Barla, G., Barla, M., Martinotti, M. E., 2010. Development of a New Direct Shear Testing Apparatus. Rock Mechanics and Rock Engineering, 43(1): 117–122. https://doi.org/10.1007/s00603-009-0041-5 |
Chen, X. B., Zhang, J. S., Xiao, Y. J., et al., 2015. Effect of Roughness on Shear Behavior of Red Clay―Concrete Interface in Large-Scale Direct Shear Tests. Canadian Geotechnical Journal, 52(8): 1122–1135. https://doi.org/10.1139/cgj-2014-0399 |
Comino, E., Druetta, A., 2009. In situ Shear Tests of Soil Samples with Grass Roots in Alpine Environment. American Journal of Environmental Sciences, 5(4): 475–486.https://doi.org/10.3844/ajess p.2009.475.486 doi: 10.3844/ajessp.2009.475.486 |
de Guzman, E. M. B., Stafford, D., Alfaro, M. C., et al., 2018. Large-Scale Direct Shear Testing of Compacted Frozen Soil under Freezing and Thawing Conditions. Cold Regions Science and Technology, 151: 138–147. https://doi.org/10.1016/j.coldregions.2018.03.011 |
di Donna, A., Ferrari, A., Laloui, L., 2016. Experimental Investigations of the Soil-Concrete Interface: Physical Mechanisms, Cyclic Mobilization, and Behaviour at Different Temperatures. Canadian Geotechnical Journal, 53(4): 659–672. https://doi.org/10.1139/cgj-2015-0294 |
Frost, J. D., Han, J., 1999. Behavior of Interfaces between Fiber-Reinforced Polymers and Sands. Journal of Geotechnical and Geoenvironmental Engineering, 125(8): 633–640.https://doi.org/10.1061/(asce)1090-024 1(1999)125:8(633) doi: 10.1061/(asce)1090-0241(1999)125:8(633 |
Gabet, E. J., Edelman, R., Langner, H., 2006. Hydrological Controls on Chemical Weathering Rates at the Soil-Bedrock Interface. Geology, 34(12): 1065. https://doi.org/10.1130/g23085a.1 |
Ilori, A. O., Udoh, N. E., Umenge, J. I., 2017. Determination of Soil Shear Properties on a Soil to Concrete Interface Using a Direct Shear Box Apparatus. International Journal of Geo-Engineering, 8(1): 17. https://doi.org/10.1186/s40703-017-0055-x |
Keramati, M., Shahedifar, M., Aminfar, M. H., et al., 2020. Evaluation the Shear Strength Behavior of Aged MSW Using Large Scale in Situ Direct Shear Test, a Case of Tabriz Landfill. International Journal of Civil Engineering, 18(7): 717–733.https://doi.org/10.1007/s40999-02 0-00499-3 doi: 10.1007/s40999-020-00499-3 |
Oyanguren, P. R., Nicieza, C. G., Fernández, M. I. Á., et al., 2008. Stability Analysis of Llerin Rockfill Dam: An in situ Direct Shear Test. Engineering Geology, 100(3/4): 120–130.https://doi.org/10.1016/j.en ggeo.2008.02.009 doi: 10.1016/j.enggeo.2008.02.009 |
Qi, S. W., Zheng, B. W., Wu, F. Q., et al., 2020. A New Dynamic Direct Shear Testing Device on Rock Joints. Rock Mechanics and Rock Engineering, 53(10): 4787–4798. https://doi.org/10.1007/s00603-020-02175-3 |
Saberi, M., Annan, C. D., Konrad, J. M., 2018. On the Mechanics and Modeling of Interfaces between Granular Soils and Structural Materials. Archives of Civil and Mechanical Engineering, 18(4): 1562–1579. https://doi.org/10.1016/j.acme.2018.06.003 |
Shen, Y. J., Wang, Y. Z., Yang, Y., et al., 2019. Influence of Surface Roughness and Hydrophilicity on Bonding Strength of Concrete-Rock Interface. Construction and Building Materials, 213: 156–166. https://doi.org/10.1016/j.conbuildmat.2019.04.078 |
Wang, Y., Wang, W., Huang, J. Q., et al., 2023. Effect of Corrosion on Soil-Structure Interfacial Shearing Property and Bearing Capacity of Steel Foundation in Submarine Soil Environment. Computers and Geotechnics, 156: 105269.https://doi.org/10.1016/j.compgeo.2023.1 05269 doi: 10.1016/j.compgeo.2023.105269 |
Xu, L., Coop, M. R., 2016. Influence of Structure on the Behavior of a Saturated Clayey Loess. Canadian Geotechnical Journal, 53(6): 1026–1037. https://doi.org/10.1139/cgj-2015-0200 |
Xu, L., Gao, C., Wei, X., 2019. Anisotropic Behaviour of a Saturated Clayey Loess. Géotechnique Letters, 9(1): 28–34.https://doi.org/10.1 680/jgele.18.00125 doi: 10.1680/jgele.18.00125 |
Yang, X. Y., Wang, Y. C., Sun, Z. J., 2020. The Shearing Anisotropy Characteristics on the Interface of Loess with Bedrock. Bulletin of Engineering Geology and the Environment, 79(10): 5205–5212. https://doi.org/10.1007/s10064-020-01887-8 |
Zekkos, D., Athanasopoulos, G. A., Bray, J. D., et al., 2010. Large-Scale Direct Shear Testing of Municipal Solid Waste. Waste Management, 30(8/9): 1544–1555. https://doi.org/10.1016/j.wasman.2010.01.024 |
Zhu, Y. B., Miao, S. S., Li, H. F., et al., 2022. An Empirical Shear Model of Interface between the Loess and Hipparion Red Clay in a Loess Landslide. Frontiers in Earth Science, 9: 806832.https://doi.org/10.3 389/feart.2021.806832 doi: 10.3389/feart.2021.806832 |
Zou, Z. X., Zhang, Q., Xiong, C. R., et al., 2020. In situ Shear Test for Revealing the Mechanical Properties of the Gravelly Slip Zone Soil. Sensors, 20(22): 6531. https://doi.org/10.3390/s20226531 |