Citation: | Zhengzhe Fan, Xian Chen, Dehui Zhang, Hongqi Yuan. Mechanism of Crust Growth Constrained by Back-Calculated U/Pb Ratios of the New Continental Crust. Journal of Earth Science, 2025, 36(5): 1892-1905. doi: 10.1007/s12583-023-1830-6 |
The mechanism of continental crust growth remains ambiguous. A key constraint is determining which tectonic settings were involved in the formation of the new continental crust. Because the basalts formed in intraplate (OIB, mean U/Pb = ~0.37 ± 0.11) and subduction (IAB, mean U/Pb = ~0.10 ± 0.06) settings have distinct U/Pb ratios, thus we back-calculate the present-day U/Pb ratios of the New Continental crust source [(U/Pb)nc] based on our zircon-Hf and published whole rock-Pb isotope compositions of the Wulaga Ⅰ-type granite to unfold the mechanism of the crust growth in the Lesser Xing'an Range (LXR), of the eastern Central Asian orogenic belt (CAOB). The Wulaga granodiorite porphyry yields zircon U-Pb ages of 103 ± 1 Ma with
Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x |
AQSIQ (Administration of Quality Supervision, Inspection and Quarantine) and SAC (Standardization Administration of China), 2010. Methods for Chemical Analysis of Silicate Rocks: Parts 28 and 30 (GB/T 14506)(in Chinese) |
Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243–258. https://doi.org/10.1016/s0012-821x(97)00040-x |
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63–114. https://doi.org/10.1016/b978-0-444-42148-7.500 08-3 doi: 10.1016/b978-0-444-42148-7.50008-3 |
Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134: 304–316. https://doi.org/10.1016/j.lithos.2011.09.013 |
Cawood, P. A., Hawkesworth, C. J., Pisarevsky, S. A., et al., 2018. Geological Archive of the Onset of Plate Tectonics. Philos. Trans. A Math Phys. Eng. Sci. , 376(2132): 20170405. https://doi.org/10.1098/rsta.2017.0405 |
Chen, X. A., Liu, J. J., Carranza, E. J. M., et al., 2019. Geology, Geochemistry, and Geochronology of the Cuihongshan Fe-Polymetallic Deposit, Heilongjiang Province, NE China. Geological Journal, 54(3): 1254–1278. https://doi.org/10.1002/gj.3224 |
Davidson, J. P., Arculus, R. J., 2006. The Significance of Phanerozoic Arc Magmatism in Generating Continental Crust. In: Brown, M., Rushmer, T., eds., Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge, 135–172 |
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0 |
Delavault, H., Dhuime, B., Hawkesworth, C. J., et al., 2016. Tectonic Settings of Continental Crust Formation: Insights from Pb Isotopes in Feldspar Inclusions in Zircon. Geology, 44(10): 819–822. https://doi.org/10.1130/g38117.1 |
Deng, J. F., Luo, Z. H., Su, S. G., et al., 2004. Petrogenesis, Tectonic Setting and Metallogenesis. Geological Publishing House, Beijing. 33–34 (in Chinese) |
Dew, R. E. C., Nachtergaele, S., Collins, A. S., et al., 2018. Data Analysis of the U-Pb Geochronology and Lu-Hf System in Zircon and Whole-Rock Sr, Sm-Nd and Pb Isotopic Systems for the Granitoids of Thailand. Data in Brief, 21: 1794–1809. https://doi.org/10.1016/j.dib.2018.10.176 |
Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014): 154–155. https://doi.org/10.1126/science.1201245 |
Dobretsov, N. L., Buslov, M. M., Vernikovsky, V. A., 2003. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-Up of Rodinia. Gondwana Research, 6(2): 143–159. https://doi.org/10.1016/s1342-937x(05)70966-7 |
Ducea, M. N., Saleeby, J. B., Bergantz, G., 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43: 299–331. https://doi.org/10.1146/annurev-earth-060614-105049 |
Fan, W. M., Guo, F., Wang, Y. J., et al., 2003. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China. Journal of Volcanology and Geothermal Research, 121(1/2): 115–135. https://doi.org/10.1016/s0377-0273(02)00415-8 |
Fisher, C. M., Vervoort, J. D., DuFrane, S. A., 2014. Accurate Hf Isotope Determinations of Complex Zircons Using the "Laser Ablation Split Stream" Method. Geochemistry, Geophysics, Geosystems, 15(1): 121–139. https://doi.org/10.1002/2013gc004962 |
Gale, A., Dalton, C. A., Langmuir, C. H., et al., 2013. The Mean Composition of Ocean Ridge Basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518. https://doi.org/10.1029/2012gc004334 |
Gao, S., Liu, X. M., Yuan H. L., et al., 2002. Determination of Forty Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 26(2): 181–196. https://doi.org/10.1111/j.1751-908x.2002.tb00886.x |
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897. https://doi.org/10.1038/nature03162 |
Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2007. Mineralization Ages and Geodynamic Implications of Porphyry Cu-Mo Deposits in the East of Xingmeng Orogenic Belt. Chinese Science Bulletin, 52(24): 3416–3427. http://engine.scichina.com/doi/10.1007/s11434-007-0466-8 doi: 10.1007/s11434-007-0466-8 |
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9 |
Hawkesworth, C., Cawood, P. A., Dhuime, B., 2019. Rates of Generation and Growth of the Continental Crust. Geoscience Frontiers, 10(1): 165–173. https://doi.org/10.1016/j.gsf.2018.02.004 |
HBGMR (Heilongjiang Bureau of Geology and Mineral Resources), 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing. 260–347 (in Chinese with English Abstract) |
Hofmann, A. W., 2003. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Treatise on Geochemistry, 2: 568. https://doi.org/10.1016/b0-08-043751-6/02123-x |
Holmes, A., 1946. An Estimate of the Age of the Earth. Nature, 157: 680–684. https://doi.org/10.1038/157680a0 |
Houtermans, F. G., 1946. Die Isotopenhäufigkeiten Im Natürlichen Blei Und Das Alter des Urans. Naturwissenschaften, 33(6): 185–186. https://doi.org/10.1007/bf00585229 |
Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017 |
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., et al., 1971. Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4(5): 1889–1906. https://doi.org/10.1103/physrevc.4.1889 |
Jagoutz, O., Kelemen, P. B., 2015. Role of Arc Processes in the Formation of Continental Crust. Annual Review of Earth and Planetary Sciences, 43: 363–404. https://doi.org/10.1146/annurev-earth-040809-152345 |
Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82–92. https://doi.org/10.18814/epiiugs/2000/v23i2/001 |
Kelemen, P. B., Behn, M. D., 2016. Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons. Nature Geoscience, 9(3): 197–205. https://doi.org/10.1038/ngeo2662 |
Kodaira, S., Sato, T., Takahashi, N., et al., 2007. New Seismological Constraints on Growth of Continental Crust in the Izu-Bonin Intra-Oceanic Arc. Geology, 35(11): 1031–1034. https://doi.org/10.1130/g23901a.1 |
Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust: 1. Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Science Letters, 148(1/2): 193–205. https://doi.org/10.1016/s0012-821x(97)00018-6 |
Kusky, T. M., Wang, J. P., Wang, L., et al., 2020. Mélanges through Time: Life Cycle of the World's Largest Archean Mélange Compared with Mesozoic and Paleozoic Subduction-Accretion-Collision Mélanges. Earth-Science Reviews, 209: 103303. https://doi.org/10.1016/j.earscirev.2020.103303 |
Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207–224. https://doi.org/10.1016/j.jseaes.2005.09.001 |
Li, Z. X., Zhang, L., Powell, C. M., 1996. Positions of the East Asian Cratons in the Neoproterozoic Supercontinent Rodinia. Australian Journal of Earth Sciences, 43(6): 593–604. https://doi.org/10.1080/08120099608728281 |
Liang, Q. L., Jiang, S. H., Liu, Y. F., 2013. Petrogenesis of the Donghouding A-Type Granite in Northern Hebei: Constraints from Geochemistry, Zircon U-Pb Dating and Sr-Nd-Pb-Hf Isotopic Composition. Geological Review, 59(6): 1119–1130 (in Chinese with English Abstract) |
Liang, Q., Jing, H., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513. https://doi.org/10.1016/s0039-9140(99)00318-5 |
Liu H. Y., Guo, H. M., Xing, L. N., et al., 2016. Geochemical Behaviors of Rare Earth Elements in Groundwater along a Flow Path in the North China Plain. Journal of Asian Earth Sciences, 117: 33–51. https://doi.org/10.1016/j.jseaes.2015.11.021 |
Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123–148. https://doi.org/10.1016/j.gr.2016.03.013 |
Luan, J. P., Xu, W. L., Wang, F., et al., 2017. Age and Geochemistry of Neoproterozoic Granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 148: 265–276. https://doi.org/10.1016/j.jseaes.2017.09.011 |
Lyons, J., Geist, D., Harpp, K., et al., 2007. Crustal Growth by Magmatic Overplating in the Galápagos. Geology, 35(6): 511–514. https://doi.org/10.1130/g23044a.1 |
Moresi, L., Betts, P. G., Miller, M. S., et al., 2014. Dynamics of Continental Accretion. Nature, 508(7495): 245–248. https://doi.org/10.1038/nature13033 |
Ning, W. B., Kusky, T. M., Wang, L., et al., 2022. Archean Eclogite-Facies Oceanic Crust Indicates Modern-Style Plate Tectonics. Proceedings of the National Academy of Sciences of the United States of America, 119(15): e2117529119. https://doi.org/10.1073/pnas.2117529119 |
Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth—A Testable Hypothesis. Earth-Science Reviews, 127: 96–110. https://doi.org/10.1016/j.earscirev.2013.09.004 |
Norrish, K., Chappell, B. W., 1977. X-Ray Fluorescence Spectrometry. In: Zussman, J., ed., Physical Methods in Determinative Mineralogy. Academic Press, London, 201–272 |
Richards, J. P., Kerrich, R., 2007. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537–576. https://doi.org/10.2113/gsecongeo.102.4.537 |
Rudnick, R. L., Gao S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4 |
Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0 |
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005 |
Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311–324. https://doi.org/10.1016/s0012-821x(04)00012-3 |
Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207–221. https://doi.org/10.1016/0012-821x(75)90088-6 |
Stein, M., Hofmann, A. W., 1994. Mantle Plumes and Episodic Crustal Growth. Nature, 372(6501): 63–68. https://doi.org/10.1038/372063a0 |
Sun, D. Y., Wu, F. Y., Shan, G., et al., 2005. Confirmation of Two Episodes of A-Type Granite Emplacement during Late Triassic and Early Jurassic in the Central Jilin Province, and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area, China. Earth Science Frontiers, 12(2): 263–275 (in Chinese with English Abstract) |
Sun, M. S., 2013. Late Mesozoic Magmatism and Its Tectonic Implication for the Jiamusi Block and Adjacent Areas of NE China: [Dissertation]. Zhejiang University Curtin University, Hangzhou Perth |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Takahashi, N., Kodaira, S., Tatsumi, Y., et al., 2008. Structure and Growth of the Izu-Bonin-Mariana Arc Crust: 1. Seismic Constraint on Crust and Mantle Structure of the Mariana Arc-Back-Arc System. Journal of Geophysical Research, 113(B1): B01104. https://doi.org/10.1029/2007jb005120 |
Taylor, S., McLennan, S., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell, Oxford |
Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433: 269–279. https://doi.org/10.1016/j.epsl.2015.11.005 |
Wang, Q. A., McDermott, F., Xu, J. F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465–468. https://doi.org/10.1130/g21522.1 |
Wang, S. Y., Liu, B. S., 2014. Characteristics of U-Pb Chronology and Geochemistry of Neoproterozoic Granitic Gneiss in Dongfengjingyingsuo of Yichun Area. Global Geology, 33(4): 780–786 (in Chinese with English Abstract) |
Wang, Y. B., Liu, J. M., Sun, S. K., et al., 2012. Zircon U-Pb Geochronology, Petrogenesis and Geological Implication of Ore-Bearing Granodiorite Porphyry in the Wulaga Gold Deposit, Heilongjiang Province. Acta Petrologica Sinica, 28(2): 557–570 |
Wang, Z. S., Kusky, T. M., Wang, L., 2022. Long-Lasting Viscous Drainage of Eclogites from the Cratonic Lithospheric Mantle after Archean Subduction Stacking. Geology, 50(5): 583–587. https://doi.org/10.1130/g49793.1 |
Wang, Z. W., Xu, W. L., Pei, F. P., et al., 2016. Geochronology and Geochemistry of Early Paleozoic Igneous Rocks of the Lesser Xing'an Range, NE China: Implications for the Tectonic Evolution of the Eastern Central Asian Orogenic Belt. Lithos, 261: 144–163. https://doi.org/10.1016/j.lithos.2015.11.006 |
Wei, H. Y., Sun, D. Y., Ye, S. Q., et al., 2012. Zircon U-PB Ages and Its Geological Significance of the Granitic Rocks in the Yichun-Hegang Region, Southeastern Xiao Hinggan Mountains. Earth Science, 37: 50–59 (in Chinese with English Abstract) |
Woodhead, J. D., Hergt, J. M., 2005. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for in situ Hf Isotope Determination. Geostandards and Geoanalytical Research, 29(2): 183–195. https://doi.org/10.1111/j.1751-908x.2005.tb00891.x |
Wu, C. L., Chen, A. Z., Gao, Q. M., et al., 2010. Discovery of the Paleo-Proterozoic Granite in Taoshan, Yichun, Northeastern China. Acta Geologica Sinica, 84(9): 1324–1332 (in Chinese with English Abstract) |
Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2): 89–113. https://doi.org/10.1016/s0040-1951(00)00179-7 |
Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014 |
Wu, X. W., Zhang, C., Zhang, Y. J., et al., 2018. 2.7 Ga Monzogranite on the Songnen Massif and Its Geological Implications. Acta Geologica Sinica-English Edition, 92(3): 1265–1266. https://doi.org/10.1111/1755-6724.13609 |
Wu, Z. Z., Wang, C., Song, S. G., et al., 2022. Ultrahigh-Pressure Peridotites Record Neoarchean Collisional Tectonics. Earth and Planetary Science Letters, 596: 117787. https://doi.org/10.1016/j.epsl.2022.117787 |
Xu, J. F., Wu, J. B., Wang, Q., et al., 2014. Research Advances of Adakites and Adakitic Rocks in China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(1): 6–13 (in Chinese with English Abstract) |
Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167–193. https://doi.org/10.1016/j.jseaes.2013.04.003 |
Yu, J. J., Wang, F., Xu, W. L., et al., 2012. Early Jurassic Mafic Magmatism in the Lesser Xing'an-Zhangguangcai Range, NE China, and Its Tectonic Implications: Constraints from Zircon U-Pb Chronology and Geochemistry. Lithos, 142/143: 256–266. https://doi.org/10.1016/j.lithos.2012.03.016 |
Zhang, C., Wu, X. W., Liu, Z. H., et al., 2018. Precambrian Geological Events on the Western Margin of Songnen massif: Evidence from LA-ICP-MS U-Pb Geochronology of Zircons from Paleoproterozoic Granite in the Longjiang Area. Acta Petrologica Sinica, 34(10): 3137–3152 (in Chinese with English Abstract) |
Zhang, Y. L., Liu, C. Z., Ge, W. C., et al., 2011. Ancient Sub-Continental Lithospheric Mantle (SCLM) beneath the Eastern Part of the Central Asian Orogenic Belt (CAOB): Implications for Crust-Mantle Decoupling. Lithos, 126(3/4): 233–247. https://doi.org/10.1016/j.lithos.2011.07.022 |
Zhang, Z. C., Mao, J. W., Wang, Y. B., et al., 2010. Geochemistry and Geochronology of the Volcanic Rocks Associated with the Dong'an Adularia-Sericite Epithermal Gold Deposit, Lesser Hinggan Range, Heilongjiang Province, NE China: Constraints on the Metallogenesis. Ore Geology Reviews, 37(3/4): 158–174. https://doi.org/10.1016/j.oregeorev.2010.03.001 |
Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13–54. https://doi.org/10.1016/j.precamres.2012.09.017 |
Zhong, Y. T., Kusky, T. M., Wang, L., et al., 2021. Alpine-Style Nappes Thrust over Ancient North China Continental Margin Demonstrate Large Archean Horizontal Plate Motions. Nature Communications, 12(1): 1–15. https://doi.org/10.1038/s41467-021-26474-7 |
Zhou, J. B., Wilde, S. A., Zhang, X. Z., et al., 2009. The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt. Tectonophysics, 478(3/4): 230–246. https://doi.org/10.1016/j.tecto.2009.08.009 |
Zhou, J. B., Wilde, S. A., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 186: 76–93. https://doi.org/10.1016/j.earscirev.2017.01.012 |