Citation: | Marija Horvat, Nenad Tomašić, Dunja Aljinović, Damir Bucković, Stjepan Ćorić, Vlasta Ćosović, Igor Felja, Ines Galović, Željko Ištuk, Štefica Kampić, Dražen Kurtanjek, Đurđica Pezelj. Eocene Weathering Oscillations Imprinted in Marl Mineral and Geochemical Record, Dinaric Foreland Basin, Croatia. Journal of Earth Science, 2025, 36(3): 1236-1250. doi: 10.1007/s12583-023-1913-2 |
Hemipelagic to pelagic (H/P) marls, representing pelitic deposits, accumulated within the foredeep sub-basin of the Dinaric Foreland Basin (northern Neotethyan margin, present-day Croatia) during the Middle to Late Eocene. Syn-sedimentary tectonic movements, paleogeographic position and exchanges of short-lived hyperthermal episodes affected the sedimentation and related mineral and geochemical record of these deposits. Mineral (clay) assemblages bear signature of prevailing physical weathering with significant illite and chlorite content, but climatic seasonality is suggested by smectite-interlayered phases and sporadical increase of kaolinite content. Illite crystallinity varies significantly, and the lowest crystallinity is recorded by the Lutetian samples. Illite chemistry index is always bellow 0.5, being characteristic for Fe-Mg-rich illite. The geochemical records are the most prominent (CIA up to 76, CIW up to 91) for the Istrian Lutetian (42.3–40.5 Ma), but also for Priabonian (35.8–34.3 Ma) samples of Hvar Island. The ICV values (the lowest 1.40 and the highest 10.85) of all studied samples fall above PAAS (ICV = 0.85) and point to their chemical immaturity. The Ga/Rb ratios are lower than 0.2 and K2O/Al2O3 ratios are also low (0.16–0.22), implying transition between cold and dry, and warm and humid climate, obviously trending among several warming episodes.
Akul'shina, E. P., 1976. Method for Determing Conditions of Weathering and Postsedimentary Transformations in Aluminous Minerals. In: Glinistye Mineral Kak Pokazateli Uslovii Litogeneza, Nauka. 9–38 |
Aljinović, D., Jurak, V., Mileusnić, M., et al., 2010. The Origin and Composition of Flysch Deposits as an Attribute to the Excessive Erosion of the Slani Potok Valley (Salty Creek), Croatia. Geologia Croatica, 63(3): 313–322. https://doi.org/104154/gc.2010.25 https://doi.org/104154/gc.2010.25 |
Babić, L., Zupanič, J., 2008. Evolution of a River-Fed Foreland Basin Fill: The North Dalmatian Flysch Revisited (Eocene, Outer Dinarides). Natura Croatica, 17(4): 357–374 |
Babić, L., Kučenjak, M. H., Ćorić, S., et al., 2007. The Middle Eocene Age of the Supposed Late Oligocene Sediments in the Flysch of the Pazin Basin (Istria, Outer Dinarides). Natura Croatica, 16(2): 83–102 |
Balling, P., Tomljenović, B., Schmid, S. M., et al., 2021. Contrasting Along-Strike Deformation Styles in the Central External Dinarides Assessed by Balanced Cross-Sections: Implications for the Tectonic Evolution of Its Paleogene Flexural Foreland Basin System. Global and Planetary Change, 205: 103587. https://doi.org/10.1016/j.gloplacha.2021.103587 |
Berggren, W. A., Pearson, P. N., 2005. A Revised Tropical to Subtropical Paleogene Planktonic Foraminiferal Zonation. The Journal of Foraminiferal Research, 35(4): 279–298. https://doi.org/10.2113/35.4.279 |
Bijl, P. K., Houben, A. J. P., Schouten, S., et al., 2010. Transient Middle Eocene Atmospheric CO2 and Temperature Variations. Science, 330(6005): 819–821. https://doi.org/10.1126/science.1193654 |
Butterlin, J., Vrielynck, B., Bignot, G., et al., 1993. Lutetian (46–40 Ma). In: Decourt, J., Ricou, L. E., Vrielynck, B., eds., Atlas Tethys Palaeoenvironmental Maps. Explanatory Notes, Gauthier-Villars, Paris. 197–209 |
Cabré, S. P., Valero, L., Spangenberg, J., et al., 2023. Fluvio-Deltaic Record of Increased Sediment Transport during the Middle Eocene Climatic Optimum (MECO), Southern Pyrenees, Spain. Climate of the Past, 19(3): 533–554. https://doi.org/10.5194/cp-19-533-2023 |
Chamley, H., 1994. Clay Mineral Diagenesis. In: Parker, A., Sellwood, B. W., eds., Quantitative Diagenesis: Recent Developments and Applications to Reservoir Geology. Springer Netherlands, Dordrecht. 161–188. |
Chen, Z. L., Ding, Z. L., Yang, S. L., et al., 2016. Increased Precipitation and Weathering across the Paleocene-Eocene Thermal Maximum in Central China. Geochemistry, Geophysics, Geosystems, 17(6): 2286–2297. |
Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1/2/3/4): 1–37. https://doi.org/10.1016/0009-2541(93)90140-e |
Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9 |
Ćosović, V., Drobne, K., Moro, A., 2004. Paleoenvironmental Model for Eocene Foraminiferal Limestones of the Adriatic Carbonate Platform (Istrian Peninsula). Facies, 50(1): 61–75. https://doi.org/10.1007/s10347-004-0006-9 |
Ćosović, V., Marjanac, T., Drobne, K., et al., 2008. Outer Dinarides: Eastern Adriatic Coast. Paleogene and Neogene. In: McCann, T., ed., The Geology of Central Europe, Volume 2: Mesozoic and Cenozoic. The Geological Society London, London. 1031–1139. |
Ćosović, V., Mrinjek, E., Nemec, W., et al., 2018. Development of Transient Carbonate Ramps in an Evolving Foreland Basin. Basin Research, 30(4): 746–765. https://doi.org/10.1111/bre.12274 |
Croatian Geological Survey, 2009. Geological Map of the Republic of Croatia 1 : 300 000. Croatian Geological Survey, Department of Geology, Zagreb |
D'Onofrio, R., Zaky, A. S., Frontalini, F., et al., 2021. Impact of the Middle Eocene Climatic Optimum (MECO) on Foraminiferal and Calcareous Nannofossil Assemblages in the Neo-Tethyan Baskil Section (Eastern Turkey): Paleoenvironmental and Paleoclimatic Reconstructions. Applied Sciences, 11(23): 11339. https://doi.org/10.3390/app112311339 |
Drobne, K., Bartol, M., Premec Fuček, V., et al., 2012. Microfauna and Nannoplankton below the Paleocene/Eocene Transition in Hemipelagic Sediments at the Southern Slope of Mt. Nanos (NW Part of the Paleogene Adriatic Carbonate Platform, Slovenia). Austrian Journal of Earth Sciences, 105(1): 208–223 |
Fagel, N., 2007. Clay Minerals, Deep Circulation and Climate. In: Hillaire-Marcel, C., de Vernal A., eds., Proxies in Late Cenozoic Paleoceanography. Developments in Marine Geology, Volume 1, Elsevier. 139–184. |
Fedo, C. M., Nesbitt, H. W., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921–924. https://doi.org/10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 |
Galović, I., Lukić, R., Pezelj, Đ., et al., under review. Record of Mid-Eocene Warming Events in the Istrian Paleogene Basin, Neotethys (Outer Dinarides, Croatia). Journal of Micropalaeontology |
Gingele, F. X., De Deckker, P., Hillenbrand, C. D., 2001. Clay Mineral Distribution in Surface Sediments between Indonesia and NW Australia—Source and Transport by Ocean Currents. Marine Geology, 179(3/4): 135–146. https://doi.org/10.1016/s0025-3227(01)00194-3 |
Gobo, K., Mrinjek, E., Ćosović, V., 2020. Mass-Transport Deposits and the Onset of Wedge-Top Basin Development: an Example from the Dinaric Foreland Basin, Croatia. Journal of Sedimentary Research, 90(11): 1527–1548. https://doi.org/10.2110/jsr.2019.192 |
Goldich, S. S., 1938. A Study in Rock-Weathering. The Journal of Geology, 46(1): 17–58. https://doi.org/10.1086/624619 |
Grimani, I., Šušnjar, M., Bukovac, J., et al., 1973. Osnovna Geološka Karta SFRJ 1 : 100 000, Tumač za list Crikvenica L33-102. Geološki Zavod Zagreb, Savezni Geološki Zavod, Beograd (in Croatian) |
ICDD, 2004. Powder Diffraction File 2004, Database Sets 1–54. International Centre for Diffraction Data (ICDD), Newtown Square, Pennsylvania, USA |
Halamić, J., Peh, Z., Miko, S., et al., 2012. Geochemical Atlas of Croatia: Environmental Implications and Geodynamical Thread. Journal of Geochemical Exploration, 115: 35–46. https://doi: 10.1016/j.gexplo.2012.02.006 |
Handy, M. R., Ustaszewski, K., Kissling, E., 2015. Reconstructing the Alps–Carpathians–Dinarides as a Key to Understanding Switches in Subduction Polarity, Slab Gaps and Surface Motion. International Journal of Earth Sciences, 104(1): 1–26. https://doi.org/10.1007/s00531-014-1060-3 |
Harnois, L., 1988. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 55(3): 319–322. https://doi.org/10.1016/0037-0738(88)90137-6 |
Horvat, M., Aljinović, D., Tomašić, N., et al., 2022. Introduction to the Bulk Chemistry of the Eocene Hemipelagic/Pelagic Deposits in the Dinaric Foreland Basin. In: Peytcheva, I., Lazarova, A., Granchovski, G., et al., eds., XXII International Congress of the Carpathian-Balkan Geological Association (CBGA), Sept. 7–11, 2022, Plovdiv, Bulgaria. 86–86 |
Liu, Z. F., Colin, C., Huang, W., et al., 2007. Clay Minerals in Surface Sediments of the Pearl River Drainage Basin and Their Contribution to the South China Sea. Chinese Science Bulletin, 52(8): 1101–1111. https://doi.org/10.1007/s11434-007-0161-9 |
Lü, S., Ye, C. C., Fang, X. M., et al., 2021. Middle to Late Eocene Chemical Weathering History in the Southeastern Tibetan Plateau and Its Response to Global Cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110136. https://doi.org/10.1016/j.palaeo.2020.110136 |
Luciani, V., Giusberti, L., Agnini, C., et al., 2010. Ecological and Evolutionary Response of Tethyan Planktonic Foraminifera to the Middle Eocene Climatic Optimum (MECO) from the Alano Section (NE Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1/2): 82–95. https://doi.org/10.1016/j.palaeo.2010.03.029 |
Lugović, B., Altherr, R., Marjanac, T., et al., 1998. Orogenic Signatures in Late Cenozoic Volcanic Rocks from the Northern External Dinarides, Croatia. Acta Vulcanologica, 10(1): 55–65 |
Lužar-Oberiter, B., Hochuli, P., Babić, L., et al., 2010. Climatic Cycles Recorded in the Middle Eocene Hemipelagites from a Dinaric Foreland Basin of Istria (Croatia). Geologica Carpathica, 61(3): 193–200. https://doi.org/10.2478/v10096-010-0010-7 |
Marinčić, S., 2010. Tectonic Structure of the Island of Hvar (Southern Croatia). Geologia Croatica, 50: 57–77. https://doi.org/10.4154/gc.1997.07 |
Marjanac, T., Ćosović, V., 2000. Tertiary Depositional History of Eastern Adriatic Realm. Vijesti Hrvatskoga Geološkog Društva, 37(2): 93–103 |
Marjanac, T., Babac, D., Benić, J., et al., 1998. Eocene Carbonate Sediments and Sea-Level Changes on the NE Part of Adriatic Carbonate Platform (Island of Hvar and Pelješac Penninsula, Croatia). In: Hottinger, L., Drobne, K., eds., Paleogene Shallow Benthos of the Tethys, 2. Slovenian Academy of Sciences and Art, Ljubjana. 243–254 |
McLennan S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295–303. https://www.jstor.org/stable/30081153 |
Methner, K., Campani, M., Fiebig, J., et al., 2020. Middle Miocene Long-Term Continental Temperature Change in and out of Pace with Marine Climate Records. Scientific Reports, 10: 7989. https://doi.org/10.1038/s41598-020-64743-5 |
Moore, D. M., Reynolds, R. C., 1997. X-Ray Diffraction and Identification and Analysis of Clay Minerals. 2nd Edition, Oxford University Press, New York |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715–717. https://doi.org/10.1038/299715a0 |
Nesbitt, H. W., Young, G. M., 1984. Prediction of some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3 |
Panalytical, 2004. X'Pert High Score Plus, Version 2.1. Panalytical, Almelo, The Netherlands |
Petrinjak, K., Budić, M., Bergant, S., et al., 2021. Megabeds in Istrian Flysch as Markers of Synsedimentary Tectonics within the Dinaric Foredeep (Croatia). Geologia Croatica, 74(2): 99–120. https://doi.org/10.4154/gc.2021.07 |
Placer, L., Vrabec, M., Celarc, B., 2010. The Bases for Understanding of the NW Dinarides and Istria Peninsula Tectonics. Geologija, 53(1): 55–86. https://doi.org/10.5474/geologija.2010.005 |
Prtoljan, B., Bergant, S., Krstulović, M., et al., 2009. "Eocene Flysch" of the Konavle Area (SE Croatia)—Is It really Eocene and is it really Flysch? 27 IAS Meeting of Sedimentologists, Sept. 20–23, 2009, Alghero, Italy |
Rivero-Cuesta, L., Westerhold, T., Alegret, L., 2020. The Late Lutetian Thermal Maximum (Middle Eocene): First Record of Deep-Sea Benthic Foraminiferal Response. Palaeogeography Palaeoclimatology Palaeoecology, 545: 109637. https://doi.org/10.1016/j.palaeo.2020.109637 |
Roy, D. K., Roser, B. P., 2013. Climatic Control on the Composition of Carboniferous–Permian Gondwana Sediments, Khalaspir Basin, Bangladesh. Gondwana Research, 23(3): 1163–1171. https://doi.org/10.1016/j.gr.2012.07.006 |
Saxena, S., Chakraborty, A., Galović, I., et al., 2022. New Insights into the Earliest Occurrence, Possible Evolutionary Lineage, Palaeogeography and Palaeoclimatic Implications of Nicklithus Amplificus: Evidence from the Adriatic Sea, Indian Ocean and Paratethys. Marine Micropaleontology, 172: 102111. https://doi.org/10.1016/j.marmicro.2022.102111 |
Schmid, S. M., Bernoulli, D., Fügenschuh, B., et al., 2008. The Alpine-Carpathian-Dinaridic Orogenic System: Correlation and Evolution of Tectonic Units. Swiss Journal of Geosciences, 101(1): 139–183. https://doi.org/10.1007/s00015-008-1247-3 |
Schroll, E., Sauer, D., 1968. Beitrag zur Geochemie von Titan, Chrom, Nickel, Cobalt, Vanadium und Molyb din in Bauxitischen Gesteinen und das Problem der stofflichen Herkunft des Aluminiums. Travaux du ICSOBA, 5: 83–96 |
Šiftar, D., 1981. On the Chemism of Barite and on the some Conditions of the Barite Deposit Formatition in Gorski Kotar and Lika. Geološki Vjesnik, 34: 95–107 |
Španiček, J., Ćosović, V., Mrinjek, E., et al., 2017. Early Eocene Evolution of Carbonate Depositional Environments Recorded in the Čikola Canyon (North Dalmatian Foreland Basin, Croatia). Geologia Croatica, 70(1): 11–25. https://doi.org/10.4154/gc.2017.05 |
Stampfli, G. M., 2005. Plate Tectonics of the Apulia-Adria Microcontinents. In: Finetti, J. R., ed., CROP Project: Deep Seismic Exploration of the Central Mediterranean and Italy. Elsevier, Amsterdam. 747–766 |
Šušnjar, M., Bukovac, J., Nikler, L., et al., 1970. Osnovna Geološka Karta SFRJ 1 : 100 000, List Crikvenica L33–102. Institut za Geološka Istraživanja, Zagreb (1961–1969). Savezni geološki zavod, Beograd (in Croatian) |
Tari-Kovačić, V., 1998. Geodynamics of the Middle Adriatic Offshore Area, Croatia, Based on Stratigraphic and Seismic Analysis of Paleogene Beds. Acta Geologica Hungarica, 41: 313–326 |
Tari-Kovačić, V., Kalac, K., Lučić, D., et al., 1998. Stratigraphic Analysis of Paleogene Beds in some Off-Shore Wells (Central Adriatic Area, Croatia). In: Hottinger, L., Drobne, K., eds., Paleogene Shallow Benthos of the Tethys, 2. Slovenian Academy of Sciences and Art, Ljubljana. 203–242 |
Taylor, S., McLennan, S., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London. 312 |
Thiry, M., 2000. Palaeoclimatic Interpretation of Clay Minerals in Marine Deposits: An Outlook from the Continental Origin. Earth-Science Reviews, 49(1/2/3/4): 201–221. https://doi.org/10.1016/s0012-8252(99)00054-9 |
van der Ploeg, R., Selby, D., Cramwincekel, M., et al., 2018. Middle Eocene Greenhouse Warming Facilitated by Diminished Weathering Feedback. Nature Communication, 9: 2877. https://doi.org/10.1038/s41467-018-05104-9 |
van Dijk, J., Fernandez, A., Bernasconi, S. M., et al., 2020. Spatial Pattern of Super-Greenhouse Warmth Controlled by Elevated Specific Humidity. Nature Geoscience, 13: 739–744. https://doi.org/10.1038/s41561-020-00648-2 |
Vlahović, I., Tišljar, J., Velić, I., et al., 2005. Evolution of the Adriatic Carbonate Platform: Palaeogeography, Main Events and Depositional Dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3/4): 333–360. https://doi.org/10.1016/j.palaeo.2005.01.011 |
Vragović, M., Golub, L. J., 1969. Hornblenda-Andesite (Porphyrite) from G. Benkovac near Fužine, Gorskikotar. Acta Geologica, 46: 55–66 |
Wei, G., Li, X. -H., Liu, Y., et al., 2006. Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 21: PA4214. https://doi.org/10.1029/2006pa001300 |
Westerhold, T., Röhl, U., Donner, B., et al., 2018. Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System? Geochemistry, Geophysics, Geosystems, 19(1): 73–82. https://doi.org/10.1002/2017gc007240 |
Zachos, J. C., Dickens, G. R., Zeebe, R. E., 2008. An Early Cenozoic Perspective on Greenhouse Warming and Carbon-Cycle Dynamics. Nature, 451: 279–283. https://doi.org/10.1038/nature06588 |
Zamagni, J., Mutti, M., Košir, A., 2008. Evolution of Shallow Benthic Communities during the Late Paleocene–Earliest Eocene Transition in the Northern Tethys (SW Slovenia). Facies, 54(1): 25–43. https://doi.org/10.1007/s10347-007-0123-3 |
Živković, S., Babić, L., 2003. Paleoceanographic Implications of Smaller Benthic and Planktonic Foraminifera from the Eocene Pazin Basin (Coastal Dinarides, Croatia). Facies, 49(1): 49–60. https://doi.org/10.1007/s10347-003-0024-z |
Živković, S., Glumac, B., 2007. Paleoenvironmental Reconstruction of the Middle Eocene Trieste-Pazin Basin (Croatia) from Benthic Foraminiferal Assemblages. Micropaleontology, 53(4): 285–310. https://doi.org/10.2113/gsmicropal.53.4.285 |