Citation: | Huihui Yang, Yu-Min Chou, Xiuyang Jiang, Wenyue Xia, Hai Li, Yi Zhong, Jingyu Zhang, Yaoqi He, Tsai-Luen Yu, Qingsong Liu, Chuan-Chou Shen. Half-Precessional Cycle Revealed by Environment Magnetism of Stalagmite in Shizhu Cave from Southwestern China during the Last Glacial. Journal of Earth Science, 2025, 36(3): 1251-1260. doi: 10.1007/s12583-024-0005-4 |
The environmental magnetic proxies of stalagmites hold significant potential for reconstructing regional hydroclimate changes by revealing the content and grain size of magnetic particles within stalagmites. In this study, we present the contents and grain sizes of magnetic particles within a stalagmite SZ-1, from Shizhu Cave in southwestern China from 70.4 to 22.3 thousand years ago (ka) during the last glacial period. Specifically, the parameters IRMsoft, soil-derived magnetic minerals, and ARM/SIRM (anhysteretic remanent magnetization/saturation isothermal remanent magnetization), the ratio of fine magnetic particles to total ferrimagnetic particles preserved in stalagmite SZ-1, indicate the fluctuation of regional precipitation. Obvious half-precessional cycles are evident in these two proxies, indicating that hydroclimatic variations in southwestern China may predominantly arise from the heat and moisture transported from tropical oceans. These variations are likely influenced by shifts in the Intertropical Convergence Zone and fluctuations in the Asian Summer Monsoon.
Battisti, D. S., Ding, Q. H., Roe, G. H., 2014. Coherent Pan-Asian Climatic and Isotopic Response to Orbital Forcing of Tropical Insolation. Journal of Geophysical Research: Atmospheres, 119(21): 11997–12020. https://doi.org/10.1002/2014jd021960 |
Berger, A., Loutre, M. F., 1997. Intertropical Latitudes and Precessional and Half-Precessional Cycles. Science, 278(5342): 1476–1478. https://doi.org/10.1126/science.278.5342.1476 |
Bourne, M. D., Feinberg, J. M., Strauss, B. E., et al., 2015. Long-Term Changes in Precipitation Recorded by Magnetic Minerals in Speleothems. Geology, 43(7): 595–598. https://doi.org/10.1130/g36695.1 |
Bull, P. A., 1981. Some Fine-Grained Sedimentation Phenomena in Caves. Earth Surface Processes and Landforms, 6(1): 11–22. https://doi.org/10.1002/esp.3290060103 |
Cai, Y. J., Fung, I. Y., Edwards, R. L., et al., 2015. Variability of Stalagmite-Inferred Indian Monsoon Precipitation over the Past 252, 000 Y. Proceedings of the National Academy of Sciences of the United States of America, 112(10): 2954–2959. https://doi.org/10.1073/pnas.1424035112 |
Chen, Q., Zhang, T. W., Wang, Y. T., et al., 2019. Magnetism Signals in a Stalagmite from Southern China and Reconstruction of Paleorainfall during the Interglacial-Glacial Transition. Geophysical Research Letters, 46(12): 6918–6925. https://doi.org/10.1029/2019GL082204 |
Cheng, H., Edwards, R. L., Shen, C. C., et al., 2013. Improvements in 230Th Dating, 230Th and 234U Half-Life Values, and U-Th Isotopic Measurements by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Earth and Planetary Science Letters, 371: 82–91. https://doi.org/10.1016/j.epsl.2013.04.006 |
Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640, 000 Years and Ice Age Terminations. Nature, 534(7609): 640–646. https://doi.org/10.1038/nature18591 |
Cheng, H., Sinha, A., Wang, X. F., et al., 2012. The Global Paleomonsoon as Seen through Speleothem Records from Asia and the Americas. Climate Dynamics, 39(5): 1045–1062. https://doi.org/10.1007/s00382-012-1363-7 |
Cheng, H., Zhang, H. W., Zhao, J. Y., et al., 2019. Chinese Stalagmite Paleoclimate Researches: A Review and Perspective. Science China Earth Sciences, 62(10): 1489–1513. https://doi.org/10.1007/s11430-019-9478-3 |
Evans, M. E., Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, Amsterdam. 299 |
Farnsworth, A., Lunt, D. J., Robinson, S. A., et al., 2019. Past East Asian Monsoon Evolution Controlled by Paleogeography, Not CO2. Science Advances, 5(10): eaax1697. https://doi.org/10.1126/sciadv.aax1697 |
Guyodo, Y., LaPara, T. M., Anschutz, A. J., et al., 2006. Rock Magnetic, Chemical and Bacterial Community Analysis of a Modern Soil from Nebraska. Earth and Planetary Science Letters, 251(1/2): 168–178. https://doi.org/10.1016/j.epsl.2006.09.005 |
Hagelberg, T. K., Bond, G., DeMenocal, P., 1994. Milankovitch Band Forcing of Sub-Milankovitch Climate Variability during the Pleistocene. Paleoceanography, 9(4): 545–558. https://doi.org/10.1029/94pa00443 |
Heller, F., Liu, T. S., 1984. Magnetism of Chinese Loess Deposits. Geophysical Journal of the Royal Astronomical Society, 77(1): 125–141. https://doi.org/10.1111/j.1365-246x.1984.tb01928.x |
Jaqueto, P., Trindade, R. I. F., Feinberg, J. M., et al., 2021. Magnetic Mineralogy of Speleothems from Tropical-Subtropical Sites of South America. Frontiers in Earth Science, 9: 278. https://doi.org/10.3389/feart.2021.634482 |
Jian, Z. M., Wang, Y., Dang, H. W., et al., 2020. Half-Precessional Cycle of Thermocline Temperature in the Western Equatorial Pacific and Its Bihemispheric Dynamics. Proceedings of the National Academy of Sciences of the United States of America, 117(13): 7044–7051. https://doi.org/10.1073/pnas.1915510117 |
Jiang, D. B., Yu, G., Zhao, P., et al., 2015. Paleoclimate Modeling in China: A Review. Advances in Atmospheric Sciences, 32(2): 250–275. https://doi.org/10.1007/s00376-014-0002-0 |
Jordanova, N., 2017. Soil Magnetism: Applications in Pedology, Environmental Science and Agriculture. Elsevier, Amsterdam. 445 |
Kathayat, G., Cheng, H., Sinha, A., et al., 2016. Indian Monsoon Variability on Millennial-Orbital Timescales. Scientific Reports, 6: 24374. https://doi.org/10.1038/srep24374 |
Kim, D., Kim, H., Kang, S. M., et al., 2022. Weak Hadley Cell Intensity Changes due to Compensating Effects of Tropical and Extratropical Radiative Forcing. NPJ Climate and Atmospheric Science, 5: 61. https://doi.org/10.1038/s41612-022-00287-x |
Kodama, K. P., Anastasio, D. J., Newton, M. L., et al., 2010. High-Resolution Rock Magnetic Cyclostratigraphy in an Eocene Flysch, Spanish Pyrenees. Geochemistry, Geophysics, Geosystems, 11(6): 1–22. https://doi.org/10.1029/2010gc003069 |
Kong, X. X., Jiang, Z. X., Cai, Y., 2023. Orbital and Sub-Orbital Pacing of Mudstones in the Dongying Depression, Eastern China: Implications for Middle Eocene East Asian Climate Evolution. GSA Bulletin, 135(11/12): 3024–3042. https://doi.org/10.1130/B36606.1 |
Lascu, I., Feinberg, J. M., 2011. Speleothem Magnetism. Quaternary Science Reviews, 30(23/24): 3306–3320. https://doi.org/10.1016/j.quascirev.2011.08.004 |
Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428(1): 261–285. https://doi.org/10.1051/0004-6361:20041335 |
Li, M. S., Hinnov, L., Kump, L., 2019. Acycle: Time-Series Analysis Software for Paleoclimate Research and Education. Computers & Geosciences, 127: 12–22. https://doi.org/10.1016/j.cageo.2019.02.011 |
Liu, Q. S., Roberts, A. P., Torrent, J., et al., 2007. What do the HIRM and S-Ratio Really Measure in Environmental Magnetism? Geochemistry, Geophysics, Geosystems, 8(9). https://doi.org/10.1029/2007gc001717 |
Liu, Q. S., Roberts, A. P., Larrasoaña, J. C., et al., 2012. Environmental magnetism: Principles and Applications. Reviews of Geophysics, 50(4): RG4002. https://doi.org/10.1029/2012rg000393 |
Liu, Q. S., Yu, Y., Torrent, J., et al., 2006. Characteristic Low-Temperature Magnetic Properties of Aluminous Goethite [α-(Fe, Al)OOH] Explained. Journal of Geophysical Research: Solid Earth, 111(B12): 12–34. https://doi.org/10.1029/2006jb004560 |
Mann, M. E., Lees, J. M., 1996. Robust Estimation of Background Noise and Signal Detection in Climatic Time Series. Climatic Change, 33(3): 409–445. https://doi.org/10.1007/bf00142586 |
Maher, B. A., Karloukovski, V. V., Mutch, T. J., 2004. High-Field Remanence Properties of Synthetic and Natural Submicrometre Haematites and Goethites: Significance for Environmental Contexts. Earth and Planetary Science Letters, 226(3/4): 491–505. https://doi.org/10.1016/j.epsl.2004.05.042 |
McIntyre, A., Molfino, B., 1996. Forcing of Atlantic Equatorial and Subpolar Millennial Cycles by Precession. Science, 274(5294): 1867–1870. https://doi.org/10.1126/science.274.5294.1867 |
Merlis, T. M., Schneider, T., Bordoni, S., et al., 2013. The Tropical Precipitation Response to Orbital Precession. Journal of Climate, 26(6): 2010–2021. https://doi.org/10.1175/jcli-d-12-00186.1 |
Morin, F. J., 1950. Magnetic Susceptibility of αFe2O3 and αFe2O3 with Added Titanium. Physical Review, 78(6): 819–820 |
Özdemir, Ö., Dunlop, D. J., Moskowitz, B. M., 1993. The Effect of Oxidation on the Verwey Transition in Magnetite. Geophysical Research Letters, 20(16): 1671–1674. https://doi.org/10.1029/93gl01483 |
Özdemir, Ö., Dunlop, D. J., Berquó, T. S., 2008. Morin Transition in hematite: Size Dependence and Thermal Hysteresis. Geochemistry, Geophysics, Geosystems, 9(10). https://doi.org/10.1029/2008gc002110 |
Peters, C., Dekkers, M. J., 2003. Selected Room Temperature Magnetic Parameters as a Function of Mineralogy, Concentration and Grain Size. Physics and Chemistry of the Earth, 28(16–19): 659–667. https://doi.org/10.1016/s1474-7065(03)00120-7 |
Robinson, S. G., 1986. The Late Pleistocene Palaeoclimatic Record of North Atlantic Deep-Sea Sediments Revealed by Mineral-Magnetic Measurements. Physics of the Earth and Planetary Interiors, 42(1/2): 22–47. https://doi.org/10.1016/s0031-9201(86)80006-1 |
Ruddiman, W. F., 2006. What is the Timing of Orbital-Scale Monsoon Changes? Quaternary Science Reviews, 25(7/8): 657–658. https://doi.org/10.1016/j.quascirev.2006.02.004 |
Shen, C. C., Wu, C. C., Cheng, H., et al., 2012. High-Precision and High-Resolution Carbonate 230Th Dating by MC-ICP-MS with SEM Protocols. Geochimica et Cosmochimica Acta, 99: 71–86. https://doi.org/10.1016/j.gca.2012.09.018 |
Shen, C. C., Edwards, R. L., Cheng, H., et al., 2002. Uranium and Thorium Isotopic and Concentration Measurements by Magnetic Sector Inductively Coupled Plasma Mass Spectrometry. Chemical Geology, 185(3/4): 165–178. https://doi.org/10.1016/s0009-2541(01)00404-1 |
Shi, T. H., Ding, J., Zhu, Z. M., et al., 2022. Occurrence and Distribution Patterns of Magnetic Particles within Stalagmite Growth Laminae. Geochemistry, Geophysics, Geosystems, 23(9): e2022GC010487. https://doi.org/10.1029/2022gc010487 |
Strauss, B. E., Strehlau, J. H., Lascu, I., et al., 2013. The Origin of Magnetic Remanence in stalagmites: Observations from Electron Microscopy and Rock Magnetism. Geochemistry, Geophysics, Geosystems, 14(12): 5006–5025. https://doi.org/10.1002/2013gc004950 |
Sun, J. M., Huang, X. G., 2006. Half-Precessional Cycles Recorded in Chinese Loess: Response to Low-Latitude Insolation Forcing during the last Interglaciation. Quaternary Science Reviews, 25(9/10): 1065–1072. https://doi.org/10.1016/j.quascirev.2005.08.004 |
Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin Ltd., London. 228 |
Thomson, D. J., 1982. Spectrum Estimation and Harmonic Analysis. Proceedings of the IEEE, 70(9): 1055–1096. https://doi.org/10.1109/proc.1982.12433 |
Verschuren, D., Sinninghe Damsté, J. S., Moernaut, J., et al., 2009. Half-Precessional Dynamics of Monsoon Rainfall near the East African Equator. Nature, 462(7273): 637–641. https://doi.org/10.1038/nature08520 |
Verwey, E. J. W., 1939. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature, 144(3642): 327–328. https://doi.org/10.1038/144327b0 |
Wang, B., 2006. The Asian Monsoon. Springer Berlin, Heidelberg. 450 |
Wang, H. J., Chen, H. P., 2012. Climate Control for Southeastern China Moisture and precipitation: Indian or East Asian Monsoon? Journal of Geophysical Research: Atmospheres, 117(D12). https://doi.org/10.1029/2012jd017734 |
Wang, Y., Lu, H. Y., Yi, S. W., et al., 2022. Tropical Forcing Orbital-Scale Precipitation Variations Revealed by a Maar Lake Record in South China. Climate Dynamics, 58(9): 2269–2280. https://doi.org/10.1007/s00382-021-06004-3 |
Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2008. Millennial- and Orbital-Scale Changes in the East Asian Monsoon over the Past 224, 000 Years. Nature, 451: 1090–1093. https://doi.org/10.1038/nature06692 |
Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827–830. https://doi.org/10.1130/g34318.1 |
Yang, H. H., Chou, Y. M., Jiang, X. Y., et al., 2024. Chinese Stalagmite δ18O Records Reveal the Diverse Moisture Trajectories during the Middle to Late last Glacial Period. Geological Magazine, 161: e7. https://doi.org/10.1017/S0016756824000013 |
Yuan, D. X., Cheng, H., Edwards, R. L., et al., 2004. Timing, Duration, and Transitions of the last Interglacial Asian Monsoon. Science, 304(5670): 575–578. https://doi.org/10.1126/science.1091220 |
Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852–857. https://doi.org/10.1073/pnas.1610930114 |