Citation: | Jiang Zhu, Zhanke Li, Guohu Wang, Xianbin Shi, Yang Wang, Chao Chen, Song Chen, Yuanbing Zou. Magmatic Processes of the Lingshan Granitic Batholith in the Dabie Orogen, Central China: Insights into Dabie-Type Porphyry Mo Mineralization. Journal of Earth Science, 2025, 36(5): 2075-2093. doi: 10.1007/s12583-023-1914-1 |
Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits, and had unique geological characteristics. It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mineralization. Here, we present zircon U-Pb and Lu-Hf isotopic, whole-rock and biotite elemental, and whole-rock Sr-Nd isotopic analyses on the Lingshan granitic batholith in the Dabie Orogen. It consists of three units (Ⅰ to Ⅲ) that were emplaced before, genetically accompanied with, and after the Mo mineralization. LA-ICP-MS zircon U-Pb dating yielded crystallization ages of 128.2 ± 1.0 Ma (MSWD = 1.14) for Unit Ⅰ and ages of 127.8 ± 1.2 Ma (MSWD = 0.28) and 126.6 ± 1.8 Ma (MSWD = 1.6) for Unit Ⅱ, indicating that they were emplaced during 130 to 125 Ma. The granites have high SiO2 contents (75.84 wt.% to 78.94 wt.%) and low MgO contents (0.07 wt.% to 0.10 wt.%), and are classified as fractionated Ⅰ-Type granite. Units Ⅰ and Ⅱ have similar Sr-Nd isotopic ratios (
Agangi, A., Kamenetsky, V. S., McPhie, J., 2010. The Role of Fluorine in the Concentration and Transport of Lithophile Trace Elements in Felsic Magmas: Insights from the Gawler Range Volcanics, South Australia. Chemical Geology, 273(3/4): 314–325. https://doi.org/10.1016/j.chemgeo.2010.03.008 |
Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): PA1016. https://doi.org/10.1029/2004pa001112 |
Audétat, A., 2015. Compositional Evolution and Formation Conditions of Magmas and Fluids Related to Porphyry Mo Mineralization at Climax, Colorado. Journal of Petrology, 56(8): 1519–1546. https://doi.org/10.1093/petrology/egv044 |
Ballard, J. R., Palin, J. M., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347–364. https://doi.org/10.1007/s00410-002-0402-5 |
Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260. https://doi.org/10.1007/s004100050278 |
Bowen, N. L., 1928. The Evolution of the Igneous Rocks. Princeton University Press, Princeton |
Buret, Y., von Quadt, A., Heinrich, C., et al., 2016. From a Long-Lived Upper-Crustal Magma Chamber to Rapid Porphyry Copper Emplacement: Reading the Geochemistry of Zircon Crystals at Bajo de la Alumbrera (NW Argentina). Earth and Planetary Science Letters, 450: 120–131. https://doi.org/10.1016/j.epsl.2016.06.017 |
Cao, Z. Q., Cai, Y. T., Zeng, Z. X., et al., 2017. Discovery of Neoproterozoic A-Type Granite in Northern Yangtze Craton and Its Tectonic Significance. Earth Science, 42(6): 957–973 (in Chinese with English Abstract) |
Cashman, K. V., Sparks, R. S., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055.10.1126/science. aag3055 doi: 10.1126/science.aag3055 |
Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551. https://doi.org/10.1016/s0024-4937(98)00086-3 |
Chappell, B. W., Bryant, C. J., Wyborn, D., 2012. Peraluminous Ⅰ-Type Granites. Lithos, 153: 142–153. https://doi.org/10.1016/j.lithos.2012.07.008 |
Chen, H. J., Chen, Y. J., Zhang, J., et al., 2013. Zircon U-Pb Ages and Hf Isotope Characteristics of the Orebearing Intrusion from the Shapinggou Molybdenum Deposit, Jinzhai County, Anhui Province. Acta Petrologica Sinica, 29: 131–145 |
Chen, W., Mao, J. W., Xu, Z. W., et al., 2018. Two Stages of Cretaceous Granitic Magmatisms and Mo Mineralizations in West Dabie Orogenic Belt. Earth Science, 43(12): 4638–4650 (in Chinese with English Abstract) |
Chen, W., Xu, Z. W., Chen, M. H., et al., 2016. Multiple Sources for the Origin of the Early Cretaceous Xinxian Granitic Batholith and Its Tectonic Implications for the Western Dabie Orogen, Eastern China. Mineralogy and Petrology, 110(1): 29–41. https://doi.org/10.1007/s00710-015-0409-z |
Chen, W., Xu, Z. W., Lu, X. C., et al., 2013. Petrogenesis of the Bao'anzhai Granite and Associated Mo Mineralization, Western Dabie Orogen, East-Central China: Constraints from Zircon U-Pb and Molybdenite Re-Os Dating, Whole-Rock Geochemistry, and Sr-Nd-Pb-Hf Isotopes. International Geology Review, 55(10): 1220–1238. https://doi.org/10.1080/00206814.2013.772322 |
Chen, W., Xu, Z. W., Qiu, W. H., et al., 2015. Petrogenesis of the Yaochong Granite and Mo Deposit, Western Dabie Orogen, Eastern-Central China: Constraints from Zircon U-Pb and Molybdenite Re-Os Ages, Whole-Rock Geochemistry and Sr-Nd-Pb-Hf Isotopes. Journal of Asian Earth Sciences, 103: 198–211. https://doi.org/10.1016/j.jseaes.2015.01.010 |
Chen, W., Xu, Z. W., Li, H. C., et al., 2013. Petrogenesis and Origin of the Xinxian Granitic Batholith in Henan Province and Its Implication for the Tectonic Evolution of the Western Dabie Area. Acta Geologica Sinica, 87(10): 1510–1524 (in Chinese with English Abstract) |
Chen, Y. J., Wang, P., Li, N., et al., 2017. The Collision-Type Porphyry Mo Deposits in Dabie Shan, China. Ore Geology Reviews, 81: 405–430. https://doi.org/10.1016/j.oregeorev.2016.03.025 |
Chiaradia, M., 2014. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. Nature Geoscience, 7(1): 43–46. https://doi.org/10.1038/ngeo2028 |
Cooke, D. R., Hollings, P., Walshe, J. L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801–818. https://doi.org/10.2113/gsecongeo.100.5.801 |
Dong, Y. P., Liu, X. M., Santosh, M., et al., 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry. Precambrian Research, 196: 247–274. https://doi.org/10.1016/j.precamres.2011.12.007 |
Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.1016/j.gr.2015.06.009 |
Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002. |
Ernst, W. G., Tsujimori, T., Zhang, R., et al., 2007. Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35: 73–110. https://doi.org/10.1146/annurev.earth.35.031306.140146 |
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0 |
Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral MICAS. U. S. Geol. Survey Professional Paper, 354: 11–49 |
Gao, Y., Mao, J. W., Ye, H. S., et al., 2014a. Geochronology, Geochemistry and Sr-Nd-Pb Isotopic Constraints on the Origin of the Qian'echong Porphyry Mo Deposit, Dabie Orogen, East China. Journal of Asian Earth Sciences, 85: 163–177. https://doi.org/10.1016/j.jseaes.2014.02.004 |
Gao, Y., Mao, J. W., Ye, H. S., et al., 2016. Petrogenesis of Ore-Bearing Porphyry from the Tangjiaping Porphyry Mo Deposit, Dabie Orogen: Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Constraints. Ore Geology Reviews, 79: 288–300. https://doi.org/10.1016/j.oregeorev.2016.05.015 |
Gao, Y., Ye, H. S., Li, Y. F., et al., 2014b. SHRIMP Zircon U-Pb Ages, Hf Isotopic Compositions and Trace Elements Characteristics of the Granites from the Qian'echong Mo Deposit, Dabie Orogen. Acta Petrologica Sinica, 30(1): 49–63 (in Chinese with English Abstract) |
Guo, S. S., Li, S. G., 2007. Petrological and Geochemical Constraints on the Origin of Leucogranites. Earth Science Frontiers, 14(6): 290–298 (in Chinese with English Abstract) |
Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215–230. https://doi.org/10.1016/S0012-821x(98)00152-6 |
Hacker, B. R., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic-Early Jurassic Tectonic Unroofing. JGR, 105(B6): 13339–13364. https://doi.org/10.1029/2000jb900039 |
He, Y. S., Li, S. G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13): 3815–3838. https://doi.org/10.1016/j.gca.2011.04.011 |
Henry, D. J., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2/3): 316–328. https://doi.org/10.2138/am.2005.1498 |
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem., 53(1): 27–62. https://doi.org/10.1515/9781501509322-005 |
Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. https://doi.org/10.1039/c2ja30078h |
Huang, F., Li, S. G., Dong, F., et al., 2007. Recycling of Deeply Subducted Continental Crust in the Dabie Mountains, Central China. Lithos, 96(1/2): 151–169. https://doi.org/10.1016/j.lithos.2006.09.019. |
Huang, Y., 2011. Sedimentology and Geochemistry of the Black Rock Series in Early Cambrian Niutitang Formation in Zhangjiajie, Hunan: [Dissertation]. Chengdu University of Technology, Chengdu |
Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017 |
Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/s0009-2541(98)00197-1 |
Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 11(3): Q03004. https://doi.org/10.1029/2009gc002788 |
Klemm, L. M., Pettke, T., Heinrich, C. A., 2008. Fluid and Source Magma Evolution of the Questa Porphyry Mo Deposit, New Mexico, USA. Mineralium Deposita, 43(5): 533–552. https://doi.org/10.1007/s00126-008-0181-7 |
Lai, S. C., Qin, J. F., Chen, L., et al., 2008. Geochemistry of Ophiolites from the Mian-Lue Suture Zone: Implications for the Tectonic Evolution of the Qinling Orogen, Central China. International Geology Review, 50(7): 650–664. https://doi.org/10.2747/0020-6814.50.7.650 |
Li, C. Y., Wang, F. Y., Hao, X. L., et al., 2012. Formation of the World's Largest Molybdenum Metallogenic Belt: A Plate-Tectonic Perspective on the Qinling Molybdenum Deposits. International Geology Review, 54(9): 1093–1112. https://doi.org/10.1080/00206814.2011.623039 |
Li, C. Y., Zhang, H., Wang, F. Y., et al., 2012. The Formation of the Dabaoshan Porphyry Molybdenum Deposit Induced by Slab Rollback. Lithos, 150: 101–110. https://doi.org/10.1016/j.lithos.2012.04.001 |
Li, H. C., Xu, Z. W., Lu, X. C., et al., 2012. Constraints on Timing and Origin of the Dayinjian Intrusion and Associated Molybdenum Mineralization, Western Dabie Orogen, Central China. International Geology Review, 54(13): 1579–1596. https://doi.org/10.1080/00206814.2012.684460 |
Li, M. L., 2009. Characteristics of Intermediate-Acid Small Intrusive Bodies and Metallogenic System of Molybdenum-Polymetallic Deposits in Mesozoic in Dabie Mountain, Henan Province: [Dissertation]. China University of Geoscience, Beijing (in Chinese with English Abstract) |
Li, N., Chen, Y. J., Pirajno, F., et al., 2013. Timing of the Yuchiling Giant Porphyry Mo System, and Implications for Ore Genesis. Mineralium Deposita, 48(4): 505–524. https://doi.org/10.1007/s00126-012-0441-4 |
Li, S. K., Liu, X. L., Lu, Y. X., et al., 2022. Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore-Concentrated Area, Southern Yidun Arc. Earth Science, 47(4): 1435–1458 (in Chinese with English Abstract) |
Li, W. K., Cheng, Y. Q., Yang, Z. M., 2019. Geo-fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542–2555. https://doi.org/10.1029/2019gc008273 |
Li, W. T., Jiang, S. Y., Fu, B., et al., 2021. Zircon HfO Isotope and Magma Oxidation State Evidence for the Origin of Early Cretaceous Granitoids and Porphyry Mo Mineralization in the Tongbai-Hong'an-Dabie Orogens, Eastern China. Lithos, 398: 106281. https://doi.org/10.1016/j.lithos.2021.106281 |
Lin, W. W., Peng, L. J., 1994. The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data. J. Changchun Univ. Earth Sci. , 24: 155–162 |
Liu, Q. Q., Shao, Y. J., Chen, X. M., et al., 2016. Petrogeochemistry, Geochronology and Hf Isotopes of the Monzogranite from Xinxian, Southern Region in Henan Province. Earth Science, 41(8): 1275–1294 (in Chinese with English Abstract) |
Liu, X. C., Jahn, B. M., Liu, D. Y., et al., 2004. SHRIMP U-Pb Zircon Dating of a Metagabbro and Eclogites from Western Dabieshan (Hong'an Block), China, and Its Tectonic Implications. Tectonophysics, 394(3/4): 171–192. https://doi.org/10.1016/j.tecto.2004.08.004 |
Liu, X., Wei, C., Li, S., et al., 2004. Thermobaric Structure of a Traverse across Western Dabieshan: Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons. Journal of Metamorphic Geology, 22(4): 361–379. https://doi.org/10.1111/j.1525-1314.2004.00519.x |
Liu, X. C., Dong, S. W., Li, S. Z., et al., 2005. Timing of the Hong'an Group in Hubei: Constraints from U-Pb Dating of Metagranitic Intrusions. Chinese Geology, 32(1): 75–81 (in Chinese with English Abstract) |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/pet rology/egaa034 doi: 10.1093/petrology/egaa034 |
Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley |
Luo, B. J., Zhang, H. F., Zhang, L. Q., et al., 2020. The Magma Plumbing System of Mesozoic Shanyang Porphyry Groups, South Qinling and Implications for Porphyry Copper Mineralization. Earth and Planetary Science Letters, 543: 116346. https://doi.org/10.1016/j.epsl.2020.116346 |
Luo, Y. N., Chen, J. W., Tang, Z. G., 2012. Geological Features and Genesis for the Doupo Mo Deposit in Luoshan, Henan. Acta Geologica Sichuan, 32(3): 278–280 (in Chinese with English Abstract) |
Ma, C. Q., Ehlers, C., Xu, C. H., et al. . 2000. The Roots of the Dabieshan Ultrahighpressure Metamorphic Terrane: Constraints from Geochemistry and Nd-Sr Isotope Systematics. Precambrian Research, 102: 279301 |
Ma, C. Q., Li, Z. C., Ehlers, C., et al., 1998. A Post-Collisional Magmatic Plumbing System: Mesozoic Granitoid Plutons from the Dabieshan High-Pressure and Ultrahigh-Pressure Metamorphic Zone, East-Central China. Lithos, 45(1/2/3/4): 431–456. https://doi.org/10.1016/s0024-4937(98)00043-7 |
Ma, C. Q., Yang, K. G., Ming, H. L., et al., 2003. The Timing of Tectonic Transition from Compression to Extension in Dabie Orogen: Evidences from Mesozoic Granites. Science China (Ser. D), 33: 817–827 (in Chinese with English Abstract) |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 |
McCulloch, M. T., Rosman, K. J. R., de Laeter, J. R., 1977. The Isotopic and Elemental Abundance of Ytterbium in Meteorites and Terrestrial Samples. Geochimica et Cosmochimica Acta, 41(12): 1703–1707. https://doi.org/10.1016/0016-7037(77)90202-2 |
Meng, F., 2013. Study on Rock-Forming and Ore-Forming of the Lingshan Plunton in the Northern Margin of Dabie Mountains: [Dissertation]. China University of Geoscience, Beijing (in Chinese with English Abstract) |
Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183–196. https://doi.org/10.1016/s0040-1951(00)00106-2 |
Mi, M., Chen, Y. J., Yang, Y. F., et al., 2015. Geochronology and Geochemistry of the Giant Qian'echong Mo Deposit, Dabie Shan, Eastern China: Implications for Ore Genesis and Tectonic Setting. Gondwana Research, 27(3): 1217–1235. https://doi.org/10.1016/j.gr.2014.05.006 |
Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 |
Niu, P. P., Jiang, S. Y., 2023. Geochronology and Geochemistry of Wangjiadashan Quartz Syenite Porphyry in Suizao Area of Hubei Province in the Tongbai-Dabie Orogenic Belt. Journal of Earth Science, 34(3): 790–805. https://doi.org/10.1007/s12583-020-1383-x |
Niu, P. P., Jiang, S. Y., 2020. Petrogenesis of the Late Mesozoic Qijinfeng Granite Complex in the Tongbai Orogen: Geochronological, Geochemical and Sr-Nd-Pb-Hf Isotope Evidence. Lithos, 356: 105290. https://doi.org/10.1016/j.lithos.2019.105290 |
Niu, P. P., Jiang, S. Y., 2021. Geochronological, Geochemical, and Sr-Nd-Pb-Hf Isotopes of Cretaceous Gneissic Granite and Quartz Monzonite in the Tongbai Complex: Record of Lower Crust Thickening beneath the Tongbai Orogen. Geological Journal, 56(8): 4126–4149. https://doi.org/10.1002/gj.4154 |
Niu, P. P., Jiang, S. Y., Li, W. T., et al., 2022. Hydrothermal Evolution and Origin of the Suixian Molybdenum Deposit in the Tongbai Orogenic Belt, China: Constraints from Geology, Fluid Inclusions and Multiple Isotopes (HOCSPb). Ore Geology Reviews, 148: 105036. https://doi.org/10.1016/j.oregeorev.2022.105036 |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745 |
Qiao, G. S., 1988. Normalization of Isotopic Dilution Analysis—A New Program for Isotope Mass Spectrometric Analysis. Science in China, Ser. A, 31(10): 1263–1268 (in Chinese with English Abstract) |
Qiu, J. T., Yu, X. Q., Santosh, M., et al., 2013. Geochronology and Magmatic Oxygen Fugacity of the Tongcun Molybdenum Deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545–556. https://doi.org/10.1007/s00126-013-0456-5 |
Qiu, X. F., Peng, S. G., Gong, Y. J., et al., 2014. Metallogenic Regularities and Prospecting Potential of the Rutile Deposits in the Wudang-Tongbai-Dabie Metallogenic Belt. Geology and Mineral Resources of South China, 30(2): 155–161 (in Chinese with English Abstract) |
Qiu, X. F., Peng, L. H., Kong, L. Y., et al., 2024. Discovery of Eoarchean Gneisses in Northern Dabie Belt. Earth Science, 49(11): 3960–3970 (in Chinese with English Abstract) |
Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53. https://doi.org/10.1016/S0040-1951(03)00053-2 |
Ren, Z., Zhou, T. F., Hollings, P., et al., 2018. Magmatism in the Shapinggou District of the Dabie Orogen, China: Implications for the Formation of Porphyry Mo Deposits in a Collisional Orogenic Belt. Lithos, 308: 346–363. https://doi.org/10.1016/j.lithos.2018.03.013 |
Ren, Z., Zhou, T. F., Yuan, F., et al., 2014. The Stages of Magmatic System in Shapinggou Molybdenum Deposit District, Anhui Province: Evidence from Geochronology and Geochemistry. Acta Petrologica Sinica, 30(4): 1097–1116 (in Chinese with English Abstract) |
Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas: An Overview, New Thermobarometric Formulations and Application to Subduction-Related Volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66. https://doi.org/10.1007/s00410-009-0465-7 |
Seedorff, E., 2004. Henderson Porphyry Molybdenum System, Colorado: I. Sequence and Abundance of Hydrothermal Mineral Assemblages, Flow Paths of Evolving Fluids, and Evolutionary Style. Economic Geology, 99(1): 3–37. https://doi.org/10.2113/99.1.3 |
Selby, D., Nesbitt, B. E., Muehlenbachs, K., et al., 2000. Hydrothermal Alteration and Fluid Chemistry of the Endako Porphyry Molybdenum Deposit, British Columbia. Economic Geology, 95(1): 183–202. https://doi.org/10.2113/gsecongeo.95.1.183 |
Shinohara, H., Kazahaya, K., Lowenstern, J. B., 1995. Volatile Transport in a Convecting Magma Column: Implications for Porphyry Mo Mineralization. Geology, 23(12): 1091. https://doi.org/10.1130/0091-7613(1995)023<1091:vtiacm>2.3.co;2 doi: 10.1130/0091-7613(1995)023<1091:vtiacm>2.3.co;2 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Sun, W. D., Li, C. Y., Hao, X. L., et al., 2016. Oceanic Anoxic Events, Subduction Style and Molybdenum Mineralization. Solid Earth Sciences, 1(2): 64–73. https://doi.org/10.1016/j.sesci.2015.11.001 |
Sun, W. D., Huang, R. F., Li, H., et al., 2015a. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004 |
Sun, W. D., Li, C. Y., Ling, M. X., et al., 2015b. The Geochemical Behavior of Molybdnum and Mineralization. Acta Petrologica Sinica, 31(7): 1807–1817 (in Chinese with English Abstract) |
Sun, W. D., Williams, I. S., Li, S. G., 2002. Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China: Evidence for Protracted Convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873–886. https://doi.org/10.1046/j.1525-1314.2002.00418.x |
Thompson, J. F. H., Sillitoe, R. H., Baker, T., et al., 1999. Intrusion-Related Gold Deposits Associated with Tungsten-Tin Provinces. Mineralium Deposita, 34(4): 323–334. https://doi.org/10.1007/s001260050207 |
Trail, D., Bruce Watson, E., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70–87. https://doi.org/10.1016/j.gca.2012.08.032 |
Wan, J., Wu, B., Guo, P., et al., 2017. Zircon U-Pb Dating and Geochemical Characteristics of the Xiadian Magmatic Rock Body in Western Dabie Orogenic Belt and Its Redefinition as the A-Type Granite. Acta Petrologica et Mineralogica, 36: 633–645 (in Chinese with English Abstract) |
Wang, G. G., Ni, P., Yu, W., et al., 2014. Petrogenesis of Early Cretaceous Post-Collisional Granitoids at Shapinggou, Dabie Orogen: Implications for Crustal Architecture and Porphyry Mo Mineralization. Lithos, 184: 393–415. https://doi.org/10.1016/j.lithos.2013.11.009 |
Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206: 147–163. https://doi.org/10.1016/j.lithos.2014.07.026 |
Wang, R., Richards, J. P., Hou, Z., et al., 2014. Increased Magmatic Water Content: The Key to Oligo-Miocene Porphyry Cu-Mo Au Formation in the Eastern Gangdese Belt, Tibet. Economic Geology, 109(5): 1315–1339. https://doi.org/10.2113/econgeo.109.5.1315 |
Westra, G., Keith, S. B., 1981. Classification and Genesis of Stockwork Molybdenum Deposits. Economic Geology, 76(4): 844–873. https://doi.org/10.2113/gsecongeo.76.4.844 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202 |
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x |
Wones, D. R., Eugster, H. P., 1965. Stability of Biotite-Experiment Theory and Application. Am. Mineral. , 50: 1228–1272 |
Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chemical Geology, 209(1/2): 121–135. https://doi.org/10.1016/j.chemgeo.2004.04.026 |
Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ): Geochronology and Petrogenesis. Lithos, 66(3/4): 241–273. https://doi.org/10.1016/S0024-4937(02)00222-0 |
Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103–119. https://doi.org/10.1016/j.epsl.2005.02.019 |
Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: an Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428. https://doi.org/10.1016/j.gr.2012.09.007 |
Wyborn, D., Chappell, B. W., James, M., 2001. Examples of Convective Fractionation in High‐Temperature Granites from the Lachlan Fold Belt. Australian Journal of Earth Sciences, 48(4): 531–541 |
Xu, D. L., Peng, L. H., Deng, X., et al., 2023. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072–4087. https://doi.org/10.3799/dqkx.2023.042 (in Chinese with English Abstract) |
Xu, H. J., Ma, C. Q., Ye, K., 2007. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China: SHRIMP Zircon U-Pb Dating and Geochemistry. Chemical Geology, 240(3/4): 238–259. https://doi.org/10.1016/j.chemgeo.2007.02.018 |
Xu, H. J., Ma, C. Q., Zhang, J. F., et al., 2013. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust. Gondwana Research, 23(1): 190–207. https://doi.org/10.1016/j.gr.2011.12.009 |
Xu, Y. X., Zhang, S., Griffin, W. L., et al., 2016. How Did the Dabie Orogen Collapse? Insights from 3-D Magnetotelluric Imaging of Profile Data. Journal of Geophysical Research: Solid Earth, 121(7): 5169–5185. https://doi.org/10.1002/2015jb012717 |
Yang, C. Y., He, J., Yang, Y. Z., et al., 2020. Geochemical Characteristics and Petrogenesis of Monzogranites from the Xinxian Batholith, Dabie Orogenic Belt. Geological Journal of China Universities, 26(2): 132–146 |
Yang, M. Z., Jiang, S. Y., Zhao, K. D., et al., 2022. Episodic Emplacement of the Lingshan Granitic Complex and Related Two-Stage Molybdenum Mineralization in the Dabie Orogenic Belt. Ore Geology Reviews, 144: 104820. https://doi.org/10.1016/j.oregeorev.2022.104820 |
Yang, Y. F., Wang, P., Chen, Y. J., et al., 2017. Geochronology and Geochemistry of the Tianmugou Mo Deposit, Dabie Shan, Eastern China: Implications for Ore Genesis and Tectonic Setting. Ore Geology Reviews, 81: 484–503. https://doi.org/10.1016/j.oregeorev.2016.04.010 |
Yang, Z., Yang, L. Q., He, W. Y., et al., 2017. Control of Magmatic Oxidation State in Intracontinental Porphyry Mineralization: A Case from Cu (Mo-Au) Deposits in the Jinshajiang-Red River Metallogenic Belt, SW China. Ore Geology Reviews, 90: 827–846. https://doi.org/10.1016/j.oregeorev.2016.11.026 |
Yang, Z. Q., 2007. Re-Os Isotopic Ages of Tangjiaping Molybdenum Deposit in Shangcheng County, Henan Province and Their Geological Significance. Mineral Deposit, 26: 289–295 (in Chinese with English Abstract) |
Zhang, D. H., Wei, J. H., Nadeau, O., et al., 2022. Magmatic and Hydrothermal Evolution at Qian'echong, Central-Eastern China: Insights into Dabie-Type Porphyry Mo Mineralization. Journal of Petrology, 63(3): egac013. https://doi.org/10.1093/petrology/egac013 |
Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing (in Chinese with English Abstract) |
Zhang, H., Li, C. Y., Yang, X. Y., et al., 2014. Shapinggou: The Largest Climax-Type Porphyry Mo Deposit in China. International Geology Review, 56(3): 313–331. https://doi.org/10.1080/00206814.2013.855363 |
Zhang, H., Ling, M. X., Liu, Y. L., et al., 2013. High Oxygen Fugacity and Slab Melting Linked to Cu Mineralization: Evidence from Dexing Porphyry Copper Deposits, Southeastern China. The Journal of Geology, 121(3): 289–305. https://doi.org/10.1086/669975 |
Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3/4): 265–288. https://doi.org/10.1016/j.precamres.2006.08.009 |
Zhang, S. B., Zheng, Y. F., Zhao, Z. F., et al., 2008. Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 163(3/4): 210–238. https://doi.org/10.1016/j.precamres.2007.12.003 |
Zhang, S. B., Zheng, Y. F., Zhao, Z. F., et al., 2009. Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 113(3/4): 347–368. https://doi.org/10.1016/j.lithos.2009.04.024 |
Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science China Earth Sciences, 52(9): 1295–1318. https://doi.org/10.1007/s11430-009-0134-8 |
Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2007. Post-Collisional Granitoids from the Dabie Orogen in China: Zircon U-Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust. Lithos, 93(3/4): 248–272. https://doi.org/10.1016/j.lithos.2006.03.067 |
Zheng, Y. F., Zhang, L. F., McClelland, W. C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136: 1–9. https://doi.org/10.1016/j.lithos.2011.11.020 |
Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1/2): 135–158. https://doi.org/10.1016/j.chemgeo.2006.01.005 |
Zhou, H. S., Su, H., Ma, C. Q., 2009. Formation-Age, Tectonic Setting and Ascertainment of A-Type Granite on the Lingshan Pluton in Dabie Orogenic Belt. Journal of Xinyang Normal University, 22: 222–226 |
Zhou, T. C., Zeng, Q. D., Chu, S. X., et al., 2018. Magmatic Oxygen Fugacities of Porphyry Mo Deposits in the East Xing'an-Mongolian Orogenic Belt (NE China) with Metallogenic Implications. Journal of Asian Earth Sciences, 165: 145–159. https://doi.org/10.1016/j.jseaes.2018.04.004 |
Zhu, J., Chen, Y., Chen, C., et al., 2023. Paleo- to Meso-Proterozoic Tectono-Magmatic Events Recorded in the Huwan Complex from the Dabie Orogen, Central China: Evidence from Petrology and U-Pb Geochronology. Acta Geologica Sinica-English Edition, 97(4): 1150–1162. https://doi.org/10.1111/1755-6724.15017 |
Zhu, J., Peng, S., Liu, J., 2020. The Discovery of Fluorite Ore Spots in the Contact Zone of Cretaceous Lingshan Granitic Batholith in the Western Dabie Orogenic Belt. Geology in China, 47 (2): 550–551 (in Chinese with English Abstract) |
Zhu, J., Wang, L. X., Ma, J., et al., 2019a. Early Cretaceous Granitic Dykes in the Western Dabie Orogen, China: Geochronology, Petrogenesis, and Tectonic Implications. Geological Journal, 54(6): 3574–3592. https://doi.org/10.1002/gj.3355 |
Zhu, J., Wu, C., Peng, S., et al., 2019b. U-Pb Zircon Age, Geochemistry and Isotopic Characteristics of the Tanchong and Chenchong Granites in the Western Dabie Orogen, China: Constraints on Petrogenesis and Timing of Lower Crustal Delamination. Acta Geologica Sinica, 93(7): 1671–1686 (in Chinese with English Abstract) |
Zhu, J., Wu, C., Peng, S., et al., 2018. Geochronology and Geochemistry of Volcanic Rocks from the Huangchengshan Volcanogenic Epithermal Silver Deposit, Dabie Orogen, China: Implications for Tectonic Setting. Earth Science, 43(7): 2404–2419 (in Chinese with English Abstract) |
Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87–96. https://doi.org/10.1016/j.epsl.2018.10.031 |
Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87–96 (in Chinese with English Abstract) |