Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Qi He, Long Xiao, Ioannis Baziotis, Xiaochao Che, Yuqi Qian, Jiawei Zhao. Complexity of the NWA 773 Clan: New Evidence from Lunar Olivine Gabbro NWA 6950. Journal of Earth Science, 2025, 36(5): 2224-2239. doi: 10.1007/s12583-023-1923-0
Citation: Qi He, Long Xiao, Ioannis Baziotis, Xiaochao Che, Yuqi Qian, Jiawei Zhao. Complexity of the NWA 773 Clan: New Evidence from Lunar Olivine Gabbro NWA 6950. Journal of Earth Science, 2025, 36(5): 2224-2239. doi: 10.1007/s12583-023-1923-0

Complexity of the NWA 773 Clan: New Evidence from Lunar Olivine Gabbro NWA 6950

doi: 10.1007/s12583-023-1923-0
More Information
  • Corresponding author: Qi He, he_qi@cug.edu.cn
  • Received Date: 11 Mar 2023
  • Accepted Date: 11 Aug 2023
  • Available Online: 14 Oct 2025
  • Issue Publish Date: 30 Oct 2025
  • NWA 6950 is a type of cumulate gabbro meteorite that displays features indicating a lunar origin. Specifically, the Fe/Mn values of olivines and pyroxenes in the meteorite suggest a lunar origin, as does the presence of Fe-Ni metal. The meteorite has also undergone intense shock metamorphism, which is evidenced by the presence of ringwoodite, tuite, and xieite (a type of chromite with a CaTi2O4 structure) within the shock melt veins (SMVs). The texture, mineral modal abundances, and bulk compositions (measured from the SMVs) of NWA 6950 are similar to those of the NWA 773 clan, as are the concentrations and patterns of rare-earth-elements in olivine, pyroxene, plagioclase, and phosphate. In-situ U-Pb dating of baddeleyite and phosphate in NWA 6950 has determined its crystallization age to be 3 133 ± 11 and 3 129 ± 23 Ma, which is consistent with age data provided by Shaulis et al. (2017).Further, the chronology of the NWA 773 clan appears to be at least bimodal when considering the age of NWA 3333 (3 038 ± 20 Ma; Merle et al., 2020). The tight range of ages for the NWA 773 clan at approximately 3.1 Ga coincides with a change in the eruption flux and style on the Moon. This suggests that lunar volcanism may have shifted from extrusive-dominated to intrusive-dominated at approximately 3.1 Ga, resulting in the widespread distribution of gabbro lithologies on the Moon.

     

  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S7; Tables S1–S6) are available in the online version of this article at https://doi.org/10.1007/s12583-023-1923-0.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Anand, M., Taylor, L. A., Floss, C., et al., 2006. Petrology and Geochemistry of LaPaz Icefield 02205: A New Unique Low-Ti Mare-Basalt Meteorite. Geochimica et Cosmochimica Acta, 70(1): 246–264. https://doi.org/10.1016/j.gca.2005.08.018
    Arai, T., Ray Hawke, B., Giguere, T. A., et al., 2010. Antarctic Lunar Meteorites Yamato-793169, Asuka-881757, MIL 05035, and MET 01210 (YAMM): Launch Pairing and Possible Cryptomare Origin. Geochimica et Cosmochimica Acta, 74(7): 2231–2248. https://doi.org/10.1016/j.gca.2009.11.019
    Bao, Z. M., Shi, Y. R., Anderson, J. L., et al., 2020. Petrography and Chronology of Lunar Meteorite Northwest Africa 6950. Science China Information Sciences, 63(4): 140902. https://doi.org/10.10 07/s11432-019-2809-3 doi: 10.1007/s11432-019-2809-3
    Baziotis, I. P., Liu, Y., DeCarli, P. S., et al., 2013. The Tissint Martian Meteorite as Evidence for the Largest Impact Excavation. Nature Communications, 4: 1404. https://doi.org/10.1038/ncom ms2414 doi: 10.1038/ncomms2414
    Baziotis, I., Asimow, P. D., Hu, J., et al., 2018. High Pressure Minerals in the Château-Renard (L6) Ordinary Chondrite: Implications for Collisions on Its Parent Body. Sci. Rep. , 8(1): 9851. https://doi.org10.1038/s41598-018-28191-6
    Baziotis, I. P., Ma, C., Guan, Y., et al., 2022. Unique Evidence of Fluid Alteration in the Kakowa (L6) Ordinary Chondrite. Scientific Reports, 12: 5520. https://doi.org/10.1038/s41598-022-09465-6
    Bence, A. E., Papike, J. J., 1972. Pyroxenes as Recorders of Lunar Basalt Petrogenesis: Chemical Trends due to Crystal-Liquid Interaction. Lunar and Planetary Science Conference Proceedings, 3: 431
    Borg, L. E., Shearer, C. K., Asmerom, Y., et al., 2004. Prolonged KREEP Magmatism on the Moon Indicated by the Youngest Dated Lunar Igneous Rock. Nature, 432(7014): 209–211. https://doi.org/10.1038/nature03070
    Borg, L. E., Shearer, C. K., Asmerom, Y., et al., 2005. Geochemical and Isotopic Systematics of the Youngest Dated Lunar Igneous Rock, Northwest Africa 773. Lunar and Planet Science Conference, Abstract#1026
    Borg, L. E., Gaffney, A. M., Shearer, C. K., et al., 2009. Mechanisms for Incompatible-Element Enrichment on the Moon Deduced from the Lunar Basaltic Meteorite Northwest Africa 032. Geochimica et Cosmochimica Acta, 73(13): 3963–3980. https://doi.org/10.1016/j.gca.2009.03.039
    Bunch, T. E., Wittke, J. H., Korotev, R. L., et al., 2006. Lunar meteorites NWA 2700, NWA 2727 and NWA 2977: Mare Basalt/Gabbro Breccias with Affinities to NWA 773. Lunar and Planet Science Conference, Abstract #1375
    Burgess, R., Fernandes, V., Irving, A., et al., 2007. Ar-Ar Ages of NWA 2977 and NWA 3160-Lunar Meteorites Paired with NWA 773. 1338: 1603
    Calzada-Diaz, A., Joy, K. H., Crawford, I. A., et al., 2015. Constraining the Source Regions of Lunar Meteorites Using Orbital Geochemical Data. Meteoritics & Planetary Science, 50(2): 214–228. https://doi.org/10.1111/maps.12412
    Chen, M., Shu, J., Mao, H. K., 2008. Xieite, a New Mineral of High-Pressure FeCr2O4 Polymorph. Chinese Science Bulletin, 53(21): 3341–3345 (in Chinese with English Abstract) doi: 10.1007/s11434-008-0407-1
    Chen, M., Shu, J. F., Mao, H. K., et al., 2003. Natural Occurrence and Synthesis of Two New Postspinel Polymorphs of Chromite. Proceedings of the National Academy of Sciences of the United States of America, 100(25): 14651–14654. https://doi.org/10.10 73/pnas.2136599100 doi: 10.1073/pnas.2136599100
    Chopelas, A., Boehler, R., Ko, T., 1994. Thermodynamics and Behavior of Γ-Mg2SiO4 at High Pressure: Implications for Mg2SiO4 Phase Equilibrium. Physics and Chemistry of Minerals, 21(6): 351–359. https://doi.org/10.1007/bf00203293
    Darling, J. R., Moser, D. E., Barker, I. R., et al., 2016. Variable Microstructural Response of Baddeleyite to Shock Metamorphism in Young Basaltic Shergottite NWA 5298 and Improved U-Pb Dating of Solar System Events. Earth and Planetary Science Letters, 444: 1–12. https://doi.org/10.1016/j.epsl.2016.03.032
    Elardo, S. M., Shearer, C. K. Jr, Fagan, A. L., et al., 2014. The Origin of Young Mare Basalts Inferred from Lunar Meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. Meteoritics & Planetary Science, 49(2): 261–291. https://doi.org/10.1111/maps.12239
    Fagan, T. J., Taylor, G. J., Keil, K., et al., 2003. Northwest Africa 773: Lunar Origin and Iron-Enrichment Trend. Meteoritics & Planetary Science, 38(4): 529–554. https://doi.org/10.1111/j.194 5-5100.2003.tb00025.x doi: 10.1111/j.1945-5100.2003.tb00025.x
    Fagan, T. J., Kashima, D., Wakabayashi, Y., et al., 2014. Case Study of Magmatic Differentiation Trends on the Moon Based on Lunar Meteorite Northwest Africa 773 and Comparison with Apollo 15 Quartz Monzodiorite. Geochimica et Cosmochimica Acta, 133: 97–127. https://doi.org/10.1016/j.gca.2014.02.025
    Feng, L., Lin, Y., Hu, S., et al., 2011. Estimating Compositions of Natural Ringwoodite in the Heavily Shocked Grove Mountains 052049 Meteorite from Raman Spectra. American Mineralogist, 96(10): 1480–1489. https://doi.org/10.2138/am.2011.3679
    Fernandes, V. A., Burgess, R., Turner, G., 2003. 40Ar-39Ar Chronology of Lunar Meteorites Northwest Africa 032 and 773. Meteoritics & Planetary Science, 38(4): 555–564. https://doi.org/10.1111/j.1945-5100.2003.tb00026.x
    Floss, C., Crozaz, G., 1991. Ce Anomalies in the LEW85300 Eucrite: Evidence for REE Mobilization during Antarctic Weathering. Earth and Planetary Science Letters, 107(1): 13–24. https://doi.org/10.1016/0012-821x(91)90040-o
    Fritz, J., Greshake, A., 2009. High-Pressure Phases in an Ultramafic Rock from Mars. Earth and Planetary Science Letters, 288(3/4): 619–623. https://doi.org/10.1016/j.epsl.2009.10.030
    Gibson, K., Jolliff, B., Zeigler, R., et al., 2010. Testing Petrogenetic Relationships of the Lunar NWA 773 Meteorite Clan with Nickel and Cobalt in Olivine. LPI, 1533: 2593
    Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteoritics & Planetary Science, 35(1): 193–200. https://doi.org/10.1111/j.1945-5100.20 00.tb01985.x doi: 10.1111/j.1945-5100.2000.tb01985.x
    Gu, L. X., Hu, S., Anand, M., et al., 2022. Occurrence of Tuite and Ahrensite in Zagami and Their Significance for Shock-Histories Recorded in Martian Meteorites. American Mineralogist, 107(6): 1018–1029. https://doi.org/10.2138/am-2022-8020
    Haloda, J., Týcová, P., Korotev, R. L., et al., 2009. Petrology, Geochemistry, and Age of Low-Ti Mare-Basalt Meteorite Northeast Africa 003-A: A Possible Member of the Apollo 15 Mare Basaltic Suite. Geochimica et Cosmochimica Acta, 73(11): 3450–3470. https://doi.org/10.1016/j.gca.2009.03.003
    Head, J. W., Wilson, L., 1992. Lunar Mare Volcanism: Stratigraphy, Eruption Conditions, and the Evolution of Secondary Crusts. Geochimica et Cosmochimica Acta, 56(6): 2155–2175. https://doi.org/10.1016/0016-7037(92)90183-j
    Head, J. W., Wilson, L., 2017. Generation, Ascent and Eruption of Magma on the Moon: New Insights into Source Depths, Magma Supply, Intrusions and Effusive/Explosive Eruptions (Part 2: Predicted Emplacement Processes and Observations). Icarus, 283: 176–223. https://doi.org/10.1016/j.icarus.2016.05.031.
    Hiesinger, H., Head, J. W., Wolf, U., et al., 2011. Ages and Stratigraphy of Lunar Mare Basalts: A Synthesis. Special Paper of the Geological Society of America, 477: 1–51
    Heaman, L. M., 2009. The Application of U–Pb Geochronology to Mafic, Ultramafic and Alkaline Rocks: An Evaluation of Three Mineral Standards. Chemical Geology, 261(1/2): 43–52. https://doi.org/10.1016/j.chemgeo.2008.10.021
    Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101. https://doi.org/10.1039/b804760j
    Hu, S., Lin, Y. T., Yang, W., et al., 2016. NanoSIMS Imaging Method of Zircon U-Pb Dating. Science China Earth Sciences, 59(11): 2155–2164. https://doi.org/10.1007/s11430-016-0010-3
    Hui, H. J., Oshrin, J. G., Neal, C. R., 2011. Investigation into the Petrogenesis of Apollo 14 High-Al Basaltic Melts through Crystal Stratigraphy of Plagioclase. Geochimica et Cosmochimica Acta, 75(21): 6439–6460. https://doi.org/10.1016/j.gca.2011.08.015
    Hu, J., Asimow, P. D., Liu, Y., et al., 2023. Shock-Recovered Maskelynite Indicates Low-Pressure Ejection of Shergottites from Mars. Sci. Adv. , 9(18): eadf2906. 10.1126/sciadv. adf2906 doi: 10.1126/sciadv.adf2906
    Jolliff, B. L., Korotev, R. L., Zeigler, R. A., et al., 2003. Northwest Africa 773: Lunar Mare Breccia with a Shallow-Formed Olivine-Cumulate Component, Inferred Very-Low-Ti (VLT) Heritage, and a KREEP Connection. Geochimica et Cosmochimica Acta, 67(24): 4857–4879. https://doi.org/10.1016/j.gca.2003.08.012
    Jolliff, B. L., Zeigler, R. A., Korotev, R. L., 2007. Compositional Characteristics and Petrogenetic Relationships among the NWA 773 Clan of Lunar Meteorites. LPI, 1338: 1489
    Joy, K. H., Crawford, I. A., Huss, G. R., et al., 2014. An Unusual Clast in Lunar Meteorite MacAlpine Hills 88105: A Unique Lunar Sample or Projectile Debris? Meteoritics & Planetary Science, 49(4): 677–695. https://doi.org/10.1111/maps.12270
    Kayama, M., Tomioka, N., Ohtani, E., et al., 2018. Discovery of Moganite in a Lunar Meteorite as a Trace of H2O Ice in the Moon's Regolith. Sci. Adv. , 4(5): eaar4378. https://doi.org/110.1126/sciad v.aar4378 doi: 10.1126/sciadv.aar4378
    Korotev, R. L., Jolliff, B. L., Zeigler, R. A., et al., 2003. Compositional Constraints on the Launch Pairing of the Three Brecciated Lunar Meteorites of Basaltic Composition. Antarctic Meteorite Research, 16: 152–175
    Kuehner, S., Irving, A., Korotev, R., 2012. Petrology and Composition of Lunar Mare Ferroan Gabbro Breccia Northwest Africa 7007: New Insights into the Complex Petrogenesis of Northwest Africa 773 and Siblings. LPI, (1659), 1519
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Longhi, J., Boudreau, A. E., 1979. Complex Igneous Processes and the Formation of the Primitive Lunar Crustal Rocks. Lunar and Planetary Science Conference Proceedings, 2: 2085–2105
    Ludwig, K. R., 2009. SQUID 2: A User's Manual, Rev. 12 Apr., 2009. Berkeley Geochronology Center Special Publication, Berkeley
    Ludwig, K. R., 2012. Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec. Pub. 5
    McKay, G. A., Weill, D. F., 1976. Petrogenesis of KREEP. In Lunar and Planetary Science Conference Proceedings, 7: 2427–2447
    Merle, R. E., Nemchin, A. A., Whitehouse, M. J., et al., 2020. Pb-Pb Ages and Initial Pb Isotopic Composition of Lunar Meteorites: NWA 773 Clan, NWA 4734, and Dhofar 287. Meteorit Planet Sci, 55(8): 1808–1832. https://doi.org/10.1111/maps.13547
    Murayama, J. K., Nakai, S., Kato, M., et al., 1986. A Dense Polymorph of Ca3(PO4)2: A High Pressure Phase of Apatite Decomposition and Its Geochemical Significance. Physics of the Earth and Planetary Interiors, 44(4): 293–303. https://doi.org/10.1016/0031-9201(86)90057-9
    Nagaoka, H., Karouji, Y., Takeda, H., et al., 2015. Mineralogy and Petrology of Lunar Meteorite Northwest Africa 2977 Consisting of Olivine Cumulate Gabbro Including Inverted Pigeonite. Earth, Planets and Space, 67(1): 200. https://doi.org/10.1186/s40623-015-0368-y
    Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257- A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247–265. https://doi.org/10.1111/j.1751-908x.2008.00914.x
    Nemchin, A. A., Pidgeon, R. T., Healy, D., et al., 2009. The Comparative Behavior of Apatite-Zircon U-Pb Systems in Apollo 14 Breccias: Implications for the Thermal History of the Fra Mauro Formation. Meteoritics & Planetary Science, 44(11): 1717–1734. https://doi.org/10.1111/j.1945-5100.2009.tb01202.x
    Niihara, T., Kaiden, H., Misawa, K., et al., 2007. U-Pb Isotopic Systematics of Experimentally Shocked Baddeleyite. LPI, 1562
    Niihara, T., Kaiden, H., Misawa, K., et al., 2012. U-Pb Isotopic Systematics of Shock-Loaded and Annealed Baddeleyite: Implications for Crystallization Ages of Martian Meteorite Shergottites. Earth and Planetary Science Letters, 341: 195–210. https://doi.org/10.1016/j.epsl.2012.06.002
    Nyquist, L. E., Shih, C. Y., 1992. The Isotopic Record of Lunar Volcanism. Geochimica et Cosmochimica Acta, 56(6): 2213–2234. https://doi.org/10.1016/0016-7037(92)90185-l
    Nyquist, L. E., Bogard, D. D., Chi-Yu, S., 2001. Radiometric Chronology of the Moon and Mars. The Century of Space Science, Springer Netherlands, Dordrech. https://doi.org/10.1007/978-94-010-0320-9_55
    Nyquist, L. E., Shih, C. Y., Reese, Y. D., et al., 2009. Sm-Nd and Rb-Sr Ages and Isotopic Systematic for NWA 2977, a Young Basalt from the PKT. Meteoritics and Planetary Science, 44: A159–A159 doi: 10.1111/j.1945-5100.2009.tb00725.x
    Papike, J. J., Karner, J. M., Shearer, C. K., 2003. Determination of Planetary Basalt Parentage: A Simple Technique Using the Electron Microprobe. American Mineralogist, 88(2/3): 469–472. https://doi.org/10.2138/am-2003-2-323
    Presnall, D. C., 1995. Phase Diagrams of Earth-Forming Minerals. Mineral Physics & Crystallography. American Geophysical Union, Washington, D. C. https://doi.org/10.1029/rf002p0248 doi: 10.1029/rf002p0248
    Putirka, K. D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry, 69(1): 61–120. https://doi.org/10.2138/rmg.2008.69.3
    Qian, Y. Q., Xiao, L., Head, J. W., et al., 2021. Young Lunar Mare Basalts in the Chang'e-5 Sample Return Region, Northern Oceanus Procellarum. Earth and Planetary Science Letters, 555: 116702. https://doi.org/10.1016/j.epsl.2020.116702
    Rankenburg, K., Brandon, A. D., Norman, M. D., 2007. A Rb–Sr and Sm-Nd Isotope Geochronology and Trace Element Study of Lunar Meteorite LaPaz Icefield 02205. Geochimica et Cosmochimica Acta, 71(8): 2120–2135. https://doi.org/10.1016/j.gca.2007.01.014
    Sack, R. O., Ghiorso, M. S., 1994. Thermodynamics of Multicomponent Pyroxenes: Ⅱ. Phase Relations in the Quadrilateral. Contributions to Mineralogy and Petrology, 116(3): 287–300. https://doi.org/10.1007/bf00306498
    Sano, Y., Oyama, T., Terada, K., et al., 1999. Ion Microprobe U-Pb Dating of Apatite. Chemical Geology, 153(1/2/3/4): 249–258. https://doi.org/10.1016/s0009-2541(98)00163-6
    Sharp, T. G., DeCarli, P. S., 2006. Shock Effects in Meteorites. Meteorites and the Early Solar System Ⅱ. University of Arizona Press, Tucson. https://doi.org/10.2307/j.ctv1v7zdmm.37 doi: 10.2307/j.ctv1v7zdmm.37
    Shaulis, B. J., Righter, M., Lapen, T. J., et al., 2017.3. 1 Ga Crystallization Age for Magnesian and Ferroan Gabbro Lithologies in the Northwest Africa 773 Clan of Lunar Meteorites. Geochimica et Cosmochimica Acta, 213: 435–456. https://doi.org/10.1016/j.gca.2017.06.031
    Shearer, C. K., Papike, J. J., 1993. Basaltic Magmatism on the Moon: A Perspective from Volcanic Picritic Glass Beads. Geochimica et Cosmochimica Acta, 57(19): 4785–4812. https://doi.org/10.1016/0016-7037(93)90200-g
    Shearer, C. K., Papike, J. J., Simon, S. B., et al., 1990. Ion Microprobe Studies of Trace Elements in Apollo 14 Volcanic Glass Beads: Comparisons to Apollo 14 Mare Basalts and Petrogenesis of Picritic Magmas. Geochimica et Cosmochimica Acta, 54(3): 851–867. https://doi.org/10.1016/0016-7037(90)903 78-x doi: 10.1016/0016-7037(90)90378-x
    Shearer, C. K., Borg, L. E., Papike, J. J., 2005. A View of KREEP-Rich Lunar Basaltic Magmatism through the Eyes of NWA 773. LPI, 1191
    Snape, J. F., Curran, N. M., Whitehouse, M. J., et al., 2018. Ancient Volcanism on the Moon: Insights from Pb Isotopes in the MIL 13317 and Kalahari 009 Lunar Meteorites, Earth and Planetary Science Letters, 502: 84–95. https://doi.org/10.1016/j.epsl.2018.08.035
    Stöffler, D., Ryder, G., 2001. Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System. Chronology and Evolution of Mars. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-1035-0_2 doi: 10.1007/978-94-017-1035-0_2
    Stöffler, D., Keil, K., Edward, R. D. S., 1991. Shock Metamorphism of Ordinary Chondrites. Geochimica et Cosmochimica Acta, 55(12): 3845–3867. https://doi.org/10.1016/0016-7037(91)90078-j
    Stöffler, D., Hamann, C., Metzler, K., 2018. Shock Metamorphism of Planetary Silicate Rocks and Sediments: Proposal for an Updated Classification System. Meteoritics & Planetary Science, 53(1): 5–49. https://doi.org/10.1111/maps.12912
    Sun, C. G., Liang, Y., 2012. Distribution of REE between Clinopyroxene and Basaltic Melt along a Mantle Adiabat: Effects of Major Element Composition, Water, and Temperature. Contributions to Mineralogy and Petrology, 163(5): 807–823. https://doi.org/10.1007/s00410-011-0700-x
    Terada, K., Anand, M., Sokol, A. K., et al., 2007. Cryptomare Magmatism 4.35 Gyr Ago Recorded in Lunar Meteorite Kalahari 009. Nature, 450(7171): 849–852. https://doi.org/10.1038/natu re06356 doi: 10.1038/nature06356
    Tomioka, N., Kondo, H., Kunikata, A., et al., 2010. Pressure-Induced Amorphization of Albitic Plagioclase in an Externally Heated Diamond Anvil Cell. Geophysical Research Letters, 37(21): 2010GL044221. https://doi.org/10.1029/2010gl044221
    Trotter, J. A., Eggins, S. M., 2006. Chemical Systematics of Conodont Apatite Determined by Laser Ablation ICPMS. Chemical Geology, 233(3/4): 196–216. https://doi.org/10.1016/j.chemgeo.2006.03.004
    Valencia, S. N., Jolliff, B. L., Korotev, R. L., 2019. Petrography, Relationships, and Petrogenesis of the Gabbroic Lithologies in Northwest Africa 773 Clan Members Northwest Africa 773, 2727, 3160, 3170, 7007, and 10656. Meteoritics & Planetary Science, 54(9): 2083–2115. https://doi.org/10.1111/maps.13370
    Wang, Y., Hsu, W., Guan, Y. B., et al., 2012. Petrogenesis of the Northwest Africa 4734 Basaltic Lunar Meteorite. Geochimica et Cosmochimica Acta, 92: 329–344. https://doi.org/10.1016/j.gc a.2012.06.024 doi: 10.1016/j.gca.2012.06.024
    Watters, T., Johnson, C., 2010. Lunar Tectonics. In: Watters, T., Schultz, R., eds., Planetary Tectonics. Cambridge University Press. Cambridge. https://doi.org/10.1017/cbo9780511691645.005
    Warren, P. H., 1988. The Origin of Pristine KREEP: Effects of Mixing between urKREEP and the Magmas Parental to the Mg-Rich Cumulates. Lunar and Planetary Science Conference Proceedings, 18: 233–241
    Whitten, J. L., Head, J. W., 2015. Lunar Cryptomaria: Physical Characteristics, Distribution, and Implications for Ancient Volcanism. Icarus, 247: 150–171. https://doi.org/10.1016/j.icaru s.2014.09.031 doi: 10.1016/j.icarus.2014.09.031
    Williams, I. S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben, M. A., Shanks, Ⅲ W. C., Ridley, W. I., eds., Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Society of Economic Geologists, 1–35. https://doi.org/10.5382/rev.07.01
    Wilson, L., Head, J. W., 2017. Generation, Ascent and Eruption of Magma on the Moon: New Insights into Source Depths, Magma Supply, Intrusions and Effusive/Explosive Eruptions (Part 1: Theory). ıcarus, 283: 146–175. https://doi.org/10.1016/j.icaru s.2015.12.039 doi: 10.1016/j.icarus.2015.12.039
    Wu, Y. H., Hsu, W., 2020. Mineral Chemistry and in situ UPb Geochronology of the Mare Basalt Northwest Africa 10597: Implications for Low-Ti Mare Volcanism around 3.0 Ga. Icarus, 338: 113531. https://doi.org/10.1016/j.icarus.2019.113531
    Xie, X. D., Minitti, M. E., Chen, M., et al., 2002. Natural High-Pressure Polymorph of Merrillite in the Shock Veins of the Suizhou Meteorite. Geochimica et Cosmochimica Acta, 66(13): 2439–2444. https://doi.org/10.1016/s0016-7037(02)00833-5
    Xie, X. D., Minitti, M. E., Chen, M., et al., 2004. Tuite, Gamma-Ca3(PO4)2: A New Mineral from the Suizhou L6 Chondrite. European Journal of Mineralogy, 15(6): 1001–1005. https://doi.org/10.1127/0935-1221/2003/0015-1001
    Xie, X. D., Zhai, S. M., Chen, M., et al., 2013. Tuite, Γ-Ca3(PO4)2, Formed by Chlorapatite Decomposition in a Shock Vein of the Suizhou L6 Chondrite. Meteoritics & Planetary Science, 48(8): 1515–1523. https://doi.org/10.1111/maps.12143
    Xie, X. D., Gu, X. P., Chen, M., 2016. An Occurrence of Tuite, Γ-Ca3(PO4)2, Partly Transformed from Ca-Phosphates in the Suizhou Meteorite. Meteoritics & Planetary Science, 51(1): 195–202. https://doi.org/10.1111/maps.12577
    Yang, W., Hu, S., Zhang, J. C., et al., 2015. NanoSIMS Analytical Technique and Its Applications in Earth Sciences. Science China Earth Sciences, 58(10): 1758–1767. https://doi.org/10.10 07/s11430-015-5106-6 doi: 10.1007/s11430-015-5106-6
    Zeigler, R. A., Korotev, R. L., Jolliff, B. L., et al., 2005. Petrography and Geochemistry of the LaPaz Icefield Basaltic Lunar Meteorite and Source Crater Pairing with Northwest Africa 032. Meteoritics & Planetary Science, 40(7): 1073–1101. https://doi.org/10.1111/j.1945-5100.2005.tb00174.x
    Zhang, A. C., Hsu, W., Li, Q. L., et al., 2010a. SIMS Pb/Pb Dating of Zr-Rich Minerals in Lunar Meteorites Miller Range 05035 and LaPaz Icefield 02224: Implications for the Petrogenesis of Mare Basalt. Science China Earth Sciences, 53(3): 327–334. https://doi.org/10.1007/s11430-010-0041-z
    Zhang, A. C., Hsu, W. B., Floss, C., et al., 2010b. Petrogenesis of Lunar Meteorite Northwest Africa 2977: Constraints from in situ Microprobe Results. Meteoritics & Planetary Science, 45(12): 1929–1947. https://doi.org/10.1111/j.1945-5100.2010.01131.x
    Zhang, A. C., Wang, S. Z., Pang, R. L., et al., 2017. Heavy Shock Metamorphism of the Enriched Lherzolitic Shergottite Northwest Africa 7755. LPI
    Zhou, Q., Herd, C. D. K., Yin, Q. Z., et al., 2013. Geochronology of the Martian Meteorite Zagami Revealed by U-Pb Ion Probe Dating of Accessory Minerals. Earth and Planetary Science Letters, 374: 156–163. https://doi.org/10.1016/j.epsl.2013.05.035
    Ziethe, R., Seiferlin, K., Hiesinger, H., 2009. Duration and Extent of Lunar Volcanism: Comparison of 3D Convection Models to Mare Basalt Ages. Planetary and Space Science, 57(7): 784–796. https://doi.org/10.1016/j.pss.2009.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(6) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return