangzhou Bay Metallogenic Belt, South China. Earth Science Frontiers, 22(2): 1–6 (in Chinese with English Abstract)
    Zuo, R. G., Carranza, E. J. M., 2011. Support Vector Machine: A Tool for Mapping Mineral Prospectivity. Computers & Geosciences, 37(12): 1967–1975. https://doi.org/10.1016/j.cageo.2010.09.014
    Zuo, R. G., Cheng, Q. M., Agterberg, F. P., et al., 2009. Application of Singularity Mapping Technique to Identify Local Anomalies Using Stream Sediment Geochemical Data, a Case Study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration, 101(3): 225–235. https://doi.org/10.1016/j.gexplo.2008.08.003
    Zuo, R. G., Luo, Z. J., Xiong, Y. H., et al., 2022. A Geologically Constrained Variational Autoencoder for Mineral Prospectivity Mapping. Natural Resources Research, 31(3): 1121–1133. https://doi.org/10.1007/s11053-022-10050-x
    Zuo, R. G., Xu, Y., 2023. Graph Deep Learning Model for Mapping Mineral Prospectivity. Mathematical Geosciences, 55(1): 1–21. https://doi.org/10.1007/s11004-022-10015-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views(8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return