Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Jiang Zhu, Zhanke Li, Guohu Wang, Xianbin Shi, Yang Wang, Chao Chen, Song Chen, Yuanbing Zou. Magmatic Processes of the Lingshan Granitic Batholith in the Dabie Orogen, Central China: Insights into Dabie-Type Porphyry Mo Mineralization. Journal of Earth Science, 2025, 36(5): 2075-2093. doi: 10.1007/s12583-023-1914-1
Citation: Jiang Zhu, Zhanke Li, Guohu Wang, Xianbin Shi, Yang Wang, Chao Chen, Song Chen, Yuanbing Zou. Magmatic Processes of the Lingshan Granitic Batholith in the Dabie Orogen, Central China: Insights into Dabie-Type Porphyry Mo Mineralization. Journal of Earth Science, 2025, 36(5): 2075-2093. doi: 10.1007/s12583-023-1914-1

Magmatic Processes of the Lingshan Granitic Batholith in the Dabie Orogen, Central China: Insights into Dabie-Type Porphyry Mo Mineralization

doi: 10.1007/s12583-023-1914-1
More Information
  • Corresponding author: Jiang Zhu, zhujiang.01@foxmail.com
  • Received Date: 22 Jun 2022
  • Accepted Date: 06 Jul 2023
  • Available Online: 14 Oct 2025
  • Issue Publish Date: 30 Oct 2025
  • Dabie-type porphyry Mo deposits were proposed as a new type of porphyry Mo deposits, and had unique geological characteristics. It is still poorly understood about the magmatic processes that led to the Dabie-type Mo mineralization. Here, we present zircon U-Pb and Lu-Hf isotopic, whole-rock and biotite elemental, and whole-rock Sr-Nd isotopic analyses on the Lingshan granitic batholith in the Dabie Orogen. It consists of three units (Ⅰ to Ⅲ) that were emplaced before, genetically accompanied with, and after the Mo mineralization. LA-ICP-MS zircon U-Pb dating yielded crystallization ages of 128.2 ± 1.0 Ma (MSWD = 1.14) for Unit Ⅰ and ages of 127.8 ± 1.2 Ma (MSWD = 0.28) and 126.6 ± 1.8 Ma (MSWD = 1.6) for Unit Ⅱ, indicating that they were emplaced during 130 to 125 Ma. The granites have high SiO2 contents (75.84 wt.% to 78.94 wt.%) and low MgO contents (0.07 wt.% to 0.10 wt.%), and are classified as fractionated Ⅰ-Type granite. Units Ⅰ and Ⅱ have similar Sr-Nd isotopic ratios (εNd(t) = -16.2 to -17.2, (87Sr/86Sr)i = 0.705 40 to 0.706 92) and zircon εHf(t) values (-17.4 to -20.4), indicating they were derived from partial melting of the ancient Yangtze lower crust. Mo mineralized granite from Unit Ⅱ is characterized by the lower oxygen fugacity, fluorine enrichment and high fractionation. Magmas of units Ⅰ and Ⅱ have experienced fractional crystallization, with the assimilation of supracrustal materials that account for the increased TiO2, F and Mo contents, and the decreased ƒO2. We proposed that the assimilation in upper-crustal magmatic processes plays key factors for magmatic systems that led to the Dabie-type porphyry Mo deposits.

     

  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S3; Tables S1–S8) are available in the online version of this article at https://doi.org/10.1007/s12583-023-1914-1.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Agangi, A., Kamenetsky, V. S., McPhie, J., 2010. The Role of Fluorine in the Concentration and Transport of Lithophile Trace Elements in Felsic Magmas: Insights from the Gawler Range Volcanics, South Australia. Chemical Geology, 273(3/4): 314–325. https://doi.org/10.1016/j.chemgeo.2010.03.008
    Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): PA1016. https://doi.org/10.1029/2004pa001112
    Audétat, A., 2015. Compositional Evolution and Formation Conditions of Magmas and Fluids Related to Porphyry Mo Mineralization at Climax, Colorado. Journal of Petrology, 56(8): 1519–1546. https://doi.org/10.1093/petrology/egv044
    Ballard, J. R., Palin, J. M., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(Ⅳ)/Ce(Ⅲ) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347–364. https://doi.org/10.1007/s00410-002-0402-5
    Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260. https://doi.org/10.1007/s004100050278
    Bowen, N. L., 1928. The Evolution of the Igneous Rocks. Princeton University Press, Princeton
    Buret, Y., von Quadt, A., Heinrich, C., et al., 2016. From a Long-Lived Upper-Crustal Magma Chamber to Rapid Porphyry Copper Emplacement: Reading the Geochemistry of Zircon Crystals at Bajo de la Alumbrera (NW Argentina). Earth and Planetary Science Letters, 450: 120–131. https://doi.org/10.1016/j.epsl.2016.06.017
    Cao, Z. Q., Cai, Y. T., Zeng, Z. X., et al., 2017. Discovery of Neoproterozoic A-Type Granite in Northern Yangtze Craton and Its Tectonic Significance. Earth Science, 42(6): 957–973 (in Chinese with English Abstract)
    Cashman, K. V., Sparks, R. S., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055.10.1126/science. aag3055 doi: 10.1126/science.aag3055
    Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535–551. https://doi.org/10.1016/s0024-4937(98)00086-3
    Chappell, B. W., Bryant, C. J., Wyborn, D., 2012. Peraluminous Ⅰ-Type Granites. Lithos, 153: 142–153. https://doi.org/10.1016/j.lithos.2012.07.008
    Chen, H. J., Chen, Y. J., Zhang, J., et al., 2013. Zircon U-Pb Ages and Hf Isotope Characteristics of the Orebearing Intrusion from the Shapinggou Molybdenum Deposit, Jinzhai County, Anhui Province. Acta Petrologica Sinica, 29: 131–145
    Chen, W., Mao, J. W., Xu, Z. W., et al., 2018. Two Stages of Cretaceous Granitic Magmatisms and Mo Mineralizations in West Dabie Orogenic Belt. Earth Science, 43(12): 4638–4650 (in Chinese with English Abstract)
    Chen, W., Xu, Z. W., Chen, M. H., et al., 2016. Multiple Sources for the Origin of the Early Cretaceous Xinxian Granitic Batholith and Its Tectonic Implications for the Western Dabie Orogen, Eastern China. Mineralogy and Petrology, 110(1): 29–41. https://doi.org/10.1007/s00710-015-0409-z
    Chen, W., Xu, Z. W., Lu, X. C., et al., 2013. Petrogenesis of the Bao'anzhai Granite and Associated Mo Mineralization, Western Dabie Orogen, East-Central China: Constraints from Zircon U-Pb and Molybdenite Re-Os Dating, Whole-Rock Geochemistry, and Sr-Nd-Pb-Hf Isotopes. International Geology Review, 55(10): 1220–1238. https://doi.org/10.1080/00206814.2013.772322
    Chen, W., Xu, Z. W., Qiu, W. H., et al., 2015. Petrogenesis of the Yaochong Granite and Mo Deposit, Western Dabie Orogen, Eastern-Central China: Constraints from Zircon U-Pb and Molybdenite Re-Os Ages, Whole-Rock Geochemistry and Sr-Nd-Pb-Hf Isotopes. Journal of Asian Earth Sciences, 103: 198–211. https://doi.org/10.1016/j.jseaes.2015.01.010
    Chen, W., Xu, Z. W., Li, H. C., et al., 2013. Petrogenesis and Origin of the Xinxian Granitic Batholith in Henan Province and Its Implication for the Tectonic Evolution of the Western Dabie Area. Acta Geologica Sinica, 87(10): 1510–1524 (in Chinese with English Abstract)
    Chen, Y. J., Wang, P., Li, N., et al., 2017. The Collision-Type Porphyry Mo Deposits in Dabie Shan, China. Ore Geology Reviews, 81: 405–430. https://doi.org/10.1016/j.oregeorev.2016.03.025
    Chiaradia, M., 2014. Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. Nature Geoscience, 7(1): 43–46. https://doi.org/10.1038/ngeo2028
    Cooke, D. R., Hollings, P., Walshe, J. L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801–818. https://doi.org/10.2113/gsecongeo.100.5.801
    Dong, Y. P., Liu, X. M., Santosh, M., et al., 2012. Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China: Constraints from Zircon U-Pb Geochronology and Geochemistry. Precambrian Research, 196: 247–274. https://doi.org/10.1016/j.precamres.2011.12.007
    Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1–40. https://doi.org/10.1016/j.gr.2015.06.009
    Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213–237. https://doi.org/10.1016/j.jseaes.2011.03.002.
    Ernst, W. G., Tsujimori, T., Zhang, R., et al., 2007. Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35: 73–110. https://doi.org/10.1146/annurev.earth.35.031306.140146
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0
    Foster, M. D., 1960. Interpretation of the Composition of Trioctahedral MICAS. U. S. Geol. Survey Professional Paper, 354: 11–49
    Gao, Y., Mao, J. W., Ye, H. S., et al., 2014a. Geochronology, Geochemistry and Sr-Nd-Pb Isotopic Constraints on the Origin of the Qian'echong Porphyry Mo Deposit, Dabie Orogen, East China. Journal of Asian Earth Sciences, 85: 163–177. https://doi.org/10.1016/j.jseaes.2014.02.004
    Gao, Y., Mao, J. W., Ye, H. S., et al., 2016. Petrogenesis of Ore-Bearing Porphyry from the Tangjiaping Porphyry Mo Deposit, Dabie Orogen: Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Constraints. Ore Geology Reviews, 79: 288–300. https://doi.org/10.1016/j.oregeorev.2016.05.015
    Gao, Y., Ye, H. S., Li, Y. F., et al., 2014b. SHRIMP Zircon U-Pb Ages, Hf Isotopic Compositions and Trace Elements Characteristics of the Granites from the Qian'echong Mo Deposit, Dabie Orogen. Acta Petrologica Sinica, 30(1): 49–63 (in Chinese with English Abstract)
    Guo, S. S., Li, S. G., 2007. Petrological and Geochemical Constraints on the Origin of Leucogranites. Earth Science Frontiers, 14(6): 290–298 (in Chinese with English Abstract)
    Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215–230. https://doi.org/10.1016/S0012-821x(98)00152-6
    Hacker, B. R., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic-Early Jurassic Tectonic Unroofing. JGR, 105(B6): 13339–13364. https://doi.org/10.1029/2000jb900039
    He, Y. S., Li, S. G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13): 3815–3838. https://doi.org/10.1016/j.gca.2011.04.011
    Henry, D. J., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2/3): 316–328. https://doi.org/10.2138/am.2005.1498
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem., 53(1): 27–62. https://doi.org/10.1515/9781501509322-005
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. https://doi.org/10.1039/c2ja30078h
    Huang, F., Li, S. G., Dong, F., et al., 2007. Recycling of Deeply Subducted Continental Crust in the Dabie Mountains, Central China. Lithos, 96(1/2): 151–169. https://doi.org/10.1016/j.lithos.2006.09.019.
    Huang, Y., 2011. Sedimentology and Geochemistry of the Black Rock Series in Early Cambrian Niutitang Formation in Zhangjiajie, Hunan: [Dissertation]. Chengdu University of Technology, Chengdu
    Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/s0009-2541(98)00197-1
    Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 11(3): Q03004. https://doi.org/10.1029/2009gc002788
    Klemm, L. M., Pettke, T., Heinrich, C. A., 2008. Fluid and Source Magma Evolution of the Questa Porphyry Mo Deposit, New Mexico, USA. Mineralium Deposita, 43(5): 533–552. https://doi.org/10.1007/s00126-008-0181-7
    Lai, S. C., Qin, J. F., Chen, L., et al., 2008. Geochemistry of Ophiolites from the Mian-Lue Suture Zone: Implications for the Tectonic Evolution of the Qinling Orogen, Central China. International Geology Review, 50(7): 650–664. https://doi.org/10.2747/0020-6814.50.7.650
    Li, C. Y., Wang, F. Y., Hao, X. L., et al., 2012. Formation of the World's Largest Molybdenum Metallogenic Belt: A Plate-Tectonic Perspective on the Qinling Molybdenum Deposits. International Geology Review, 54(9): 1093–1112. https://doi.org/10.1080/00206814.2011.623039
    Li, C. Y., Zhang, H., Wang, F. Y., et al., 2012. The Formation of the Dabaoshan Porphyry Molybdenum Deposit Induced by Slab Rollback. Lithos, 150: 101–110. https://doi.org/10.1016/j.lithos.2012.04.001
    Li, H. C., Xu, Z. W., Lu, X. C., et al., 2012. Constraints on Timing and Origin of the Dayinjian Intrusion and Associated Molybdenum Mineralization, Western Dabie Orogen, Central China. International Geology Review, 54(13): 1579–1596. https://doi.org/10.1080/00206814.2012.684460
    Li, M. L., 2009. Characteristics of Intermediate-Acid Small Intrusive Bodies and Metallogenic System of Molybdenum-Polymetallic Deposits in Mesozoic in Dabie Mountain, Henan Province: [Dissertation]. China University of Geoscience, Beijing (in Chinese with English Abstract)
    Li, N., Chen, Y. J., Pirajno, F., et al., 2013. Timing of the Yuchiling Giant Porphyry Mo System, and Implications for Ore Genesis. Mineralium Deposita, 48(4): 505–524. https://doi.org/10.1007/s00126-012-0441-4
    Li, S. K., Liu, X. L., Lu, Y. X., et al., 2022. Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore-Concentrated Area, Southern Yidun Arc. Earth Science, 47(4): 1435–1458 (in Chinese with English Abstract)
    Li, W. K., Cheng, Y. Q., Yang, Z. M., 2019. Geo-fO2: Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542–2555. https://doi.org/10.1029/2019gc008273
    Li, W. T., Jiang, S. Y., Fu, B., et al., 2021. Zircon HfO Isotope and Magma Oxidation State Evidence for the Origin of Early Cretaceous Granitoids and Porphyry Mo Mineralization in the Tongbai-Hong'an-Dabie Orogens, Eastern China. Lithos, 398: 106281. https://doi.org/10.1016/j.lithos.2021.106281
    Lin, W. W., Peng, L. J., 1994. The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data. J. Changchun Univ. Earth Sci. , 24: 155–162
    Liu, Q. Q., Shao, Y. J., Chen, X. M., et al., 2016. Petrogeochemistry, Geochronology and Hf Isotopes of the Monzogranite from Xinxian, Southern Region in Henan Province. Earth Science, 41(8): 1275–1294 (in Chinese with English Abstract)
    Liu, X. C., Jahn, B. M., Liu, D. Y., et al., 2004. SHRIMP U-Pb Zircon Dating of a Metagabbro and Eclogites from Western Dabieshan (Hong'an Block), China, and Its Tectonic Implications. Tectonophysics, 394(3/4): 171–192. https://doi.org/10.1016/j.tecto.2004.08.004
    Liu, X., Wei, C., Li, S., et al., 2004. Thermobaric Structure of a Traverse across Western Dabieshan: Implications for Collision Tectonics between the Sino-Korean and Yangtze Cratons. Journal of Metamorphic Geology, 22(4): 361–379. https://doi.org/10.1111/j.1525-1314.2004.00519.x
    Liu, X. C., Dong, S. W., Li, S. Z., et al., 2005. Timing of the Hong'an Group in Hubei: Constraints from U-Pb Dating of Metagranitic Intrusions. Chinese Geology, 32(1): 75–81 (in Chinese with English Abstract)
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/pet rology/egaa034 doi: 10.1093/petrology/egaa034
    Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley
    Luo, B. J., Zhang, H. F., Zhang, L. Q., et al., 2020. The Magma Plumbing System of Mesozoic Shanyang Porphyry Groups, South Qinling and Implications for Porphyry Copper Mineralization. Earth and Planetary Science Letters, 543: 116346. https://doi.org/10.1016/j.epsl.2020.116346
    Luo, Y. N., Chen, J. W., Tang, Z. G., 2012. Geological Features and Genesis for the Doupo Mo Deposit in Luoshan, Henan. Acta Geologica Sichuan, 32(3): 278–280 (in Chinese with English Abstract)
    Ma, C. Q., Ehlers, C., Xu, C. H., et al. . 2000. The Roots of the Dabieshan Ultrahighpressure Metamorphic Terrane: Constraints from Geochemistry and Nd-Sr Isotope Systematics. Precambrian Research, 102: 279301
    Ma, C. Q., Li, Z. C., Ehlers, C., et al., 1998. A Post-Collisional Magmatic Plumbing System: Mesozoic Granitoid Plutons from the Dabieshan High-Pressure and Ultrahigh-Pressure Metamorphic Zone, East-Central China. Lithos, 45(1/2/3/4): 431–456. https://doi.org/10.1016/s0024-4937(98)00043-7
    Ma, C. Q., Yang, K. G., Ming, H. L., et al., 2003. The Timing of Tectonic Transition from Compression to Extension in Dabie Orogen: Evidences from Mesozoic Granites. Science China (Ser. D), 33: 817–827 (in Chinese with English Abstract)
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101&lt;0635:tdog&gt;2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
    McCulloch, M. T., Rosman, K. J. R., de Laeter, J. R., 1977. The Isotopic and Elemental Abundance of Ytterbium in Meteorites and Terrestrial Samples. Geochimica et Cosmochimica Acta, 41(12): 1703–1707. https://doi.org/10.1016/0016-7037(77)90202-2
    Meng, F., 2013. Study on Rock-Forming and Ore-Forming of the Lingshan Plunton in the Northern Margin of Dabie Mountains: [Dissertation]. China University of Geoscience, Beijing (in Chinese with English Abstract)
    Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183–196. https://doi.org/10.1016/s0040-1951(00)00106-2
    Mi, M., Chen, Y. J., Yang, Y. F., et al., 2015. Geochronology and Geochemistry of the Giant Qian'echong Mo Deposit, Dabie Shan, Eastern China: Implications for Ore Genesis and Tectonic Setting. Gondwana Research, 27(3): 1217–1235. https://doi.org/10.1016/j.gr.2014.05.006
    Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2
    Niu, P. P., Jiang, S. Y., 2023. Geochronology and Geochemistry of Wangjiadashan Quartz Syenite Porphyry in Suizao Area of Hubei Province in the Tongbai-Dabie Orogenic Belt. Journal of Earth Science, 34(3): 790–805. https://doi.org/10.1007/s12583-020-1383-x
    Niu, P. P., Jiang, S. Y., 2020. Petrogenesis of the Late Mesozoic Qijinfeng Granite Complex in the Tongbai Orogen: Geochronological, Geochemical and Sr-Nd-Pb-Hf Isotope Evidence. Lithos, 356: 105290. https://doi.org/10.1016/j.lithos.2019.105290
    Niu, P. P., Jiang, S. Y., 2021. Geochronological, Geochemical, and Sr-Nd-Pb-Hf Isotopes of Cretaceous Gneissic Granite and Quartz Monzonite in the Tongbai Complex: Record of Lower Crust Thickening beneath the Tongbai Orogen. Geological Journal, 56(8): 4126–4149. https://doi.org/10.1002/gj.4154
    Niu, P. P., Jiang, S. Y., Li, W. T., et al., 2022. Hydrothermal Evolution and Origin of the Suixian Molybdenum Deposit in the Tongbai Orogenic Belt, China: Constraints from Geology, Fluid Inclusions and Multiple Isotopes (HOCSPb). Ore Geology Reviews, 148: 105036. https://doi.org/10.1016/j.oregeorev.2022.105036
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745
    Qiao, G. S., 1988. Normalization of Isotopic Dilution Analysis—A New Program for Isotope Mass Spectrometric Analysis. Science in China, Ser. A, 31(10): 1263–1268 (in Chinese with English Abstract)
    Qiu, J. T., Yu, X. Q., Santosh, M., et al., 2013. Geochronology and Magmatic Oxygen Fugacity of the Tongcun Molybdenum Deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545–556. https://doi.org/10.1007/s00126-013-0456-5
    Qiu, X. F., Peng, S. G., Gong, Y. J., et al., 2014. Metallogenic Regularities and Prospecting Potential of the Rutile Deposits in the Wudang-Tongbai-Dabie Metallogenic Belt. Geology and Mineral Resources of South China, 30(2): 155–161 (in Chinese with English Abstract)
    Qiu, X. F., Peng, L. H., Kong, L. Y., et al., 2024. Discovery of Eoarchean Gneisses in Northern Dabie Belt. Earth Science, 49(11): 3960–3970 (in Chinese with English Abstract)
    Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53. https://doi.org/10.1016/S0040-1951(03)00053-2
    Ren, Z., Zhou, T. F., Hollings, P., et al., 2018. Magmatism in the Shapinggou District of the Dabie Orogen, China: Implications for the Formation of Porphyry Mo Deposits in a Collisional Orogenic Belt. Lithos, 308: 346–363. https://doi.org/10.1016/j.lithos.2018.03.013
    Ren, Z., Zhou, T. F., Yuan, F., et al., 2014. The Stages of Magmatic System in Shapinggou Molybdenum Deposit District, Anhui Province: Evidence from Geochronology and Geochemistry. Acta Petrologica Sinica, 30(4): 1097–1116 (in Chinese with English Abstract)
    Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas: An Overview, New Thermobarometric Formulations and Application to Subduction-Related Volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66. https://doi.org/10.1007/s00410-009-0465-7
    Seedorff, E., 2004. Henderson Porphyry Molybdenum System, Colorado: I. Sequence and Abundance of Hydrothermal Mineral Assemblages, Flow Paths of Evolving Fluids, and Evolutionary Style. Economic Geology, 99(1): 3–37. https://doi.org/10.2113/99.1.3
    Selby, D., Nesbitt, B. E., Muehlenbachs, K., et al., 2000. Hydrothermal Alteration and Fluid Chemistry of the Endako Porphyry Molybdenum Deposit, British Columbia. Economic Geology, 95(1): 183–202. https://doi.org/10.2113/gsecongeo.95.1.183
    Shinohara, H., Kazahaya, K., Lowenstern, J. B., 1995. Volatile Transport in a Convecting Magma Column: Implications for Porphyry Mo Mineralization. Geology, 23(12): 1091. https://doi.org/10.1130/0091-7613(1995)023&lt;1091:vtiacm&gt;2.3.co;2 doi: 10.1130/0091-7613(1995)023<1091:vtiacm>2.3.co;2
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, W. D., Li, C. Y., Hao, X. L., et al., 2016. Oceanic Anoxic Events, Subduction Style and Molybdenum Mineralization. Solid Earth Sciences, 1(2): 64–73. https://doi.org/10.1016/j.sesci.2015.11.001
    Sun, W. D., Huang, R. F., Li, H., et al., 2015a. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004
    Sun, W. D., Li, C. Y., Ling, M. X., et al., 2015b. The Geochemical Behavior of Molybdnum and Mineralization. Acta Petrologica Sinica, 31(7): 1807–1817 (in Chinese with English Abstract)
    Sun, W. D., Williams, I. S., Li, S. G., 2002. Carboniferous and Triassic Eclogites in the Western Dabie Mountains, East-Central China: Evidence for Protracted Convergence of the North and South China Blocks. Journal of Metamorphic Geology, 20(9): 873–886. https://doi.org/10.1046/j.1525-1314.2002.00418.x
    Thompson, J. F. H., Sillitoe, R. H., Baker, T., et al., 1999. Intrusion-Related Gold Deposits Associated with Tungsten-Tin Provinces. Mineralium Deposita, 34(4): 323–334. https://doi.org/10.1007/s001260050207
    Trail, D., Bruce Watson, E., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70–87. https://doi.org/10.1016/j.gca.2012.08.032
    Wan, J., Wu, B., Guo, P., et al., 2017. Zircon U-Pb Dating and Geochemical Characteristics of the Xiadian Magmatic Rock Body in Western Dabie Orogenic Belt and Its Redefinition as the A-Type Granite. Acta Petrologica et Mineralogica, 36: 633–645 (in Chinese with English Abstract)
    Wang, G. G., Ni, P., Yu, W., et al., 2014. Petrogenesis of Early Cretaceous Post-Collisional Granitoids at Shapinggou, Dabie Orogen: Implications for Crustal Architecture and Porphyry Mo Mineralization. Lithos, 184: 393–415. https://doi.org/10.1016/j.lithos.2013.11.009
    Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206: 147–163. https://doi.org/10.1016/j.lithos.2014.07.026
    Wang, R., Richards, J. P., Hou, Z., et al., 2014. Increased Magmatic Water Content: The Key to Oligo-Miocene Porphyry Cu-Mo Au Formation in the Eastern Gangdese Belt, Tibet. Economic Geology, 109(5): 1315–1339. https://doi.org/10.2113/econgeo.109.5.1315
    Westra, G., Keith, S. B., 1981. Classification and Genesis of Stockwork Molybdenum Deposits. Economic Geology, 76(4): 844–873. https://doi.org/10.2113/gsecongeo.76.4.844
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
    Wones, D. R., Eugster, H. P., 1965. Stability of Biotite-Experiment Theory and Application. Am. Mineral. , 50: 1228–1272
    Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chemical Geology, 209(1/2): 121–135. https://doi.org/10.1016/j.chemgeo.2004.04.026
    Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ): Geochronology and Petrogenesis. Lithos, 66(3/4): 241–273. https://doi.org/10.1016/S0024-4937(02)00222-0
    Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103–119. https://doi.org/10.1016/j.epsl.2005.02.019
    Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: an Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402–1428. https://doi.org/10.1016/j.gr.2012.09.007
    Wyborn, D., Chappell, B. W., James, M., 2001. Examples of Convective Fractionation in High‐Temperature Granites from the Lachlan Fold Belt. Australian Journal of Earth Sciences, 48(4): 531–541
    Xu, D. L., Peng, L. H., Deng, X., et al., 2023. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072–4087. https://doi.org/10.3799/dqkx.2023.042 (in Chinese with English Abstract)
    Xu, H. J., Ma, C. Q., Ye, K., 2007. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China: SHRIMP Zircon U-Pb Dating and Geochemistry. Chemical Geology, 240(3/4): 238–259. https://doi.org/10.1016/j.chemgeo.2007.02.018
    Xu, H. J., Ma, C. Q., Zhang, J. F., et al., 2013. Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Over-Thickened Lower Continental Crust. Gondwana Research, 23(1): 190–207. https://doi.org/10.1016/j.gr.2011.12.009
    Xu, Y. X., Zhang, S., Griffin, W. L., et al., 2016. How Did the Dabie Orogen Collapse? Insights from 3-D Magnetotelluric Imaging of Profile Data. Journal of Geophysical Research: Solid Earth, 121(7): 5169–5185. https://doi.org/10.1002/2015jb012717
    Yang, C. Y., He, J., Yang, Y. Z., et al., 2020. Geochemical Characteristics and Petrogenesis of Monzogranites from the Xinxian Batholith, Dabie Orogenic Belt. Geological Journal of China Universities, 26(2): 132–146
    Yang, M. Z., Jiang, S. Y., Zhao, K. D., et al., 2022. Episodic Emplacement of the Lingshan Granitic Complex and Related Two-Stage Molybdenum Mineralization in the Dabie Orogenic Belt. Ore Geology Reviews, 144: 104820. https://doi.org/10.1016/j.oregeorev.2022.104820
    Yang, Y. F., Wang, P., Chen, Y. J., et al., 2017. Geochronology and Geochemistry of the Tianmugou Mo Deposit, Dabie Shan, Eastern China: Implications for Ore Genesis and Tectonic Setting. Ore Geology Reviews, 81: 484–503. https://doi.org/10.1016/j.oregeorev.2016.04.010
    Yang, Z., Yang, L. Q., He, W. Y., et al., 2017. Control of Magmatic Oxidation State in Intracontinental Porphyry Mineralization: A Case from Cu (Mo-Au) Deposits in the Jinshajiang-Red River Metallogenic Belt, SW China. Ore Geology Reviews, 90: 827–846. https://doi.org/10.1016/j.oregeorev.2016.11.026
    Yang, Z. Q., 2007. Re-Os Isotopic Ages of Tangjiaping Molybdenum Deposit in Shangcheng County, Henan Province and Their Geological Significance. Mineral Deposit, 26: 289–295 (in Chinese with English Abstract)
    Zhang, D. H., Wei, J. H., Nadeau, O., et al., 2022. Magmatic and Hydrothermal Evolution at Qian'echong, Central-Eastern China: Insights into Dabie-Type Porphyry Mo Mineralization. Journal of Petrology, 63(3): egac013. https://doi.org/10.1093/petrology/egac013
    Zhang, G. W., Zhang, B. R., Yuan, X. C., et al., 2001. Qinling Orogenic Belt and Continental Dynamics. Science Press, Beijing (in Chinese with English Abstract)
    Zhang, H., Li, C. Y., Yang, X. Y., et al., 2014. Shapinggou: The Largest Climax-Type Porphyry Mo Deposit in China. International Geology Review, 56(3): 313–331. https://doi.org/10.1080/00206814.2013.855363
    Zhang, H., Ling, M. X., Liu, Y. L., et al., 2013. High Oxygen Fugacity and Slab Melting Linked to Cu Mineralization: Evidence from Dexing Porphyry Copper Deposits, Southeastern China. The Journal of Geology, 121(3): 289–305. https://doi.org/10.1086/669975
    Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3/4): 265–288. https://doi.org/10.1016/j.precamres.2006.08.009
    Zhang, S. B., Zheng, Y. F., Zhao, Z. F., et al., 2008. Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 163(3/4): 210–238. https://doi.org/10.1016/j.precamres.2007.12.003
    Zhang, S. B., Zheng, Y. F., Zhao, Z. F., et al., 2009. Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 113(3/4): 347–368. https://doi.org/10.1016/j.lithos.2009.04.024
    Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science China Earth Sciences, 52(9): 1295–1318. https://doi.org/10.1007/s11430-009-0134-8
    Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2007. Post-Collisional Granitoids from the Dabie Orogen in China: Zircon U-Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust. Lithos, 93(3/4): 248–272. https://doi.org/10.1016/j.lithos.2006.03.067
    Zheng, Y. F., Zhang, L. F., McClelland, W. C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136: 1–9. https://doi.org/10.1016/j.lithos.2011.11.020
    Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1/2): 135–158. https://doi.org/10.1016/j.chemgeo.2006.01.005
    Zhou, H. S., Su, H., Ma, C. Q., 2009. Formation-Age, Tectonic Setting and Ascertainment of A-Type Granite on the Lingshan Pluton in Dabie Orogenic Belt. Journal of Xinyang Normal University, 22: 222–226
    Zhou, T. C., Zeng, Q. D., Chu, S. X., et al., 2018. Magmatic Oxygen Fugacities of Porphyry Mo Deposits in the East Xing'an-Mongolian Orogenic Belt (NE China) with Metallogenic Implications. Journal of Asian Earth Sciences, 165: 145–159. https://doi.org/10.1016/j.jseaes.2018.04.004
    Zhu, J., Chen, Y., Chen, C., et al., 2023. Paleo- to Meso-Proterozoic Tectono-Magmatic Events Recorded in the Huwan Complex from the Dabie Orogen, Central China: Evidence from Petrology and U-Pb Geochronology. Acta Geologica Sinica-English Edition, 97(4): 1150–1162. https://doi.org/10.1111/1755-6724.15017
    Zhu, J., Peng, S., Liu, J., 2020. The Discovery of Fluorite Ore Spots in the Contact Zone of Cretaceous Lingshan Granitic Batholith in the Western Dabie Orogenic Belt. Geology in China, 47 (2): 550–551 (in Chinese with English Abstract)
    Zhu, J., Wang, L. X., Ma, J., et al., 2019a. Early Cretaceous Granitic Dykes in the Western Dabie Orogen, China: Geochronology, Petrogenesis, and Tectonic Implications. Geological Journal, 54(6): 3574–3592. https://doi.org/10.1002/gj.3355
    Zhu, J., Wu, C., Peng, S., et al., 2019b. U-Pb Zircon Age, Geochemistry and Isotopic Characteristics of the Tanchong and Chenchong Granites in the Western Dabie Orogen, China: Constraints on Petrogenesis and Timing of Lower Crustal Delamination. Acta Geologica Sinica, 93(7): 1671–1686 (in Chinese with English Abstract)
    Zhu, J., Wu, C., Peng, S., et al., 2018. Geochronology and Geochemistry of Volcanic Rocks from the Huangchengshan Volcanogenic Epithermal Silver Deposit, Dabie Orogen, China: Implications for Tectonic Setting. Earth Science, 43(7): 2404–2419 (in Chinese with English Abstract)
    Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87–96. https://doi.org/10.1016/j.epsl.2018.10.031
    Zou, X. Y., Qin, K. Z., Han, X. L., et al., 2019. Insight into Zircon REE Oxy-Barometers: A Lattice Strain Model Perspective. Earth and Planetary Science Letters, 506: 87–96 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views(9) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return