Birks, H. J. B., 2011. Strengths and Weaknesses of Quantitative Climate Reconstructions Based on Late-Quaternary Biological Proxies. The Open Ecology Journal, 3(1): 68–110. https://doi.org/10.2174/1874213001003020068 |
Cao, X. Y., Chen, J. H., Tian, F., et al., 2022. Long-Distance Modern Analogues Bias Results of Pollen-Based Precipitation Reconstructions. Science Bulletin, 67(11): 1115–1117. https://doi.org/10.1016/j.scib.2022.01.003 |
Cao, X. Y., Herzschuh, U., Telford, R. J., et al., 2014. A Modern Pollen-Climate Dataset from China and Mongolia: Assessing Its Potential for Climate Reconstruction. Review of Palaeobotany and Palynology, 211: 87–96. https://doi.org/10.1016/j.revpalbo.2014.08.007 |
Cao, X. Y., Tian, F., Telford, R. J., et al., 2017. Impacts of the Spatial Extent of Pollen-Climate Calibration-Set on the Absolute Values, Range and Trends of Reconstructed Holocene Precipitation. Quaternary Science Reviews, 178: 37–53. https://doi.org/10.1016/j.quascirev.2017.10.030 |
Chen, F. H., Xu, Q. H., Chen, J. H., et al., 2015. East Asian Summer Monsoon Precipitation Variability since the Last Deglaciation. Scientific Reports, 5: 11186. https://doi.org/10.1038/srep11186 |
Chen, F. H., Zhang, J. F., Liu, J. B., et al., 2020. Climate Change, Vegetation History, and Landscape Responses on the Tibetan Plateau during the Holocene: A Comprehensive Review. Quaternary Science Reviews, 243: 106444. https://doi.org/10.1016/j.quascirev.2020.106444 |
Ding, W., Xu, Q. H., Tarasov, P. E., 2017. Examining Bias in Pollen-Based Quantitative Climate Reconstructions Induced by Human Impact on Vegetation in China. Climate of the Past, 13(9): 1285–1300. https://doi.org/10.5194/cp-13-1285-2017 |
Herzschuh, U., Cao, X. Y., Laepple, T., et al., 2019. Position and Orientation of the Westerly Jet Determined Holocene Rainfall Patterns in China. Nature Communications, 10: 2376. https://doi.org/10.1038/s41467-019-09866-8 |
Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428(1): 261–285. https://doi.org/10.1051/0004-6361:20041335 |
Li, W. J., Tian, F., Rudaya, N., et al., 2022. Pollen-Based Holocene Thawing-History of Permafrost in Northern Asia and Its Potential Impacts on Climate Change. Frontiers in Ecology and Evolution, 10: 894471. https://doi.org/10.3389/fevo.2022.894471 |
Liang, C., Zhao, Y., Qin, F., et al., 2020. Pollen-Based Holocene Quantitative Temperature Reconstruction on the Eastern Tibetan Plateau Using a Comprehensive Method Framework. Science China Earth Sciences, 63(8): 1144–1160. https://doi.org/10.1007/s11430-019-9599-y |
Liu, L. N., Wang, W., Chen, D. X., et al., 2020. Soil-Surface Pollen Assemblages and Quantitative Relationships with Vegetation and Climate from the Inner Mongolian Plateau and Adjacent Mountain Areas of Northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 543: 109600. https://doi.org/10.1016/j.palaeo.2020.109600 |
Liu, J. B., Chen, J. H., Zhang, X. J., et al., 2015. Holocene East Asian Summer Monsoon Records in Northern China and Their Inconsistency with Chinese Stalagmite δ18O Records. Earth-Science Reviews, 148: 194–208. https://doi.org/10.1016/j.earscirev.2015.06.004 |
Liu, Z. Y., Wen, X. Y., Brady, E. C., et al., 2014. Chinese Cave Records and the East Asia Summer Monsoon. Quaternary Science Reviews, 83: 115–128. https://doi.org/10.1016/j.quascirev.2013.10.021 |
Stanford, J. D., Hemingway, R., Rohling, E. J., et al., 2011. Sea-Level Probability for the Last Deglaciation: A Statistical Analysis of Far-Field Records. Global and Planetary Change, 79(3/4): 193–203. https://doi.org/10.1016/j.gloplacha.2010.11.002 |
Tian, F., Cao, X. Y., Zhang, R., et al., 2020. Spatial Homogenization of Soil-Surface Pollen Assemblages Improves the Reliability of Pollen-Climate Calibration-Set. Science China Earth Sciences, 63(11): 1758–1766. https://doi.org/10.1007/s11430-019-9643-0 |