Citation: | Yue Yu, Ping Li, Yanhong Wang, Xinzhe Lu, Chunlei Huang, Hanqin Yin. Impact of Phosphate Solubilizing Bacterial Agent on Cadmium Bioavailability and Microbial Communities in Soil and Cd Accumulation in Lettuce Plants. Journal of Earth Science, 2025, 36(5): 2266-2278. doi: 10.1007/s12583-023-1852-0 |
Cadmium (Cd) contamination in soil can lead to food chain accumulation and greatly impacts on human health. Bioremediation has gained more and more attention due to its environment-friendly, high efficiency and low-cost. In this work, we studied the impact of phosphate solubilizing bacterial agent (PSBA) on Cd bioavailability, microbial communities in soil and Cd accumulation in lettuce plants with pot experiment and field trial. Results of pot experiment showed that PSBA could decrease the bioavailability of Cd (Cd-acid extractable from 3.30 to 2.34 mg/kg, Cd-reducible from 1.94 to 1.56 mg/kg), promote lettuce plants growth (increased by 33.85% height and by 33.65% fresh weight) and reduce the accumulation of Cd (from 5.85 to 3.73 mg/kg) in lettuce plants. High-throughput sequencing identified that PSBA could change the composition and structure of the soil microbial communities. The relative abundances of the three ecologically beneficial bacterial families of
Adhikari, A., Lee, K. E., Khan, M. A., et al., 2020. Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza Sativa L. under Cadmium Stress. J. Microbiol Biotechnol, 30(1): 118–126. https://doi.org/10.4014/jmb.1906.06010 |
Ahmadipour, F., Bahramifar, N., Mahmood Ghasempouri, S., 2015. Fractionation and Mobility of Cadmium and Lead in Soils of Amol Area in Iran, Using the Modified BCR Sequential Extraction Method. Chemical Speciation & Bioavailability, 26(1): 31–36. https://doi.org/10.3184/095422914x13884321932037 |
Akkajit, P., Tongcumpou, C., 2010. Fractionation of Metals in Cadmium Contaminated Soil: Relation and Effect on Bioavailable Cadmium. Geoderma, 156(3/4): 126–132. https://doi.org/10.1016/j.geoderma.2010.02.007 |
Ashraf, M. N., Hu, C., Wu, L., et al., 2020. Soil and Microbial Biomass Stoichiometry Regulate Soil Organic Carbon and Nitrogen Mineralization in Rice-Wheat Rotation Subjected to Long-Term Fertilization. Journal of Soils and Sediments, 20(8): 3103–3113. https://doi.org/10.1007/s11368-020-02642-y |
Banerjee, S., Walder, F., Büchi, L., et al., 2019. Agricultural Intensification Reduces Microbial Network Complexity and the Abundance of Keystone Taxa in Roots. The ISME Journal, 13(7): 1722–1736. https://doi.org/10.1038/s41396-019-0383-2 |
Bashir, S., Salam, A., Chhajro, M. A., et al., 2018. Comparative Efficiency of Rice Husk-Derived Biochar (RHB) and Steel Slag (SS) on Cadmium (Cd) Mobility and Its Uptake by Chinese Cabbage in Highly Contaminated Soil. International Journal of Phytoremediation, 20(12): 1221–1228. https://doi.org/10.1080/15226514.2018.1448364 |
Bishop, M. E., Glasser, P., Dong, H. L., et al., 2014. Reduction and Immobilization of Hexavalent Chromium by Microbially Reduced Fe-Bearing Clay Minerals. Geochimica et Cosmochimica Acta, 133: 186–203. https://doi.org/10.1016/j.gca.2014.02.040 |
Chen, K. H., Longley, R., Bonito, G., et al., 2021. A Two-Step PCR Protocol Enabling Flexible Primer Choice and High Sequencing Yield for Illumina MiSeq Meta-Barcoding. Agronomy, 11(7): 1274. https://doi.org/10.3390/agronomy11071274 |
Chen, X., Yang, C., Palta, J. A., et al., 2022. An Enterobacter cloacae Strain NG-33 that Can Solubilize Phosphate and Promote Maize Growth. Front Microbiol, 13: 1047313. https://doi.org/10.3389/fmicb.2022.1047313 |
Chen, Y., Wu, H., Sun, P., et al., 2021. Remediation of Chromium-Contaminated Soil Based on Bacillus cereus WHX-1 Immobilized on Biochar: Cr(Ⅵ) Transformation and Functional Microbial Enrichment. Front. Microbiol. , 12: 641913. https://doi.org/10.3389/fmicb.2021.641913 |
Cheng, Z. Y., Zheng, Q., Shi, J. C., et al., 2023. Metagenomic and Machine Learning-Aided Identification of Biomarkers Driving Distinctive Cd Accumulation Features in the Root-Associated Microbiome of Two Rice Cultivars. ISME Communications, 3(1): 14. https://doi.org/10.1038/s43705-023-00213-z |
Crowther, T. W., van den Hoogen, J., Wan, J., et al., 2019. The Global Soil Community and Its Influence on Biogeochemistry. Science, 365(6455): eaav0550. https://doi.org/10.1126/science.aav0550 |
Cui, L. Q., Pan, G. X., Li, L. Q., et al., 2016. Continuous Immobilization of Cadmium and Lead in Biochar Amended Contaminated Paddy Soil: A Five-Year Field Experiment. Ecological Engineering, 93: 1–8. https://doi.org/10.1016/j.ecoleng.2016.05.007 |
Fang, X., Wang, J., Chen, H. P., et al., 2021. Two-Year and Multi-Site Field Trials to Evaluate Soil Amendments for Controlling Cadmium Accumulation in Rice Grain. Environmental Pollution, 289: 117918. https://doi.org/10.1016/j.envpol.2021.117918 |
Gallardo-Benavente, C., Carrión, O., Todd, J. D., et al., 2019. Biosynthesis of CdS Quantum Dots Mediated by Volatile Sulfur Compounds Released by Antarctic Pseudomonas fragi. Front. Microbiol. , 10: 1866. https://doi.org/10.3389/fmicb.2019.01866 |
Guo, X., Zhang, S., Shan, X. Q., et al., 2006. Characterization of Pb, Cu, and Cd Adsorption on Particulate Organic Matter in Soil. Environ Toxicol Chem, 25(9): 2366–2373. https://doi.org/10.1897/05-636r.1 |
Halim, M. A., Majumder, R. K., Zaman, M. N., 2015. Paddy Soil Heavy Metal Contamination and Uptake in Rice Plants from the Adjacent Area of Barapukuria Coal Mine, Northwest Bangladesh. Arabian Journal of Geosciences, 8(6): 3391–3401. https://doi.org/10.1007/s12517-014-1480-1 |
Hamid, Y., Tang, L., Sohail, M. I., et al., 2019. An Explanation of Soil Amendments to Reduce Cadmium Phytoavailability and Transfer to Food Chain. Science of the Total Environment, 660: 80–96. https://doi.org/10.1016/j.scitotenv.2018.12.419 |
He, N., Hu, L., Jiang, C., et al., 2022. Remediation of Chromium, Zinc, Arsenic, Lead and Antimony Contaminated Acidic Mine Soil Based on Phanerochaete Chrysosporium Induced Phosphate Precipitation. Science of the Total Environment, 850: 157995. https://doi.org/10.1016/j.scitotenv.2022.157995 |
He, Y. H., Lin, H., Jin, X. N., et al., 2020. Simultaneous Reduction of Arsenic and Cadmium Bioavailability in Agriculture Soil and Their Accumulation in Brassica Chinensis L. by Using Minerals. Ecotoxicology and Environmental Safety, 198: 110660. https://doi.org/10.1016/j.ecoenv.2020.110660 |
Honma, T., Ohba, H., Kaneko-Kadokura, A., et al., 2016. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains. Environ. Sci. Technol. , 50(8): 4178–4185. https://doi.org/10.1021/acs.est.5b05424 |
Huang, F., Dang, Z., Guo, C. L., et al., 2013. Biosorption of Cd(Ⅱ) by Live and Dead Cells of Bacillus Cereus RC-1 Isolated from Cadmium-Contaminated Soil. Colloids and Surfaces B: Biointerfaces, 107: 11–18. https://doi.org/10.1016/j.colsurfb.2013.01.062 |
Huang, G. T., Zhang, Y. C., Tang, J. W., et al., 2020. Remediation of Cd Contaminated Soil in Microbial Fuel Cells: Effects of Cd Concentration and Electrode Spacing. Journal of Environmental Engineering, 146(7): 04020050. https://doi.org/10.1061/(asce)ee.1943-7870.0001732 |
Huang, L. J., Hansen, H. C. B., Wang, H. H., et al., 2019. Effects of Sulfate on Cadmium Uptake in Wheat Grown in Paddy Soil-Pot Experiment. Plant, Soil and Environment, 65(12): 602–608. https://doi.org/10.17221/558/2019-pse |
Hui, C. Y., Guo, Y., Liu, L., et al., 2021. Recent Advances in Bacterial Biosensing and Bioremediation of Cadmium Pollution: A Mini-Review. World J. Microbiol. Biotechnol. , 38(1): 9. https://doi.org/10.1007/s11274-021-03198-w |
Hussain, B., Ashraf, M. N., Shafeeq-ur-Rahman, et al., 2021. Cadmium Stress in Paddy Fields: Effects of Soil Conditions and Remediation Strategies. Science of the Total Environment, 754: 142188. https://doi.org/10.1016/j.scitotenv.2020.142188 |
Kaparapu, J., Krishna Prasad, M., 2018. Equilibrium, Kinetics and Thermodynamic Studies of Cadmium(Ⅱ) Biosorption on Nannochloropsis Oculata. Applied Water Science, 8(6): 1–9. https://doi.org/10.1007/s13201-018-0810-y |
Khalid, S., Shahid, M., Niazi, N. K., et al., 2017. A Comparison of Technologies for Remediation of Heavy Metal Contaminated Soils. Journal of Geochemical Exploration, 182: 247–268. https://doi.org/10.1016/j.gexplo.2016.11.021 |
Kitz, F., Gómez-Brandón, M., Eder, B., et al., 2019. Soil Carbonyl Sulfide Exchange in Relation to Microbial Community Composition: Insights from a Managed Grassland Soil Amendment Experiment. Soil Biology and Biochemistry, 135: 28–37. https://doi.org/10.1016/j.soilbio.2019.04.005 |
Li, B., Ding, S., Fan, H., et al., 2021. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment. Materials (Basel), 14(2): 447. https://doi.org/10.3390/ma14020447 |
Li, C. F., Zhou, K. H., Qin, W. Q., et al., 2019. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil and Sediment Contamination: An International Journal, 28(4): 380–394. https://doi.org/10.1080/15320383.2019.1592108 |
Li, H., Luo, N., Li, Y. W., et al., 2017. Cadmium in Rice: Transport Mechanisms, Influencing Factors, and Minimizing Measures. Environmental Pollution, 224: 622–630. https://doi.org/10.1016/j.envpol.2017.01.087 |
Li, J. T., Lu, J. L., Wang, H. Y., et al., 2021. A Comprehensive Synthesis Unveils the Mysteries of Phosphate-Solubilizing Microbes. Biol. Rev. Camb. Philos. Soc. , 96(6): 2771–2793. https://doi.org/10.1111/brv.12779 |
Li, K. S., Zeghbroeck J, V., Liu, Q. C., et al., 2021. Isolating and Characterizing Phosphorus Solubilizing Bacteria from Rhizospheres of Native Plants Grown in Calcareous Soils. Frontiers in Environmental Science, 9: 802563. https://doi.org/10.3389/fenvs.2021.802563 |
Li, Z., Su, M., Duan, X. F., et al., 2018. Induced Biotransformation of Lead (Ⅱ) by Enterobacter Sp. in SO4-PO4-Cl Solution. Journal of Hazardous Materials, 357: 491–497. https://doi.org/10.1016/j.jhazmat.2018.06.032 |
Li, Z. M., Liang, Y., Hu, H. W., et al., 2021. Speciation, Transportation, and Pathways of Cadmium in Soil-Rice Systems: A Review on the Environmental Implications and Remediation Approaches for Food Safety. Environment International, 156: 106749. https://doi.org/10.1016/j.envint.2021.106749 |
Liu, J. G., Cao, C. X., Wong, M., et al., 2010. Variations between Rice Cultivars in Iron and Manganese Plaque on Roots and the Relation with Plant Cadmium Uptake. Journal of Environmental Sciences, 22(7): 1067–1072. https://doi.org/10.1016/s1001-0742(09)60218-7 |
Liu, L., Fan, S. S., 2018. Removal of Cadmium in Aqueous Solution Using Wheat Straw Biochar: Effect of Minerals and Mechanism. Environmental Science and Pollution Research, 25(9): 8688–8700. https://doi.org/10.1007/s11356-017-1189-2 |
Liu, L. Y., Tan, Z. X., Gong, H. B., et al., 2019. Migration and Transformation Mechanisms of Nutrient Elements (N, P, K) within Biochar in Straw-Biochar-Soil-Plant Systems: A Review. ACS Sustainable Chemistry & Engineering, 7(1): 22–32. https://doi.org/10.1021/acssuschemeng.8b04253 |
Liu, Z. B., Huang, Y., Ji, X. H., et al., 2020. Effects and Mechanism of Continuous Liming on Cadmium Immobilization and Uptake by Rice Grown on Acid Paddy Soils. Journal of Soil Science and Plant Nutrition, 20(4): 2316–2328. https://doi.org/10.1007/s42729-020-00297-9 |
Lu, H. L., Li, K. W., Nkoh, J. N., et al., 2022. Effects of pH Variations Caused by Redox Reactions and pH Buffering Capacity on Cd(Ⅱ) Speciation in Paddy Soils during Submerging/Draining Alternation. Ecotoxicology and Environmental Safety, 234: 113409. https://doi.org/10.1016/j.ecoenv.2022.113409 |
Mao, X. X., Yang, Y., Guan, P. B., et al., 2022. Remediation of Organic Amendments on Soil Salinization: Focusing on the Relationship between Soil Salts and Microbial Communities. Ecotoxicology and Environmental Safety, 239: 113616. https://doi.org/10.1016/j.ecoenv.2022.113616 |
Mezynska, M., Brzóska, M. M., 2018. Environmental Exposure to Cadmium—A Risk for Health of the General Population in Industrialized Countries and Preventive Strategies. Environmental Science and Pollution Research, 25(4): 3211–3232. https://doi.org/10.1007/s11356-017-0827-z |
Min, T., Luo, T., Chen, L. L., et al., 2021. Effect of Dissolved Organic Matter on the Phytoremediation of Cd-Contaminated Soil by Cotton. Ecotoxicology and Environmental Safety, 226: 112842. https://doi.org/10.1016/j.ecoenv.2021.112842 |
Norton, G. J., Shafaei, M., Travis, A. J., et al., 2017. Impact of Alternate Wetting and Drying on Rice Physiology, Grain Production, and Grain Quality. Field Crops Research, 205: 1–13. https://doi.org/10.1016/j.fcr.2017.01.016 |
Park, J. H., Bolan, N., Megharaj, M., et al., 2011. Isolation of Phosphate Solubilizing Bacteria and Their Potential for Lead Immobilization in Soil. Journal of Hazardous Materials, 185(2/3): 829–836. https://doi.org/10.1016/j.jhazmat.2010.09.095 |
Qi, X., Xiao, S. Q., Chen, X. M., et al., 2022. Biochar-Based Microbial Agent Reduces U and Cd Accumulation in Vegetables and Improves Rhizosphere Microecology. Journal of Hazardous Materials, 436: 129147. https://doi.org/10.1016/j.jhazmat.2022.129147 |
Qin, S. Y., Liu, H. E., Nie, Z. J., et al., 2020. Toxicity of Cadmium and Its Competition with Mineral Nutrients for Uptake by Plants: A Review. Pedosphere, 30(2): 168–180. https://doi.org/10.1016/s1002-0160(20)60002-9 |
Rafiq, M. T., Aziz, R., Yang, X. E., et al., 2014. Cadmium Phytoavailability to Rice (Oryza Sativa L.) Grown in Representative Chinese Soils. A Model to Improve Soil Environmental Quality Guidelines for Food Safety. Ecotoxicology and Environmental Safety, 103: 101–107. https://doi.org/10.1016/j.ecoenv.2013.10.016 |
Rahman, M. A., Hasegawa, H., Rahman, M. M., et al., 2013. Effect of Iron (Fe2+) Concentration in Soil on Arsenic Uptake in Rice Plant (Oryza Sativa L.) when Grown with Arsenate [As(Ⅴ)] and Dimethylarsinate (DMA). Water, Air, & Soil Pollution, 224(7): 1623. https://doi.org/10.1007/s11270-013-1623-0 |
Rehman, A. U., Nazir, S., Irshad, R., et al., 2021. Toxicity of Heavy Metals in Plants and Animals and Their Uptake by Magnetic Iron Oxide Nanoparticles. Journal of Molecular Liquids, 321: 114455. https://doi.org/10.1016/j.molliq.2020.114455 |
Sahu, S., Rajbonshi, M. P., Gujre, N., et al., 2022. Bacterial Strains Found in the Soils of a Municipal Solid Waste Dumping Site Facilitated Phosphate Solubilization along with Cadmium Remediation. Chemosphere, 287: 132320. https://doi.org/10.1016/j.chemosphere.2021.132320 |
Sansupa, C., Fareed Mohamed Wahdan, S., Disayathanoowat, T., et al., 2021. Identifying Hidden Viable Bacterial Taxa in Tropical Forest Soils Using Amplicon Sequencing of Enrichment Cultures. Biology (Basel), 10(7): 569. https://doi.org/10.3390/biology10070569 |
Santolini, M., Barabási, A. L., 2018. Predicting Perturbation Patterns from the Topology of Biological Networks. Proc Natl Acad Sci USA, 115(27): E6375–E6383. https://doi.org/10.1073/pnas.1720589115 |
Shahid, M., Dumat, C., Khalid, S., et al., 2017. Cadmium Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System. Rev Environ Contam Toxicol, 241: 73–137. https://doi.org/10.1007/398_2016_8 |
Shamsul Haque, K. M., Eberbach, P. L., Weston, L. A., et al., 2016. Variable Impact of Rice (Oryza sativa) on Soil Metal Reduction and Availability of Pore Water Fe2+ and Mn2+ throughout the Growth Period. Chemistry and Ecology, 32(2): 182–200. https://doi.org/10.1080/02757540.2015.1122000 |
Shi, X. Y., Zhou, G. T., Liao, S. J., et al., 2018. Immobilization of Cadmium by Immobilized Alishewanella Sp. WH16-1 with Alginate-Lotus Seed Pods in Pot Experiments of Cd-Contaminated Paddy Soil. Journal of Hazardous Materials, 357: 431–439. https://doi.org/10.1016/j.jhazmat.2018.06.027 |
Song, B., Zeng, G. M., Gong, J. L., et al., 2017. Evaluation Methods for Assessing Effectiveness of in situ Remediation of Soil and Sediment Contaminated with Organic Pollutants and Heavy Metals. Environment International, 105: 43–55. https://doi.org/10.1016/j.envint.2017.05.001 |
Sun, G. X., Zhang, L., Chen, P., et al., 2021. Silicon Fertilizers Mitigate Rice Cadmium and Arsenic Uptake in a 4-Year Field Trial. Journal of Soils and Sediments, 21(1): 163–171. https://doi.org/10.1007/s11368-020-02725-w |
Tang, X., Li, Q., Wu, M., et al., 2016. Review of Remediation Practices Regarding Cadmium-Enriched Farmland Soil with Particular Reference to China. Journal of Environmental Management, 181: 646–662. https://doi.org/10.1016/j.jenvman.2016.08.043 |
Teng, Z. D., Shao, W., Zhang, K. Y., et al., 2019. Pb Biosorption by Leclercia Adecarboxylata: Protective and Immobilized Mechanisms of Extracellular Polymeric Substances. Chemical Engineering Journal, 375: 122113. https://doi.org/10.1016/j.cej.2019.122113 |
Verma, S., Kuila, A., 2019. Bioremediation of Heavy Metals by Microbial Process. Environmental Technology & Innovation, 14: 100369. https://doi.org/10.1016/j.eti.2019.100369 |
Wang, T., Sun, H. W., Ren, X. H., et al., 2018. Adsorption of Heavy Metals from Aqueous Solution by UV-Mutant Bacillus Subtilis Loaded on Biochars Derived from Different Stock Materials. Ecotoxicology and Environmental Safety, 148: 285–292. https://doi.org/10.1016/j.ecoenv.2017.10.039 |
Wang, X., Hu, K., Xu, Q., et al., 2020. Immobilization of Cd Using Mixed Enterobacter and Comamonas Bacterial Reagents in Pot Experiments with Brassica rapa L. Environ. Sci. Technol. , 54(24): 15731–15741. https://doi.org/10.1021/acs.est.0c03114 |
Xu, W. J., Hou, S. Z., AmanKhan, M., et al., 2021. Effect of Water and Fertilization Management on Cd Immobilization and Bioavailability in Cd-Polluted Paddy Soil. Chemosphere, 276: 130168. https://doi.org/10.1016/j.chemosphere.2021.130168 |
Wu, S. J., Zhou, Z. J., Zhu, L., et al., 2022. Cd Immobilization Mechanisms in a Pseudomonas Strain and Its Application in Soil Cd Remediation. Journal of Hazardous Materials, 425: 127919. https://doi.org/10.1016/j.jhazmat.2021.127919 |
Xia, X., Wu, S. J., Zhou, Z. J., et al., 2021. Microbial Cd(Ⅱ) and Cr(Ⅵ) Resistance Mechanisms and Application in Bioremediation. Journal of Hazardous Materials, 401: 123685. https://doi.org/10.1016/j.jhazmat.2020.123685 |
Xu, W., Li, Y., He, J., et al., 2010. Cd Uptake in Rice Cultivars Treated with Organic Acids and EDTA. J. Environ. Sci. (China), 22(3): 441–447. https://doi.org/10.1016/s1001-0742(09)60127-3 |
Yaashikaa, P. R., Kumar, P. S., Jeevanantham, S., et al., 2022. A Review on Bioremediation Approach for Heavy Metal Detoxification and Accumulation in Plants. Environmental Pollution, 301: 119035. https://doi.org/10.1016/j.envpol.2022.119035 |
Yaghoubi Khanghahi, M., Pirdashti, H., Rahimian, H., et al., 2018. Potassium Solubilising Bacteria (KSB) Isolated from Rice Paddy Soil: From Isolation, Identification to K Use Efficiency. Symbiosis, 76(1): 13–23. https://doi.org/10.1007/s13199-017-0533-0 |
Yang, Y., Wang, M. E., Chang, A. C., et al., 2020. Inconsistent Effects of Limestone on Rice Cadmium Uptake: Results from Multi-Scale Field Trials and Large-Scale Investigation. Science of the Total Environment, 709: 136226. https://doi.org/10.1016/j.scitotenv.2019.136226 |
Yin, K., Wang, Q. N., Lyu, M., et al., 2019. Microorganism Remediation Strategies towards Heavy Metals. Chemical Engineering Journal, 360: 1553–1563. https://doi.org/10.1016/j.cej.2018.10.226 |
You, M., Fang, S. M., MacDonald, J., et al., 2020. Isolation and Characterization of Burkholderia Cenocepacia CR318, a Phosphate Solubilizing Bacterium Promoting Corn Growth. Microbiological Research, 233: 126395. https://doi.org/10.1016/j.micres.2019.126395 |
You, M., Wang, L., Zhou, G., et al., 2022. Effects of Microbial Agents on Cadmium Uptake in Solanum nigrum L. and Rhizosphere Microbial Communities in Cadmium-Contaminated Soil. Front. Microbiol. , 13: 1106254. https://doi.org/10.3389/fmicb.2022.1106254 |
Yu, L. Y., Huang, H. B., Wang, X. H., et al., 2019. Novel Phosphate-Solubilising Bacteria Isolated from Sewage Sludge and the Mechanism of Phosphate Solubilisation. Science of the Total Environment, 658: 474–484. https://doi.org/10.1016/j.scitotenv.2018.12.166 |
Yu, X., Liu, X., Zhu, T. H., et al., 2012. Co-Inoculation with Phosphate-Solubilzing and Nitrogen-Fixing Bacteria on Solubilization of Rock Phosphate and Their Effect on Growth Promotion and Nutrient Uptake by Walnut. European Journal of Soil Biology, 50: 112–117. https://doi.org/10.1016/j.ejsobi.2012.01.004 |
Yu, Y., Shi, K. X., Li, X. X., et al., 2022. Reducing Cadmium in Rice Using Metallothionein Surface-Engineered Bacteria WH16-1-MT. Environmental Research, 203: 111801. https://doi.org/10.1016/j.envres.2021.111801 |
Yuan, W. J., Cheng, J., Huang, H. X., et al., 2019. Optimization of Cadmium Biosorption by Shewanella Putrefaciens Using a Box-Behnken Design. Ecotoxicology and Environmental Safety, 175: 138–147. https://doi.org/10.1016/j.ecoenv.2019.03.057 |
Yuan, Z. M., Yi, H. H., Wang, T. Q., et al., 2017. Application of Phosphate Solubilizing Bacteria in Immobilization of Pb and Cd in Soil. Environmental Science and Pollution Research, 24(27): 21877–21884. https://doi.org/10.1007/s11356-017-9832-5 |
Zhao, X., Dai, J. N., Teng, Z. D., et al., 2022. Immobilization of Cadmium in River Sediment Using Phosphate Solubilizing Bacteria Coupled with Biochar-Supported Nano-Hydroxyapatite. Journal of Cleaner Production, 348: 131221. https://doi.org/10.1016/j.jclepro.2022.131221 |