Citation: | Xianghui Cao, Shaokang Yang, Yuejun Zheng, Qiuliang Lei, Jiaojiao Guan, Wenpeng Li, Kifayatullah Khan. Changes in China's Groundwater Storage with Natural and Anthropogenic Drivers. Journal of Earth Science, 2025, 36(5): 2296-2307. doi: 10.1007/s12583-024-0021-4 |
Groundwater is the major source of fresh water, and it performs a crucial role in maintaining ecosystems and adapting humans to climate variation. Due to excessive reliance on groundwater in some regions, the amount of groundwater being consumed is higher than the recharge, which leads to a durative decline of groundwater level. This study analyzed the spatiotemporal variability in groundwater storage (GWS) in China. And the possible drivers of observed GWS changes were also identified. GWS level displayed large regional disparities with higher reserves in the Yangtze River Basin and Songhua River Basin. Temporally, GWS level showed decreasing trends in the North China Plain region, Yellow River Basin, Inner Mongolia Plateau and Junggar Basin. And, GWS showed a significant increase in the Tibetan Plateau and Songhua River Basin. Without considering the impact of human activities, groundwater reserves are also showing a decreasing trend in future climate scenarios in most of the 15 zones. Contribution analysis of driving forces on the basis of the percentages of standardized coefficient (
An, R., Wang, S., Gao, Z. J., et al., 2024. Groundwater Quality and Vulnerability Assessment in a Semiarid Karst Region of Northern China. Journal of Earth Science, 35(1): 313–316. https://doi.org/10.1007/s12583-021-1538-4 |
Bartley, R., Roth, C. H., Ludwig, J., et al., 2006. Runoff and Erosion from Australia's Tropical Semi-Arid Rangelands: Influence of Ground Cover for Differing Space and Time Scales. Hydrological Processes, 20(15): 3317–3333. https://doi.org/10.1002/hyp.6334 |
Buvaneshwari, S., Riotte, J., Sekhar, M., et al., 2017. Groundwater Resource Vulnerability and Spatial Variability of Nitrate Contamination: Insights from High Density Tubewell Monitoring in a Hard Rock Aquifer. Science of the Total Environment, 579: 838–847. https://doi.org/10.1016/j.scitotenv.2016.11.017 |
Chen, H., Zhang, W. C., Nie, N., et al., 2019. Long-Term Groundwater Storage Variations Estimated in the Songhua River Basin by Using GRACE Products, Land Surface Models, and in situ Observations. Science of the Total Environment, 649: 372–387. https://doi.org/10.1016/j.scitotenv.2018.08.352 |
CIGEM, 2018–2020. GW-level Yearbook for China Geo-Environment Monitoring. China Land Press, Beijing, China (in Chinese) |
Condon, L. E., Maxwell, R. M., 2019. Simulating the Sensitivity of Evapotranspiration and Streamflow to Large-Scale Groundwater Depletion. Science Advances, 5(6): eaav4574. https://doi.org/10.1126/sciadv.aav4574 |
Döll, P., Fiedler, K., 2008. Global-Scale Modeling of Groundwater Recharge. Hydrology and Earth System Sciences, 12(3): 863–885. https://doi.org/10.5194/hess-12-863-2008 |
Döll, P., Hoffmann-Dobrev, H., Portmann, F. T., et al., 2012. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations. Journal of Geodynamics, 59: 143–156. https://doi.org/10.1016/j.jog.2011.05.001 |
Feng, W., Zhong, M., Lemoine, J. M., et al., 2013. Evaluation of Groundwater Depletion in North China Using the Gravity Recovery and Climate Experiment (GRACE) Data and Ground-Based Measurements. Water Resources Research, 49(4): 2110–2118. https://doi.org/10.1002/wrcr.20192 |
Folton, N., Martin, E., Arnaud, P., et al., 2019. A 50-Year Analysis of Hydrological Trends and Processes in a Mediterranean Catchment. Hydrology and Earth System Sciences, 23(6): 2699–2714. https://doi.org/10.5194/hess-23-2699-2019 |
Gao, Z. L., Zhang, L., Cheng, L., et al., 2015. Groundwater Storage Trends in the Loess Plateau of China Estimated from Streamflow Records. Journal of Hydrology, 530: 281–290. https://doi.org/10.1016/j.jhydrol.2015.09.063 |
Gleeson, T., Wada, Y., Bierkens, M. F., et al., 2012. Water Balance of Global Aquifers Revealed by Groundwater Footprint. Nature, 488(7410): 197–200. https://doi.org/10.1038/nature11295 |
Gleeson, T., Wang-Erlandsson, L., Porkka, M., et al., 2020. Illuminating Water Cycle Modifications and Earth System Resilience in the Anthropocene. Water Resources Research, 56(4): e2019WR024957. https://doi.org/10.1029/2019wr024957 |
Gremaud, V., Goldscheider, N., Savoy, L., et al., 2009. Geological Structure, Recharge Processes and Underground Drainage of a Glacierised Karst Aquifer System, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeology Journal, 17(8): 1833–1848. https://doi.org/10.1007/s10040-009-0485-4 |
Han, Z. M., Huang, S. Z., Huang, Q., et al., 2020. Effects of Vegetation Restoration on Groundwater Drought in the Loess Plateau, China. Journal of Hydrology, 591: 125566. https://doi.org/10.1016/j.jhydrol.2020.125566 |
Hao, Y. Y., Xie, Y. W., Ma, J. H., et al., 2017. The Critical Role of Local Policy Effects in Arid Watershed Groundwater Resources Sustainability: A Case Study in the Minqin Oasis, China. Science of the Total Environment, 601: 1084–1096. https://doi.org/10.1016/j.scitotenv.2017.04.177 |
He, J. B., Li, Y. S., Hu, L. T., et al., 2021. Numerical Simulation Studies of the Influences of Water Transferring Project from the Haerteng River to the Dang River on Groundwater Levels in the Dunhuang Basin. Hydrogeology & Engineering Geology, 48(6): 34–43 (in Chinese with English Abstract) |
Hu, Y. L., Sun, Z. Y., Ma, R., 2023. Springs Emerging along the Elevation Gradient Indicate Intensive Groundwater-Surface Water Exchange in an Alpine Headwater Catchment, Northwestern China. Journal of Earth Science, 34(1): 181–193. https://doi.org/10.1007/s12583-021-1548-2 |
Huang, S., Zhou, L., Feng, Q., et al., 2017. Evaluation of Eco-Environment Effects of Management Policy Implementing in Inland River Basin of China: A Case in the Minqin Oasis. Journal of Desert Research, 37(3): 580–586 (in Chinese with English Abstract) |
Huang, T. M., Pang, Z. H., 2011. Estimating Groundwater Recharge Following Land-Use Change Using Chloride Mass Balance of Soil Profiles: A Case Study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeology Journal, 19(1): 177–186. https://doi.org/10.1007/s10040-010-0643-8 |
Hugonnet, R., McNabb, R., Berthier, E., et al., 2021. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature, 592(7856): 726–731. https://doi.org/10.1038/s41586-021-03436-z |
Jasechko, S., Seybold, H., Perrone, D., et al., 2024. Rapid Groundwater Decline and Some Cases of Recovery in Aquifers Globally. Nature, 625(7996): 715–721. https://doi.org/10.1038/s41586-023-06879-8 |
Jiang, Y., 2009. China's Water Scarcity. Journal of Environmental Management, 90(11): 3185–3196. https://doi.org/10.1016/j.jenvman.2009.04.016 |
Jin, Z., Guo, L., Lin, H., et al., 2018. Soil Moisture Response to Rainfall on the Chinese Loess Plateau after a Long-Term Vegetation Rehabilitation. Hydrological Processes, 32(12): 1738–1754. https://doi.org/10.1002/hyp.13143 |
Korkmaz, M., 2020. A Study over the General Formula of Regression Sum of Squares in Multiple Linear Regression. Numerical Methods for Partial Differential Equations, 37(1): 406–421. http://doi.org/10.1002/num.22533 |
Kuang, X. X., Jiao, J. J., 2016. Review on Climate Change on the Tibetan Plateau during the Last Half Century. Journal of Geophysical Research: Atmospheres, 121(8): 3979–4007. https://doi.org/10.1002/2015jd024728 |
Kuang, X., Liu, J., Scanlon, B. R., et al., 2024. The Changing Nature of Groundwater in the Global Water Cycle. Science, 383(6686): eadf0630. https://doi.org/10.1126/science.adf0630 |
Lei, K., Ma, T., Chen, L. Z., et al., 2024. Effect of Reclamation on the Groundwater-Lake Water Interaction in Chen Lake. Journal of Earth Science, 35(3): 1083–1086. https://doi.org/10.1007/s12583-022-1652-y |
Li, B. L., Rodell, M., Kumar, S., et al., 2019. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 55(9): 7564–7586. https://doi.org/10.1029/2018wr024618 |
Liu, P. W., Famiglietti, J. S., Purdy, A. J., et al., 2022. Groundwater Depletion in California's Central Valley Accelerates during Megadrought. Nat. Commun. , 13(1): 7825. https://doi.org/10.1038/s41467-022-35582-x |
Liu, S. M., Lu, L., Mao, D., et al., 2007. Evaluating Parameterizations of Aerodynamic Resistance to Heat Transfer Using Field Measurements. Hydrology and Earth System Sciences, 11(2): 769–783. https://doi.org/10.5194/hess-11-769-2007 |
Long, D., Yang, W., Scanlon, B. R., et al., 2020. South-to-North Water Diversion Stabilizing Beijing's Groundwater Levels. Nat. Commun. , 11(1): 3665. https://doi.org10.1038/s41467-020-17428-6 |
Lu, D. F., Zheng, Y. J., Cao, X. H., et al., 2024. Dynamic Changes in Terrestrial Water Balance Using Remote Sensing on the Loess Plateau. Water, 16(6): 845. https://doi.org/10.3390/w16060845 |
Pritchard, H. D., 2019. Asia's Shrinking Glaciers Protect Large Populations from Drought Stress. Nature, 569(7758): 649–654. https://doi.org10.1038/s41586-019-1240-1 |
Raymond, C., Horton, R. M., Zscheischler, J., et al., 2020. Understanding and Managing Connected Extreme Events. Nature Climate Change, 10(7): 611–621. https://doi.org/10.1038/s41558-020-0790-4 |
Reinecke, R., Müller Schmied, H., Trautmann, T., et al., 2021. Uncertainty of Simulated Groundwater Recharge at Different Global Warming Levels: A Global-Scale Multi-Model Ensemble Study. Hydrology and Earth System Sciences, 25(2): 787–810. https://doi.org/10.5194/hess-25-787-2021 |
Riley, D., Mieno, T., Schoengold, K., et al., 2019. The Impact of Land Cover on Groundwater Recharge in the High Plains: An Application to the Conservation Reserve Program. Science of the Total Environment, 696: 133871. https://doi.org/10.1016/j.scitotenv.2019.133871 |
Rodell, M., Famiglietti, J. S., Wiese, D. N., et al., 2019. Author Correction: Emerging Trends in Global Freshwater Availability. Nature, 565(7739): E7. https://doi.org/10.1038/s41586-018-0123-1 |
Rodell, M., Houser, P. R., Jambor, U., et al., 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3): 381–394. https://doi.org/10.1175/bams-85-3-381 |
Scanlon, B. R., Jolly, I., Sophocleous, M., et al., 2007. Global Impacts of Conversions from Natural to Agricultural Ecosystems on Water Resources: Quantity versus Quality. Water Resources Research, 43(3): W03437. https://doi.org/10.1029/2006wr005486 |
Scanlon, B. R., Longuevergne, L., Long, D., 2012. Ground Referencing GRACE Satellite Estimates of Groundwater Storage Changes in the California Central Valley, USA. Water Resources Research, 48(4): 2011WR011312. https://doi.org/10.1029/2011wr011312 |
Shao, J. L., Bai, G. Y., Liu, C. Z., et al., 2023. Problems and Countermeasures of Groundwater Management in China: Concurrently Talking about Groundwater Dual-Control Management. Hydrogeology & Engineering Geology, 50(5): 1–9 (in Chinese with English Abstract) |
Sinha, E., Michalak, A. M., Balaji, V., 2017. Eutrophication Will Increase during the 21st Century as a Result of Precipitation Changes. Science, 357(6349): 405–408. https://doi.org10.1126/science.aan2409 |
Song, C. Q., Ke, L. H., Huang, B., et al., 2015. Can Mountain Glacier Melting Explains the GRACE-Observed Mass Loss in the Southeast Tibetan Plateau: From a Climate Perspective? Global and Planetary Change, 124: 1–9. https://doi.org/10.1016/j.gloplacha.2014.11.001 |
Strassberg, G., Scanlon, B. R., Chambers, D., 2009. Evaluation of Groundwater Storage Monitoring with the GRACE Satellite: Case Study of the High Plains Aquifer, Central United States. Water Resources Research, 45(5): 2008WR006892. https://doi.org/10.1029/2008wr006892 |
Tague, C., Grant, G. E., 2009. Groundwater Dynamics Mediate Low-Flow Response to Global Warming in Snow-Dominated Alpine Regions. Water Resources Research, 45(7): 2008WR007179. https://doi.org/10.1029/2008wr007179 |
Tang, W., Zhao, X. J., Motagh, M., et al., 2022. Land Subsidence and Rebound in the Taiyuan Basin, Northern China, in the Context of Inter-Basin Water Transfer and Groundwater Management. Remote Sensing of Environment, 269: 112792. https://doi.org/10.1016/j.rse.2021.112792 |
Tao, S. L., Zhang, H., Feng, Y. H., et al., 2020. Changes in China's Water Resources in the Early 21st Century. Frontiers in Ecology and the Environment, 18(4): 188–193. https://doi.org/10.1002/fee.2164 |
Taylor, R. G., Scanlon, B., Döll, P., et al., 2013a. Ground Water and Climate Change. Nature Climate Change, 3(4): 322–329. https://doi.org/10.1038/nclimate1744 |
Taylor, R. G., Todd, M. C., Kongola, L., et al., 2013b. Evidence of the Dependence of Groundwater Resources on Extreme Rainfall in East Africa. Nature Climate Change, 3(4): 374–378. https://doi.org/10.1038/nclimate1731 |
Teuling, A. J., van Loon, A. F., Seneviratne, S. I., et al., 2013. Evapotranspiration Amplifies European Summer Drought. Geophysical Research Letters, 40(10): 2071–2075. https://doi.org/10.1002/grl.50495 |
van Hoek Dijke, A. J., Herold, M., Mallick, K., et al., 2022. Shifts in Regional Water Availability Due to Global Tree Restoration. Nature Geoscience, 15(5): 363–368. https://doi.org/10.1038/s41561-022-00935-0 |
Wada, Y., 2016. Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Surveys in Geophysics, 37(2): 419–451. https://doi.org/10.1007/s10712-015-9347-x |
Wang, W. R., Chen, Y. N., Wang, W. H., et al., 2021. Evolution Characteristics of Groundwater and Its Response to Climate and Land-Cover Changes in the Oasis of Dried-up River in Tarim Basin. Journal of Hydrology, 594: 125644. https://doi.org/10.1016/j.jhydrol.2020.125644 |
Wang, S., Fu, B. J., Piao, S. L., et al., 2016. Reduced Sediment Transport in the Yellow River due to Anthro-Pogenic Changes. Nature Geoscience, 9: 38–41. http://doi.org/10.1038/ngeo2602 |
Wu, J., Gao, X. J., 2013. A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets. Chinese Journal of Geophysics, 56(4): 1102–1111 (in Chinese with English Abstract) |
Xie, Y. W., Bie, Q., Lu, H., et al., 2018. Spatio-Temporal Changes of Oases in the Hexi Corridor over the Past 30 Years. Sustainability, 10(12): 4489. https://doi.org/10.3390/su10124489 |
Xu, Y., Gao, X. J., Shen, Y., et al., 2009. A Daily Temperature Dataset over China and Its Application in Validating a RCM Simulation. Advances in Atmospheric Sciences, 26(4): 763–772. https://doi.org/10.1007/s00376-009-9029-z |
Zhang, H. X., Cao, X. H., Huo, S. L., et al., 2023. Changes in China's River Water Quality since 1980: Management Implications from Sustainable Development. NPJ Clean Water, 6: 45. https://doi.org/10.1038/s41545-023-00260-y |
Zhang, K., Li, X., Zheng, D. H., et al., 2022. Estimation of Global Irrigation Water Use by the Integration of Multiple Satellite Observations. Water Resources Research, 58(3): e2021WR030031. https://doi.org/10.1029/2021wr030031 |
Zhang, Q., Singh, V. P., Sun, P., et al., 2011. Precipitation and Streamflow Changes in China: Changing Patterns, Causes and Implications. Journal of Hydrology, 410(3/4): 204–216. https://doi.org/10.1016/j.jhydrol.2011.09.017 |
Zhang, X. F., Zhang, L. H., He, C. S., et al., 2014. Quantifying the Impacts of Land Use/Land Cover Change on Groundwater Depletion in Northwestern China—A Case Study of the Dunhuang Oasis. Agricultural Water Management, 146: 270–279. https://doi.org/10.1016/j.agwat.2014.08.017 |
Zhao, L., Su, C. L., Liu, W. B., et al, 2024. Understanding Surface Water-Groundwater Conversion Relationship and Associated Hydrogeochemistry Evolution in the Upper Reaches of Luan River Basin, North China. Journal of Earth Science, 35(3): 1010–1023. https://doi.org/10.1007/s12583-022-1629-x |
Zhao, M., Geruo, A., Zhang, J. E., et al., 2021. Ecological Restoration Impact on Total Terrestrial Water Storage. Nature Sustainability, 4(1): 56–62. https://doi.org/10.1038/s41893-020-00600-7 |
Zhao, X., Liu, J., Liu, Q., et al., 2015. Physical and Virtual Water Transfers for Regional Water Stress Alleviation in China. Proc. Natl. Acad. Sci. USA, 112(4): 1031–1035. https://doi.org10.1073/pnas.1404130112 |
Zheng, C. L., Jia, L., Hu, G. C., 2022. Global Land Surface Evapotranspiration Monitoring by ETMonitor Model Driven by Multi-Source Satellite Earth Observations. Journal of Hydrology, 613: 128444. https://doi.org/10.1016/j.jhydrol.2022.128444 |
Zhou, D. Y., Wang, X. J., Shi, M. J., 2017. Human Driving Forces of Oasis Expansion in Northwestern China during the Last Decade—A Case Study of the Heihe River Basin. Land Degradation & Development, 28(2): 412–420. https://doi.org/10.1002/ldr.2563 |