Akil, A., Hassan, W., 2020. NANOMATERIALS: Global Research Publication, Research Quality, and Patent Trends. Applications of Nanomaterials in Human Health. Singapore: Springer, 2020: 229–248. https://doi.org/10.1007/978-981-15-4802-4_12 |
Ali, I., 2012. New Generation Adsorbents for Water Treatment. Chemical Reviews, 112(10): 5073–5091. https://doi.org/10.1021/cr300133d |
Aminiyan, M. M., Aitkenhead-Peterson, J., Aminiyan, F. M., 2018. Evaluation of Multiple Water Quality Indices for Drinking and Irrigation Purposes for the Karoon River, Iran. Environmental Geochemistry and Health, 40(6): 2707–2728. https://doi.org/10.1007/s10653-018-0135-7 |
Barton, L. E., Auffan, M., Olivi, L., et al., 2015. Heteroaggregation, Transformation and Fate of CeO2 Nanoparticles in Wastewater Treatment. Environmental Pollution, 203: 122–129. https://doi.org/10.1016/j.envpol.2015.03.035 |
Brar, S. K., Verma, M., Tyagi, R. D., et al., 2010. Engineered Nanoparticles in Wastewater and Wastewater Sludge―Evidence and Impacts. Waste Management, 30(3): 504–520. https://doi.org/10.1016/j.wasman.2009.10.012 |
Brenner, S. A., Neu-Baker, N. M., Caglayan, C., et al., 2015. Occupational Exposure to Airborne Nanomaterials: An Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment. Journal of Occupational and Environmental Hygiene, 12(7): 469–481. https://doi.org/10.1080/15459624.2015.1018515 |
Carbajo, J. B., Petre, A. L., Rosal, R., et al., 2016. Ozonation as Pre-Treatment of Activated Sludge Process of a Wastewater Containing Benzalkonium Chloride and NiO Nanoparticles. Chemical Engineering Journal, 283: 740–749. https://doi.org/10.1016/j.cej.2015.08.001 |
Dong, Y. M., Yang, H. X., He, K., et al., 2009. Β-MnO2 Nanowires: A Novel Ozonation Catalyst for Water Treatment. Applied Catalysis B: Environmental, 85(3/4): 155–161. https://doi.org/10.1016/j.apcatb.2008.07.007 |
Hu, X., Ding, Z. H., Zimmerman, A. R., et al., 2015. Batch and Column Sorption of Arsenic Onto Iron-Impregnated Biochar Synthesized through Hydrolysis. Water Research, 68: 206–216. https://doi.org/10.1016/j.watres.2014.10.009 |
Jarvie, H. P., King, S. M., 2010. Just Scratching the Surface? New Techniques Show How Surface Functionality of Nanoparticles Influences Their Environmental Fate. Nano Today, 5(4): 248–250. https://doi.org/10.1016/j.nantod.2010.06.001 |
Kar, S., Bindal, R. C., Tewari, P. K., 2012. Carbon Nanotube Membranes for Desalination and Water Purification: Challenges and Opportunities. Nano Today, 7(5): 385–389. https://doi.org/10.1016/j.nantod.2012.09.002 |
Khajeh, M., Laurent, S., Dastafkan, K., 2013. Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media). Chemical Reviews, 113(10): 7728–7768. https://doi.org/10.1021/cr400086v |
Kim, E. S., Hwang, G., Gamal El-Din, M., et al., 2012. Development of Nanosilver and Multi-Walled Carbon Nanotubes Thin-Film Nanocomposite Membrane for Enhanced Water Treatment. Journal of Membrane Science, 394/395: 37–48. https://doi.org/10.1016/j.memsci.2011.11.041 |
Kuiken, T., 2010. Cleaning up Contaminated Waste Sites: Is Nanotechnology the Answer? Nano Today, 5(1): 6–8. https://doi.org/10.1016/j.nantod.2009.11.001 |
Loo, S. L., Krantz, W. B., Fane, A. G., et al., 2015. Bactericidal Mechanisms Revealed for Rapid Water Disinfection by Superabsorbent Cryogels Decorated with Silver Nanoparticles. Environmental Science & Technology, 49(4): 2310–2318. https://doi.org/10.1021/es5048667 |
Mueller, N. C., Nowack, B., 2010. Nanoparticles for Remediation: Solving Big Problems with Little Particles. Elements, 6(6): 395–400. https://doi.org/10.2113/gselements.6.6.395 |
Neale, P. A., Jämting, Å. K., O'Malley, E., et al., 2015. Behaviour of Titanium Dioxide and Zinc Oxide Nanoparticles in the Presence of Wastewater-Derived Organic Matter and Implications for Algal Toxicity. Environmental Science: Nano, 2(1): 86–93. https://doi.org/10.1039/C4en00161c |
Nyberg, L., Turco, R. F., Nies, L., 2008. Assessing the Impact of Nanomaterials on Anaerobic Microbial Communities. Environmental Science & Technology, 42(6): 1938–1943. https://doi.org/10.1021/es072018g |
Oves, M., Arshad, M., Khan, M. S., et al., 2015. Anti-Microbial Activity of Cobalt Doped Zinc Oxide Nanoparticles: Targeting Water Borne Bacteria. Journal of Saudi Chemical Society, 19(5): 581–588. https://doi.org/10.1016/j.jscs.2015.05.003 |
Peralta-Videa, J. R., Zhao, L. J., Lopez-Moreno, M. L., et al., 2011. Nanomaterials and the Environment: A Review for the Biennium 2008–2010. Journal of Hazardous Materials, 186(1): 1–15. https://doi.org/10.1016/j.jhazmat.2010.11.020 |
Posner, J. D., 2009. Engineered Nanomaterials: Where They Go, nobody Knows. Nano Today, 4(2): 114–115. https://doi.org/10.1016/j.nantod.2009.01.001 |
Ranjit, P., Jhansi, V., Reddy, K. V., 2021. Conventional Wastewater Treatment Processes. Advances in the Domain of Environmental Biotechnology. Singapore, Springer. 2021: 455–479. https://doi.org/10.1007/978-981-15-8999-7_17 |
Rashid, A., Khattak, S. A., Ali, L., et al., 2019. Geochemical Profile and Source Identification of Surface and Groundwater Pollution of District Chitral, Northern Pakistan. Microchemical Journal, 145: 1058–1065. https://doi.org/10.1016/j.microc.2018.12.025 |
Sealy, C., 2013. Cleaning up Water on the Nanoscale. Nano Today, 8(4): 337–338. https://doi.org/10.1016/j.nantod.2013.06.004 |
Sealy, C., 2018. Freshwater Plants Break down Gold Nanoparticles. Nano Today, 23: 6–7. https://doi.org/10.1016/j.nantod.2018.10.003 |
Sealy, C., 2019. Nanostructured Wood Promises Eco-Friendly Desalination. Nano Today, 28: 100770. https://doi.org/10.1016/j.nantod.2019.100770 |
Sibag, M., Choi, B. G., Suh, C., et al., 2015. Inhibition of Total Oxygen Uptake by Silica Nanoparticles in Activated Sludge. Journal of Hazardous Materials, 283: 841–846. https://doi.org/10.1016/j.jhazmat.2014.10.032 |
Simate, G. S., Iyuke, S. E., Ndlovu, S., et al., 2012. The Heterogeneous Coagulation and Flocculation of Brewery Wastewater Using Carbon Nanotubes. Water Research, 46(4): 1185–1197. https://doi.org/10.1016/j.watres.2011.12.023 |
Sun, Y., Liang, J., Tang, L., et al., 2019. Nano-Pesticides: A Great Challenge for Biodiversity? Nano Today, 28: 100757. https://doi.org/10.1016/j.nantod.2019.06.003 |
Ustaoğlu, F., Tepe, Y., 2019. Water Quality and Sediment Contamination Assessment of Pazarsuyu Stream, Turkey Using Multivariate Statistical Methods and Pollution Indicators. International Soil and Water Conservation Research, 7(1): 47–56. https://doi.org/10.1016/j.iswcr.2018.09.001 |
Wang, Y. L., El-Deen, A. G., Li, P., et al., 2015. High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide-Graft-Quaternized Chitosan Nanohybrid Electrode Coating. ACS Nano, 9(10): 142–157. https://doi.org/10.1021/acsnano.5b03763 |
Yang, Y., Colman, B. P., Bernhardt, E. S., et al., 2015. Importance of a Nanoscience Approach in the Understanding of Major Aqueous Contamination Scenarios: Case Study from a Recent Coal Ash Spill. Environmental Science & Technology, 49(6): 3375–3382. https://doi.org/10.1021/es505662q |
Yeston, J., Coontz, R., Smith, J., et al., 2006. A Thirsty World. Science, 313(5790): 1067. https://doi.org/10.1126/science.313.5790.1067 |
Zhao, W., Chen, I. W., Huang, F. Q., 2019. Toward Large-Scale Water Treatment Using Nanomaterials. Nano Today, 27: 11–27. https://doi.org/10.1016/j.nantod.2019.05.003 |