Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Huihui Yang, Yu-Min Chou, Xiuyang Jiang, Wenyue Xia, Hai Li, Yi Zhong, Jingyu Zhang, Yaoqi He, Tsai-Luen Yu, Qingsong Liu, Chuan-Chou Shen. Half-Precessional Cycle Revealed by Environment Magnetism of Stalagmite in Shizhu Cave from Southwestern China during the Last Glacial. Journal of Earth Science, 2025, 36(3): 1251-1260. doi: 10.1007/s12583-024-0005-4
Citation: Huihui Yang, Yu-Min Chou, Xiuyang Jiang, Wenyue Xia, Hai Li, Yi Zhong, Jingyu Zhang, Yaoqi He, Tsai-Luen Yu, Qingsong Liu, Chuan-Chou Shen. Half-Precessional Cycle Revealed by Environment Magnetism of Stalagmite in Shizhu Cave from Southwestern China during the Last Glacial. Journal of Earth Science, 2025, 36(3): 1251-1260. doi: 10.1007/s12583-024-0005-4

Half-Precessional Cycle Revealed by Environment Magnetism of Stalagmite in Shizhu Cave from Southwestern China during the Last Glacial

doi: 10.1007/s12583-024-0005-4
More Information
  • Corresponding author: Yu-Min Chou, chouym@sustech.edu.cn; Xiuyang Jiang, xyjiang@fjnu.edu.cn
  • Received Date: 11 Sep 2023
  • Accepted Date: 03 Apr 2024
  • Available Online: 11 Jun 2025
  • Issue Publish Date: 30 Jun 2025
  • The environmental magnetic proxies of stalagmites hold significant potential for reconstructing regional hydroclimate changes by revealing the content and grain size of magnetic particles within stalagmites. In this study, we present the contents and grain sizes of magnetic particles within a stalagmite SZ-1, from Shizhu Cave in southwestern China from 70.4 to 22.3 thousand years ago (ka) during the last glacial period. Specifically, the parameters IRMsoft, soil-derived magnetic minerals, and ARM/SIRM (anhysteretic remanent magnetization/saturation isothermal remanent magnetization), the ratio of fine magnetic particles to total ferrimagnetic particles preserved in stalagmite SZ-1, indicate the fluctuation of regional precipitation. Obvious half-precessional cycles are evident in these two proxies, indicating that hydroclimatic variations in southwestern China may predominantly arise from the heat and moisture transported from tropical oceans. These variations are likely influenced by shifts in the Intertropical Convergence Zone and fluctuations in the Asian Summer Monsoon.

     

  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0005-4.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Battisti, D. S., Ding, Q. H., Roe, G. H., 2014. Coherent Pan-Asian Climatic and Isotopic Response to Orbital Forcing of Tropical Insolation. Journal of Geophysical Research: Atmospheres, 119(21): 11997–12020. https://doi.org/10.1002/2014jd021960
    Berger, A., Loutre, M. F., 1997. Intertropical Latitudes and Precessional and Half-Precessional Cycles. Science, 278(5342): 1476–1478. https://doi.org/10.1126/science.278.5342.1476
    Bourne, M. D., Feinberg, J. M., Strauss, B. E., et al., 2015. Long-Term Changes in Precipitation Recorded by Magnetic Minerals in Speleothems. Geology, 43(7): 595–598. https://doi.org/10.1130/g36695.1
    Bull, P. A., 1981. Some Fine-Grained Sedimentation Phenomena in Caves. Earth Surface Processes and Landforms, 6(1): 11–22. https://doi.org/10.1002/esp.3290060103
    Cai, Y. J., Fung, I. Y., Edwards, R. L., et al., 2015. Variability of Stalagmite-Inferred Indian Monsoon Precipitation over the Past 252, 000 Y. Proceedings of the National Academy of Sciences of the United States of America, 112(10): 2954–2959. https://doi.org/10.1073/pnas.1424035112
    Chen, Q., Zhang, T. W., Wang, Y. T., et al., 2019. Magnetism Signals in a Stalagmite from Southern China and Reconstruction of Paleorainfall during the Interglacial-Glacial Transition. Geophysical Research Letters, 46(12): 6918–6925. https://doi.org/10.1029/2019GL082204
    Cheng, H., Edwards, R. L., Shen, C. C., et al., 2013. Improvements in 230Th Dating, 230Th and 234U Half-Life Values, and U-Th Isotopic Measurements by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Earth and Planetary Science Letters, 371: 82–91. https://doi.org/10.1016/j.epsl.2013.04.006
    Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640, 000 Years and Ice Age Terminations. Nature, 534(7609): 640–646. https://doi.org/10.1038/nature18591
    Cheng, H., Sinha, A., Wang, X. F., et al., 2012. The Global Paleomonsoon as Seen through Speleothem Records from Asia and the Americas. Climate Dynamics, 39(5): 1045–1062. https://doi.org/10.1007/s00382-012-1363-7
    Cheng, H., Zhang, H. W., Zhao, J. Y., et al., 2019. Chinese Stalagmite Paleoclimate Researches: A Review and Perspective. Science China Earth Sciences, 62(10): 1489–1513. https://doi.org/10.1007/s11430-019-9478-3
    Evans, M. E., Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, Amsterdam. 299
    Farnsworth, A., Lunt, D. J., Robinson, S. A., et al., 2019. Past East Asian Monsoon Evolution Controlled by Paleogeography, Not CO2. Science Advances, 5(10): eaax1697. https://doi.org/10.1126/sciadv.aax1697
    Guyodo, Y., LaPara, T. M., Anschutz, A. J., et al., 2006. Rock Magnetic, Chemical and Bacterial Community Analysis of a Modern Soil from Nebraska. Earth and Planetary Science Letters, 251(1/2): 168–178. https://doi.org/10.1016/j.epsl.2006.09.005
    Hagelberg, T. K., Bond, G., DeMenocal, P., 1994. Milankovitch Band Forcing of Sub-Milankovitch Climate Variability during the Pleistocene. Paleoceanography, 9(4): 545–558. https://doi.org/10.1029/94pa00443
    Heller, F., Liu, T. S., 1984. Magnetism of Chinese Loess Deposits. Geophysical Journal of the Royal Astronomical Society, 77(1): 125–141. https://doi.org/10.1111/j.1365-246x.1984.tb01928.x
    Jaqueto, P., Trindade, R. I. F., Feinberg, J. M., et al., 2021. Magnetic Mineralogy of Speleothems from Tropical-Subtropical Sites of South America. Frontiers in Earth Science, 9: 278. https://doi.org/10.3389/feart.2021.634482
    Jian, Z. M., Wang, Y., Dang, H. W., et al., 2020. Half-Precessional Cycle of Thermocline Temperature in the Western Equatorial Pacific and Its Bihemispheric Dynamics. Proceedings of the National Academy of Sciences of the United States of America, 117(13): 7044–7051. https://doi.org/10.1073/pnas.1915510117
    Jiang, D. B., Yu, G., Zhao, P., et al., 2015. Paleoclimate Modeling in China: A Review. Advances in Atmospheric Sciences, 32(2): 250–275. https://doi.org/10.1007/s00376-014-0002-0
    Jordanova, N., 2017. Soil Magnetism: Applications in Pedology, Environmental Science and Agriculture. Elsevier, Amsterdam. 445
    Kathayat, G., Cheng, H., Sinha, A., et al., 2016. Indian Monsoon Variability on Millennial-Orbital Timescales. Scientific Reports, 6: 24374. https://doi.org/10.1038/srep24374
    Kim, D., Kim, H., Kang, S. M., et al., 2022. Weak Hadley Cell Intensity Changes due to Compensating Effects of Tropical and Extratropical Radiative Forcing. NPJ Climate and Atmospheric Science, 5: 61. https://doi.org/10.1038/s41612-022-00287-x
    Kodama, K. P., Anastasio, D. J., Newton, M. L., et al., 2010. High-Resolution Rock Magnetic Cyclostratigraphy in an Eocene Flysch, Spanish Pyrenees. Geochemistry, Geophysics, Geosystems, 11(6): 1–22. https://doi.org/10.1029/2010gc003069
    Kong, X. X., Jiang, Z. X., Cai, Y., 2023. Orbital and Sub-Orbital Pacing of Mudstones in the Dongying Depression, Eastern China: Implications for Middle Eocene East Asian Climate Evolution. GSA Bulletin, 135(11/12): 3024–3042. https://doi.org/10.1130/B36606.1
    Lascu, I., Feinberg, J. M., 2011. Speleothem Magnetism. Quaternary Science Reviews, 30(23/24): 3306–3320. https://doi.org/10.1016/j.quascirev.2011.08.004
    Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428(1): 261–285. https://doi.org/10.1051/0004-6361:20041335
    Li, M. S., Hinnov, L., Kump, L., 2019. Acycle: Time-Series Analysis Software for Paleoclimate Research and Education. Computers & Geosciences, 127: 12–22. https://doi.org/10.1016/j.cageo.2019.02.011
    Liu, Q. S., Roberts, A. P., Torrent, J., et al., 2007. What do the HIRM and S-Ratio Really Measure in Environmental Magnetism? Geochemistry, Geophysics, Geosystems, 8(9). https://doi.org/10.1029/2007gc001717
    Liu, Q. S., Roberts, A. P., Larrasoaña, J. C., et al., 2012. Environmental magnetism: Principles and Applications. Reviews of Geophysics, 50(4): RG4002. https://doi.org/10.1029/2012rg000393
    Liu, Q. S., Yu, Y., Torrent, J., et al., 2006. Characteristic Low-Temperature Magnetic Properties of Aluminous Goethite [α-(Fe, Al)OOH] Explained. Journal of Geophysical Research: Solid Earth, 111(B12): 12–34. https://doi.org/10.1029/2006jb004560
    Mann, M. E., Lees, J. M., 1996. Robust Estimation of Background Noise and Signal Detection in Climatic Time Series. Climatic Change, 33(3): 409–445. https://doi.org/10.1007/bf00142586
    Maher, B. A., Karloukovski, V. V., Mutch, T. J., 2004. High-Field Remanence Properties of Synthetic and Natural Submicrometre Haematites and Goethites: Significance for Environmental Contexts. Earth and Planetary Science Letters, 226(3/4): 491–505. https://doi.org/10.1016/j.epsl.2004.05.042
    McIntyre, A., Molfino, B., 1996. Forcing of Atlantic Equatorial and Subpolar Millennial Cycles by Precession. Science, 274(5294): 1867–1870. https://doi.org/10.1126/science.274.5294.1867
    Merlis, T. M., Schneider, T., Bordoni, S., et al., 2013. The Tropical Precipitation Response to Orbital Precession. Journal of Climate, 26(6): 2010–2021. https://doi.org/10.1175/jcli-d-12-00186.1
    Morin, F. J., 1950. Magnetic Susceptibility of αFe2O3 and αFe2O3 with Added Titanium. Physical Review, 78(6): 819–820
    Özdemir, Ö., Dunlop, D. J., Moskowitz, B. M., 1993. The Effect of Oxidation on the Verwey Transition in Magnetite. Geophysical Research Letters, 20(16): 1671–1674. https://doi.org/10.1029/93gl01483
    Özdemir, Ö., Dunlop, D. J., Berquó, T. S., 2008. Morin Transition in hematite: Size Dependence and Thermal Hysteresis. Geochemistry, Geophysics, Geosystems, 9(10). https://doi.org/10.1029/2008gc002110
    Peters, C., Dekkers, M. J., 2003. Selected Room Temperature Magnetic Parameters as a Function of Mineralogy, Concentration and Grain Size. Physics and Chemistry of the Earth, 28(16–19): 659–667. https://doi.org/10.1016/s1474-7065(03)00120-7
    Robinson, S. G., 1986. The Late Pleistocene Palaeoclimatic Record of North Atlantic Deep-Sea Sediments Revealed by Mineral-Magnetic Measurements. Physics of the Earth and Planetary Interiors, 42(1/2): 22–47. https://doi.org/10.1016/s0031-9201(86)80006-1
    Ruddiman, W. F., 2006. What is the Timing of Orbital-Scale Monsoon Changes? Quaternary Science Reviews, 25(7/8): 657–658. https://doi.org/10.1016/j.quascirev.2006.02.004
    Shen, C. C., Wu, C. C., Cheng, H., et al., 2012. High-Precision and High-Resolution Carbonate 230Th Dating by MC-ICP-MS with SEM Protocols. Geochimica et Cosmochimica Acta, 99: 71–86. https://doi.org/10.1016/j.gca.2012.09.018
    Shen, C. C., Edwards, R. L., Cheng, H., et al., 2002. Uranium and Thorium Isotopic and Concentration Measurements by Magnetic Sector Inductively Coupled Plasma Mass Spectrometry. Chemical Geology, 185(3/4): 165–178. https://doi.org/10.1016/s0009-2541(01)00404-1
    Shi, T. H., Ding, J., Zhu, Z. M., et al., 2022. Occurrence and Distribution Patterns of Magnetic Particles within Stalagmite Growth Laminae. Geochemistry, Geophysics, Geosystems, 23(9): e2022GC010487. https://doi.org/10.1029/2022gc010487
    Strauss, B. E., Strehlau, J. H., Lascu, I., et al., 2013. The Origin of Magnetic Remanence in stalagmites: Observations from Electron Microscopy and Rock Magnetism. Geochemistry, Geophysics, Geosystems, 14(12): 5006–5025. https://doi.org/10.1002/2013gc004950
    Sun, J. M., Huang, X. G., 2006. Half-Precessional Cycles Recorded in Chinese Loess: Response to Low-Latitude Insolation Forcing during the last Interglaciation. Quaternary Science Reviews, 25(9/10): 1065–1072. https://doi.org/10.1016/j.quascirev.2005.08.004
    Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin Ltd., London. 228
    Thomson, D. J., 1982. Spectrum Estimation and Harmonic Analysis. Proceedings of the IEEE, 70(9): 1055–1096. https://doi.org/10.1109/proc.1982.12433
    Verschuren, D., Sinninghe Damsté, J. S., Moernaut, J., et al., 2009. Half-Precessional Dynamics of Monsoon Rainfall near the East African Equator. Nature, 462(7273): 637–641. https://doi.org/10.1038/nature08520
    Verwey, E. J. W., 1939. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature, 144(3642): 327–328. https://doi.org/10.1038/144327b0
    Wang, B., 2006. The Asian Monsoon. Springer Berlin, Heidelberg. 450
    Wang, H. J., Chen, H. P., 2012. Climate Control for Southeastern China Moisture and precipitation: Indian or East Asian Monsoon? Journal of Geophysical Research: Atmospheres, 117(D12). https://doi.org/10.1029/2012jd017734
    Wang, Y., Lu, H. Y., Yi, S. W., et al., 2022. Tropical Forcing Orbital-Scale Precipitation Variations Revealed by a Maar Lake Record in South China. Climate Dynamics, 58(9): 2269–2280. https://doi.org/10.1007/s00382-021-06004-3
    Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2008. Millennial- and Orbital-Scale Changes in the East Asian Monsoon over the Past 224, 000 Years. Nature, 451: 1090–1093. https://doi.org/10.1038/nature06692
    Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827–830. https://doi.org/10.1130/g34318.1
    Yang, H. H., Chou, Y. M., Jiang, X. Y., et al., 2024. Chinese Stalagmite δ18O Records Reveal the Diverse Moisture Trajectories during the Middle to Late last Glacial Period. Geological Magazine, 161: e7. https://doi.org/10.1017/S0016756824000013
    Yuan, D. X., Cheng, H., Edwards, R. L., et al., 2004. Timing, Duration, and Transitions of the last Interglacial Asian Monsoon. Science, 304(5670): 575–578. https://doi.org/10.1126/science.1091220
    Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852–857. https://doi.org/10.1073/pnas.1610930114
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(17) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return