Citation: | Qi He, Long Xiao, Ioannis Baziotis, Xiaochao Che, Yuqi Qian, Jiawei Zhao. Complexity of the NWA 773 Clan: New Evidence from Lunar Olivine Gabbro NWA 6950. Journal of Earth Science, 2025, 36(5): 2224-2239. doi: 10.1007/s12583-023-1923-0 |
NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin. Specifically, the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin, as does the presence of Fe-Ni metal. The meteorite has also undergone intense shock metamorphism, which is evidenced by the presence of ringwoodite, tuite, and xieite (a type of chromite with a CaTi2O4 structure) within the shock melt veins (SMVs). The texture, mineral modal abundances, and bulk compositions (measured from the SMVs) of NWA 6950 are similar to those of the NWA 773 clan, as are the concentrations and patterns of rare-earth-elements in olivine, pyroxene, plagioclase, and phosphate.
Anand, M., Taylor, L. A., Floss, C., et al., 2006. Petrology and Geochemistry of LaPaz Icefield 02205: A New Unique Low-Ti Mare-Basalt Meteorite. Geochimica et Cosmochimica Acta, 70(1): 246–264. https://doi.org/10.1016/j.gca.2005.08.018 |
Arai, T., Ray Hawke, B., Giguere, T. A., et al., 2010. Antarctic Lunar Meteorites Yamato-793169, Asuka-881757, MIL 05035, and MET 01210 (YAMM): Launch Pairing and Possible Cryptomare Origin. Geochimica et Cosmochimica Acta, 74(7): 2231–2248. https://doi.org/10.1016/j.gca.2009.11.019 |
Bao, Z. M., Shi, Y. R., Anderson, J. L., et al., 2020. Petrography and Chronology of Lunar Meteorite Northwest Africa 6950. Science China Information Sciences, 63(4): 140902. https://doi.org/10.10 07/s11432-019-2809-3 doi: 10.1007/s11432-019-2809-3 |
Baziotis, I. P., Liu, Y., DeCarli, P. S., et al., 2013. The Tissint Martian Meteorite as Evidence for the Largest Impact Excavation. Nature Communications, 4: 1404. https://doi.org/10.1038/ncom ms2414 doi: 10.1038/ncomms2414 |
Baziotis, I., Asimow, P. D., Hu, J., et al., 2018. High Pressure Minerals in the Château-Renard (L6) Ordinary Chondrite: Implications for Collisions on Its Parent Body. Sci. Rep. , 8(1): 9851. https://doi.org10.1038/s41598-018-28191-6 |
Baziotis, I. P., Ma, C., Guan, Y., et al., 2022. Unique Evidence of Fluid Alteration in the Kakowa (L6) Ordinary Chondrite. Scientific Reports, 12: 5520. https://doi.org/10.1038/s41598-022-09465-6 |
Bence, A. E., Papike, J. J., 1972. Pyroxenes as Recorders of Lunar Basalt Petrogenesis: Chemical Trends due to Crystal-Liquid Interaction. Lunar and Planetary Science Conference Proceedings, 3: 431 |
Borg, L. E., Shearer, C. K., Asmerom, Y., et al., 2004. Prolonged KREEP Magmatism on the Moon Indicated by the Youngest Dated Lunar Igneous Rock. Nature, 432(7014): 209–211. https://doi.org/10.1038/nature03070 |
Borg, L. E., Shearer, C. K., Asmerom, Y., et al., 2005. Geochemical and Isotopic Systematics of the Youngest Dated Lunar Igneous Rock, Northwest Africa 773. Lunar and Planet Science Conference, Abstract#1026 |
Borg, L. E., Gaffney, A. M., Shearer, C. K., et al., 2009. Mechanisms for Incompatible-Element Enrichment on the Moon Deduced from the Lunar Basaltic Meteorite Northwest Africa 032. Geochimica et Cosmochimica Acta, 73(13): 3963–3980. https://doi.org/10.1016/j.gca.2009.03.039 |
Bunch, T. E., Wittke, J. H., Korotev, R. L., et al., 2006. Lunar meteorites NWA 2700, NWA 2727 and NWA 2977: Mare Basalt/Gabbro Breccias with Affinities to NWA 773. Lunar and Planet Science Conference, Abstract #1375 |
Burgess, R., Fernandes, V., Irving, A., et al., 2007. Ar-Ar Ages of NWA 2977 and NWA 3160-Lunar Meteorites Paired with NWA 773. 1338: 1603 |
Calzada-Diaz, A., Joy, K. H., Crawford, I. A., et al., 2015. Constraining the Source Regions of Lunar Meteorites Using Orbital Geochemical Data. Meteoritics & Planetary Science, 50(2): 214–228. https://doi.org/10.1111/maps.12412 |
Chen, M., Shu, J., Mao, H. K., 2008. Xieite, a New Mineral of High-Pressure FeCr2O4 Polymorph. Chinese Science Bulletin, 53(21): 3341–3345 (in Chinese with English Abstract) doi: 10.1007/s11434-008-0407-1 |
Chen, M., Shu, J. F., Mao, H. K., et al., 2003. Natural Occurrence and Synthesis of Two New Postspinel Polymorphs of Chromite. Proceedings of the National Academy of Sciences of the United States of America, 100(25): 14651–14654. https://doi.org/10.10 73/pnas.2136599100 doi: 10.1073/pnas.2136599100 |
Chopelas, A., Boehler, R., Ko, T., 1994. Thermodynamics and Behavior of Γ-Mg2SiO4 at High Pressure: Implications for Mg2SiO4 Phase Equilibrium. Physics and Chemistry of Minerals, 21(6): 351–359. https://doi.org/10.1007/bf00203293 |
Darling, J. R., Moser, D. E., Barker, I. R., et al., 2016. Variable Microstructural Response of Baddeleyite to Shock Metamorphism in Young Basaltic Shergottite NWA 5298 and Improved U-Pb Dating of Solar System Events. Earth and Planetary Science Letters, 444: 1–12. https://doi.org/10.1016/j.epsl.2016.03.032 |
Elardo, S. M., Shearer, C. K. Jr, Fagan, A. L., et al., 2014. The Origin of Young Mare Basalts Inferred from Lunar Meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. Meteoritics & Planetary Science, 49(2): 261–291. https://doi.org/10.1111/maps.12239 |
Fagan, T. J., Taylor, G. J., Keil, K., et al., 2003. Northwest Africa 773: Lunar Origin and Iron-Enrichment Trend. Meteoritics & Planetary Science, 38(4): 529–554. https://doi.org/10.1111/j.194 5-5100.2003.tb00025.x doi: 10.1111/j.1945-5100.2003.tb00025.x |
Fagan, T. J., Kashima, D., Wakabayashi, Y., et al., 2014. Case Study of Magmatic Differentiation Trends on the Moon Based on Lunar Meteorite Northwest Africa 773 and Comparison with Apollo 15 Quartz Monzodiorite. Geochimica et Cosmochimica Acta, 133: 97–127. https://doi.org/10.1016/j.gca.2014.02.025 |
Feng, L., Lin, Y., Hu, S., et al., 2011. Estimating Compositions of Natural Ringwoodite in the Heavily Shocked Grove Mountains 052049 Meteorite from Raman Spectra. American Mineralogist, 96(10): 1480–1489. https://doi.org/10.2138/am.2011.3679 |
Fernandes, V. A., Burgess, R., Turner, G., 2003. 40Ar-39Ar Chronology of Lunar Meteorites Northwest Africa 032 and 773. Meteoritics & Planetary Science, 38(4): 555–564. https://doi.org/10.1111/j.1945-5100.2003.tb00026.x |
Floss, C., Crozaz, G., 1991. Ce Anomalies in the LEW85300 Eucrite: Evidence for REE Mobilization during Antarctic Weathering. Earth and Planetary Science Letters, 107(1): 13–24. https://doi.org/10.1016/0012-821x(91)90040-o |
Fritz, J., Greshake, A., 2009. High-Pressure Phases in an Ultramafic Rock from Mars. Earth and Planetary Science Letters, 288(3/4): 619–623. https://doi.org/10.1016/j.epsl.2009.10.030 |
Gibson, K., Jolliff, B., Zeigler, R., et al., 2010. Testing Petrogenetic Relationships of the Lunar NWA 773 Meteorite Clan with Nickel and Cobalt in Olivine. LPI, 1533: 2593 |
Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteoritics & Planetary Science, 35(1): 193–200. https://doi.org/10.1111/j.1945-5100.20 00.tb01985.x doi: 10.1111/j.1945-5100.2000.tb01985.x |
Gu, L. X., Hu, S., Anand, M., et al., 2022. Occurrence of Tuite and Ahrensite in Zagami and Their Significance for Shock-Histories Recorded in Martian Meteorites. American Mineralogist, 107(6): 1018–1029. https://doi.org/10.2138/am-2022-8020 |
Haloda, J., Týcová, P., Korotev, R. L., et al., 2009. Petrology, Geochemistry, and Age of Low-Ti Mare-Basalt Meteorite Northeast Africa 003-A: A Possible Member of the Apollo 15 Mare Basaltic Suite. Geochimica et Cosmochimica Acta, 73(11): 3450–3470. https://doi.org/10.1016/j.gca.2009.03.003 |
Head, J. W., Wilson, L., 1992. Lunar Mare Volcanism: Stratigraphy, Eruption Conditions, and the Evolution of Secondary Crusts. Geochimica et Cosmochimica Acta, 56(6): 2155–2175. https://doi.org/10.1016/0016-7037(92)90183-j |
Head, J. W., Wilson, L., 2017. Generation, Ascent and Eruption of Magma on the Moon: New Insights into Source Depths, Magma Supply, Intrusions and Effusive/Explosive Eruptions (Part 2: Predicted Emplacement Processes and Observations). Icarus, 283: 176–223. https://doi.org/10.1016/j.icarus.2016.05.031. |
Hiesinger, H., Head, J. W., Wolf, U., et al., 2011. Ages and Stratigraphy of Lunar Mare Basalts: A Synthesis. Special Paper of the Geological Society of America, 477: 1–51 |
Heaman, L. M., 2009. The Application of U–Pb Geochronology to Mafic, Ultramafic and Alkaline Rocks: An Evaluation of Three Mineral Standards. Chemical Geology, 261(1/2): 43–52. https://doi.org/10.1016/j.chemgeo.2008.10.021 |
Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101. https://doi.org/10.1039/b804760j |
Hu, S., Lin, Y. T., Yang, W., et al., 2016. NanoSIMS Imaging Method of Zircon U-Pb Dating. Science China Earth Sciences, 59(11): 2155–2164. https://doi.org/10.1007/s11430-016-0010-3 |
Hui, H. J., Oshrin, J. G., Neal, C. R., 2011. Investigation into the Petrogenesis of Apollo 14 High-Al Basaltic Melts through Crystal Stratigraphy of Plagioclase. Geochimica et Cosmochimica Acta, 75(21): 6439–6460. https://doi.org/10.1016/j.gca.2011.08.015 |
Hu, J., Asimow, P. D., Liu, Y., et al., 2023. Shock-Recovered Maskelynite Indicates Low-Pressure Ejection of Shergottites from Mars. Sci. Adv. , 9(18): eadf2906. 10.1126/sciadv. adf2906 doi: 10.1126/sciadv.adf2906 |
Jolliff, B. L., Korotev, R. L., Zeigler, R. A., et al., 2003. Northwest Africa 773: Lunar Mare Breccia with a Shallow-Formed Olivine-Cumulate Component, Inferred Very-Low-Ti (VLT) Heritage, and a KREEP Connection. Geochimica et Cosmochimica Acta, 67(24): 4857–4879. https://doi.org/10.1016/j.gca.2003.08.012 |
Jolliff, B. L., Zeigler, R. A., Korotev, R. L., 2007. Compositional Characteristics and Petrogenetic Relationships among the NWA 773 Clan of Lunar Meteorites. LPI, 1338: 1489 |
Joy, K. H., Crawford, I. A., Huss, G. R., et al., 2014. An Unusual Clast in Lunar Meteorite MacAlpine Hills 88105: A Unique Lunar Sample or Projectile Debris? Meteoritics & Planetary Science, 49(4): 677–695. https://doi.org/10.1111/maps.12270 |
Kayama, M., Tomioka, N., Ohtani, E., et al., 2018. Discovery of Moganite in a Lunar Meteorite as a Trace of H2O Ice in the Moon's Regolith. Sci. Adv. , 4(5): eaar4378. https://doi.org/110.1126/sciad v.aar4378 doi: 10.1126/sciadv.aar4378 |
Korotev, R. L., Jolliff, B. L., Zeigler, R. A., et al., 2003. Compositional Constraints on the Launch Pairing of the Three Brecciated Lunar Meteorites of Basaltic Composition. Antarctic Meteorite Research, 16: 152–175 |
Kuehner, S., Irving, A., Korotev, R., 2012. Petrology and Composition of Lunar Mare Ferroan Gabbro Breccia Northwest Africa 7007: New Insights into the Complex Petrogenesis of Northwest Africa 773 and Siblings. LPI, (1659), 1519 |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
Longhi, J., Boudreau, A. E., 1979. Complex Igneous Processes and the Formation of the Primitive Lunar Crustal Rocks. Lunar and Planetary Science Conference Proceedings, 2: 2085–2105 |
Ludwig, K. R., 2009. SQUID 2: A User's Manual, Rev. 12 Apr., 2009. Berkeley Geochronology Center Special Publication, Berkeley |
Ludwig, K. R., 2012. Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec. Pub. 5 |
McKay, G. A., Weill, D. F., 1976. Petrogenesis of KREEP. In Lunar and Planetary Science Conference Proceedings, 7: 2427–2447 |
Merle, R. E., Nemchin, A. A., Whitehouse, M. J., et al., 2020. Pb-Pb Ages and Initial Pb Isotopic Composition of Lunar Meteorites: NWA 773 Clan, NWA 4734, and Dhofar 287. Meteorit Planet Sci, 55(8): 1808–1832. https://doi.org/10.1111/maps.13547 |
Murayama, J. K., Nakai, S., Kato, M., et al., 1986. A Dense Polymorph of Ca3(PO4)2: A High Pressure Phase of Apatite Decomposition and Its Geochemical Significance. Physics of the Earth and Planetary Interiors, 44(4): 293–303. https://doi.org/10.1016/0031-9201(86)90057-9 |
Nagaoka, H., Karouji, Y., Takeda, H., et al., 2015. Mineralogy and Petrology of Lunar Meteorite Northwest Africa 2977 Consisting of Olivine Cumulate Gabbro Including Inverted Pigeonite. Earth, Planets and Space, 67(1): 200. https://doi.org/10.1186/s40623-015-0368-y |
Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257- A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247–265. https://doi.org/10.1111/j.1751-908x.2008.00914.x |
Nemchin, A. A., Pidgeon, R. T., Healy, D., et al., 2009. The Comparative Behavior of Apatite-Zircon U-Pb Systems in Apollo 14 Breccias: Implications for the Thermal History of the Fra Mauro Formation. Meteoritics & Planetary Science, 44(11): 1717–1734. https://doi.org/10.1111/j.1945-5100.2009.tb01202.x |
Niihara, T., Kaiden, H., Misawa, K., et al., 2007. U-Pb Isotopic Systematics of Experimentally Shocked Baddeleyite. LPI, 1562 |
Niihara, T., Kaiden, H., Misawa, K., et al., 2012. U-Pb Isotopic Systematics of Shock-Loaded and Annealed Baddeleyite: Implications for Crystallization Ages of Martian Meteorite Shergottites. Earth and Planetary Science Letters, 341: 195–210. https://doi.org/10.1016/j.epsl.2012.06.002 |
Nyquist, L. E., Shih, C. Y., 1992. The Isotopic Record of Lunar Volcanism. Geochimica et Cosmochimica Acta, 56(6): 2213–2234. https://doi.org/10.1016/0016-7037(92)90185-l |
Nyquist, L. E., Bogard, D. D., Chi-Yu, S., 2001. Radiometric Chronology of the Moon and Mars. The Century of Space Science, Springer Netherlands, Dordrech. |
Nyquist, L. E., Shih, C. Y., Reese, Y. D., et al., 2009. Sm-Nd and Rb-Sr Ages and Isotopic Systematic for NWA 2977, a Young Basalt from the PKT. Meteoritics and Planetary Science, 44: A159–A159 doi: 10.1111/j.1945-5100.2009.tb00725.x |
Papike, J. J., Karner, J. M., Shearer, C. K., 2003. Determination of Planetary Basalt Parentage: A Simple Technique Using the Electron Microprobe. American Mineralogist, 88(2/3): 469–472. https://doi.org/10.2138/am-2003-2-323 |
Presnall, D. C., 1995. Phase Diagrams of Earth-Forming Minerals. Mineral Physics & Crystallography. American Geophysical Union, Washington, D. C. https://doi.org/10.1029/rf002p0248 doi: 10.1029/rf002p0248 |
Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 61–120. https://doi.org/10.2138/rmg.2008.69.3 |
Qian, Y. Q., Xiao, L., Head, J. W., et al., 2021. Young Lunar Mare Basalts in the Chang'e-5 Sample Return Region, Northern Oceanus Procellarum. Earth and Planetary Science Letters, 555: 116702. https://doi.org/10.1016/j.epsl.2020.116702 |
Rankenburg, K., Brandon, A. D., Norman, M. D., 2007. A Rb–Sr and Sm-Nd Isotope Geochronology and Trace Element Study of Lunar Meteorite LaPaz Icefield 02205. Geochimica et Cosmochimica Acta, 71(8): 2120–2135. https://doi.org/10.1016/j.gca.2007.01.014 |
Sack, R. O., Ghiorso, M. S., 1994. Thermodynamics of Multicomponent Pyroxenes: Ⅱ. Phase Relations in the Quadrilateral. Contributions to Mineralogy and Petrology, 116(3): 287–300. https://doi.org/10.1007/bf00306498 |
Sano, Y., Oyama, T., Terada, K., et al., 1999. Ion Microprobe U-Pb Dating of Apatite. Chemical Geology, 153(1/2/3/4): 249–258. https://doi.org/10.1016/s0009-2541(98)00163-6 |
Sharp, T. G., DeCarli, P. S., 2006. Shock Effects in Meteorites. Meteorites and the Early Solar System Ⅱ. University of Arizona Press, Tucson. https://doi.org/10.2307/j.ctv1v7zdmm.37 doi: 10.2307/j.ctv1v7zdmm.37 |
Shaulis, B. J., Righter, M., Lapen, T. J., et al., 2017.3. 1 Ga Crystallization Age for Magnesian and Ferroan Gabbro Lithologies in the Northwest Africa 773 Clan of Lunar Meteorites. Geochimica et Cosmochimica Acta, 213: 435–456. https://doi.org/10.1016/j.gca.2017.06.031 |
Shearer, C. K., Papike, J. J., 1993. Basaltic Magmatism on the Moon: A Perspective from Volcanic Picritic Glass Beads. Geochimica et Cosmochimica Acta, 57(19): 4785–4812. https://doi.org/10.1016/0016-7037(93)90200-g |
Shearer, C. K., Papike, J. J., Simon, S. B., et al., 1990. Ion Microprobe Studies of Trace Elements in Apollo 14 Volcanic Glass Beads: Comparisons to Apollo 14 Mare Basalts and Petrogenesis of Picritic Magmas. Geochimica et Cosmochimica Acta, 54(3): 851–867. https://doi.org/10.1016/0016-7037(90)903 78-x doi: 10.1016/0016-7037(90)90378-x |
Shearer, C. K., Borg, L. E., Papike, J. J., 2005. A View of KREEP-Rich Lunar Basaltic Magmatism through the Eyes of NWA 773. LPI, 1191 |
Snape, J. F., Curran, N. M., Whitehouse, M. J., et al., 2018. Ancient Volcanism on the Moon: Insights from Pb Isotopes in the MIL 13317 and Kalahari 009 Lunar Meteorites, Earth and Planetary Science Letters, 502: 84–95. https://doi.org/10.1016/j.epsl.2018.08.035 |
Stöffler, D., Ryder, G., 2001. Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System. Chronology and Evolution of Mars. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-1035-0_2 doi: 10.1007/978-94-017-1035-0_2 |
Stöffler, D., Keil, K., Edward, R. D. S., 1991. Shock Metamorphism of Ordinary Chondrites. Geochimica et Cosmochimica Acta, 55(12): 3845–3867. https://doi.org/10.1016/0016-7037(91)90078-j |
Stöffler, D., Hamann, C., Metzler, K., 2018. Shock Metamorphism of Planetary Silicate Rocks and Sediments: Proposal for an Updated Classification System. Meteoritics & Planetary Science, 53(1): 5–49. https://doi.org/10.1111/maps.12912 |
Sun, C. G., Liang, Y., 2012. Distribution of REE between Clinopyroxene and Basaltic Melt along a Mantle Adiabat: Effects of Major Element Composition, Water, and Temperature. Contributions to Mineralogy and Petrology, 163(5): 807–823. https://doi.org/10.1007/s00410-011-0700-x |
Terada, K., Anand, M., Sokol, A. K., et al., 2007. Cryptomare Magmatism 4.35 Gyr Ago Recorded in Lunar Meteorite Kalahari 009. Nature, 450(7171): 849–852. https://doi.org/10.1038/natu re06356 doi: 10.1038/nature06356 |
Tomioka, N., Kondo, H., Kunikata, A., et al., 2010. Pressure-Induced Amorphization of Albitic Plagioclase in an Externally Heated Diamond Anvil Cell. Geophysical Research Letters, 37(21): 2010GL044221. https://doi.org/10.1029/2010gl044221 |
Trotter, J. A., Eggins, S. M., 2006. Chemical Systematics of Conodont Apatite Determined by Laser Ablation ICPMS. Chemical Geology, 233(3/4): 196–216. https://doi.org/10.1016/j.chemgeo.2006.03.004 |
Valencia, S. N., Jolliff, B. L., Korotev, R. L., 2019. Petrography, Relationships, and Petrogenesis of the Gabbroic Lithologies in Northwest Africa 773 Clan Members Northwest Africa 773, 2727, 3160, 3170, 7007, and 10656. Meteoritics & Planetary Science, 54(9): 2083–2115. https://doi.org/10.1111/maps.13370 |
Wang, Y., Hsu, W., Guan, Y. B., et al., 2012. Petrogenesis of the Northwest Africa 4734 Basaltic Lunar Meteorite. Geochimica et Cosmochimica Acta, 92: 329–344. https://doi.org/10.1016/j.gc a.2012.06.024 doi: 10.1016/j.gca.2012.06.024 |
Watters, T., Johnson, C., 2010. Lunar Tectonics. In: Watters, T., Schultz, R., eds., Planetary Tectonics. Cambridge University Press. Cambridge. |
Warren, P. H., 1988. The Origin of Pristine KREEP: Effects of Mixing between urKREEP and the Magmas Parental to the Mg-Rich Cumulates. Lunar and Planetary Science Conference Proceedings, 18: 233–241 |
Whitten, J. L., Head, J. W., 2015. Lunar Cryptomaria: Physical Characteristics, Distribution, and Implications for Ancient Volcanism. Icarus, 247: 150–171. https://doi.org/10.1016/j.icaru s.2014.09.031 doi: 10.1016/j.icarus.2014.09.031 |
Williams, I. S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M. A., Shanks, Ⅲ W. C., Ridley, W. I., eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Society of Economic Geologists, 1–35. |
Wilson, L., Head, J. W., 2017. Generation, Ascent and Eruption of Magma on the Moon: New Insights into Source Depths, Magma Supply, Intrusions and Effusive/Explosive Eruptions (Part 1: Theory). ıcarus, 283: 146–175. https://doi.org/10.1016/j.icaru s.2015.12.039 doi: 10.1016/j.icarus.2015.12.039 |
Wu, Y. H., Hsu, W., 2020. Mineral Chemistry and in situ UPb Geochronology of the Mare Basalt Northwest Africa 10597: Implications for Low-Ti Mare Volcanism around 3.0 Ga. Icarus, 338: 113531. https://doi.org/10.1016/j.icarus.2019.113531 |
Xie, X. D., Minitti, M. E., Chen, M., et al., 2002. Natural High-Pressure Polymorph of Merrillite in the Shock Veins of the Suizhou Meteorite. Geochimica et Cosmochimica Acta, 66(13): 2439–2444. https://doi.org/10.1016/s0016-7037(02)00833-5 |
Xie, X. D., Minitti, M. E., Chen, M., et al., 2004. Tuite, Gamma-Ca3(PO4)2: A New Mineral from the Suizhou L6 Chondrite. European Journal of Mineralogy, 15(6): 1001–1005. https://doi.org/10.1127/0935-1221/2003/0015-1001 |
Xie, X. D., Zhai, S. M., Chen, M., et al., 2013. Tuite, Γ-Ca3(PO4)2, Formed by Chlorapatite Decomposition in a Shock Vein of the Suizhou L6 Chondrite. Meteoritics & Planetary Science, 48(8): 1515–1523. https://doi.org/10.1111/maps.12143 |
Xie, X. D., Gu, X. P., Chen, M., 2016. An Occurrence of Tuite, Γ-Ca3(PO4)2, Partly Transformed from Ca-Phosphates in the Suizhou Meteorite. Meteoritics & Planetary Science, 51(1): 195–202. https://doi.org/10.1111/maps.12577 |
Yang, W., Hu, S., Zhang, J. C., et al., 2015. NanoSIMS Analytical Technique and Its Applications in Earth Sciences. Science China Earth Sciences, 58(10): 1758–1767. https://doi.org/10.10 07/s11430-015-5106-6 doi: 10.1007/s11430-015-5106-6 |
Zeigler, R. A., Korotev, R. L., Jolliff, B. L., et al., 2005. Petrography and Geochemistry of the LaPaz Icefield Basaltic Lunar Meteorite and Source Crater Pairing with Northwest Africa 032. Meteoritics & Planetary Science, 40(7): 1073–1101. https://doi.org/10.1111/j.1945-5100.2005.tb00174.x |
Zhang, A. C., Hsu, W., Li, Q. L., et al., 2010a. SIMS Pb/Pb Dating of Zr-Rich Minerals in Lunar Meteorites Miller Range 05035 and LaPaz Icefield 02224: Implications for the Petrogenesis of Mare Basalt. Science China Earth Sciences, 53(3): 327–334. https://doi.org/10.1007/s11430-010-0041-z |
Zhang, A. C., Hsu, W. B., Floss, C., et al., 2010b. Petrogenesis of Lunar Meteorite Northwest Africa 2977: Constraints from in situ Microprobe Results. Meteoritics & Planetary Science, 45(12): 1929–1947. https://doi.org/10.1111/j.1945-5100.2010.01131.x |
Zhang, A. C., Wang, S. Z., Pang, R. L., et al., 2017. Heavy Shock Metamorphism of the Enriched Lherzolitic Shergottite Northwest Africa 7755. LPI |
Zhou, Q., Herd, C. D. K., Yin, Q. Z., et al., 2013. Geochronology of the Martian Meteorite Zagami Revealed by U-Pb Ion Probe Dating of Accessory Minerals. Earth and Planetary Science Letters, 374: 156–163. https://doi.org/10.1016/j.epsl.2013.05.035 |
Ziethe, R., Seiferlin, K., Hiesinger, H., 2009. Duration and Extent of Lunar Volcanism: Comparison of 3D Convection Models to Mare Basalt Ages. Planetary and Space Science, 57(7): 784–796. https://doi.org/10.1016/j.pss.2009.02.002 |