Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Xianghong Lu, Chengshi Gan, Peter A. Cawood, Xin Qian, Yuejun Wang. Oligocene High-Silica Felsic Magmatism in Juvenile Intra-Oceanic Arc Crust, North Sulawesi Arc, Indonesia. Journal of Earth Science, 2025, 36(3): 880-893. doi: 10.1007/s12583-024-0038-8
Citation: Xianghong Lu, Chengshi Gan, Peter A. Cawood, Xin Qian, Yuejun Wang. Oligocene High-Silica Felsic Magmatism in Juvenile Intra-Oceanic Arc Crust, North Sulawesi Arc, Indonesia. Journal of Earth Science, 2025, 36(3): 880-893. doi: 10.1007/s12583-024-0038-8

Oligocene High-Silica Felsic Magmatism in Juvenile Intra-Oceanic Arc Crust, North Sulawesi Arc, Indonesia

doi: 10.1007/s12583-024-0038-8
  • Received Date: 20 Feb 2024
  • Accepted Date: 22 Jun 2024
  • Available Online: 11 Jun 2025
  • Issue Publish Date: 30 Jun 2025
  • The North Sulawesi arc (NSUA) constitutes the northern arm of Sulawesi Island and is characterized by complex Cenozoic records of magmatism and tectonics. Zircon U-Pb geochronological and Hf-O isotopic data, whole-rock major oxides, trace elemental, and Sr-Nd-Pb isotopic data of the high-silica granites from the NSUA document their petrogenesis and tectonic setting. Zircon elemental analysis of the granitic samples shows a juvenile oceanic crust origin and the U-Pb geochronology indicates their Oligocene ages between 30.4 and 27.3 Ma. The samples have high SiO2 (75.05 wt.%–79.38 wt.%) and Na2O (4.48 wt.%–5.67 wt.%), low K2O (0.15 wt.%–1.34 wt.%) and MgO (0.07 wt.%–0.91 wt.%) contents, belonging to calc-alkaline I-type high-silica granites. They have enriched LREE and LILE, and depleted HREE and HFSE, showing significant Eu, Sr, Nb, and Ta negative anomalies. These high-silica granites have low (87Sr/86Sr)i ratios (0.704 412–0.704 592), positive εNd(t) values (from +5.1 to +6.6), positive zircon εHf(t) values (from +10.1 to +18.8), low zircon δ18O values (4.20‰–5.02‰), and similar Pb isotope compositions to the Indian Ocean MORB. Such signatures suggest that these high-silica granites were derived by partial melting process of the juvenile arc crust in an intra-oceanic setting. The felsic magmatism in the NSUA was likely driven by mantle upwelling and decompression melting during the Oligocene, in response to slab roll-back linked with the convergence of the East Sulawesi ophiolitic crust or the microcontinental fragments.

     

  • Electronic Supplementary Materials: Supplementary materials (ESM I Analytical Methods and ESM II Tables S1–S5) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0038-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Audley-Charles, M. G. , Ballantyne, P. D. , Hall, R. , 1988. Mesozoic-Cenozoic Rift-Drift Sequence of Asian Fragments from Gond- wanaland. Tectonophysics, 155(1/2/3/4): 317–330. https://doi.org/10.1016/0040-1951(88)90272-7
    Barker, F. , 1979. Trondhjemite: Definition, Environment and Hypotheses of Origin. Trondhjemites, Dacites, and Related Rocks. Elsevier, Amsterdam. 1–12. https://doi.org/10.1016/b978-0-444-41765-7.50006-x
    Belousova, E. , Griffin, W. , O’Reilly, S. Y. , et al. , 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7
    Brophy, J. G. , 2009. La-SiO2 and Yb-SiO2 Systematics in Mid-Ocean Ridge Magmas: Implications for the Origin of Oceanic Plagiogranite. Contributions to Mineralogy and Petrology, 158(1): 99–111. https://doi.org/10.1007/s00410-008-0372-3
    Cao, Y. , Kang, Z. Q. , Yang, F. , et al. , 2022. Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Bangba District, Western Segment of the Central Lhasa Subterrane. Journal of Earth Science, 33(3): 681–695. https://doi.org/10.1007/s12583-022-1634-0
    Chappell, B. W. , 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplo-granites. Lithos, 46(3): 535–551. https://doi.org/10.1016/s0024-4937(98)00086-3
    Chen, H. , Xia, Q. K. , Deloule, E. , et al. , 2017. Typical Oxygen Isotope Profile of Altered Oceanic Crust Recorded in Continental Intraplate Basalts. Journal of Earth Science, 28(4): 578–587. https://doi.org/10.1007/s12583-017-0798-5
    Coleman, R. G. , Peterman, Z. E. , 1975. Oceanic Plagiogranite. Journal of Geophysical Research, 80(8): 1099–1108. https://doi.org/10.1029/jb080i008p01099
    Condie, K. C. , 1986. Geochemistry and Tectonic Setting of Early Proterozoic Supracrustal Rocks in the Southwestern United States. Journal of Geology, 94(6): 845–864. https://doi.org/10.1086/629091
    Cornée, J. J. , Tronchetti, G. , Villeneuve, M. , et al. , 1995. Cretaceous of Eastern and Southeastern Sulawesi (Indonesia): New Micropaleontological and Biostratigraphical Data. Journal of Southeast Asian Earth Sciences, 12(1/2): 41–52. https://doi.org/10.1016/0743-9547(95)00024-0
    Cottam, M. A. , Hall, R. , Forster, M. A. , et al. , 2011. Basement Character and Basin Formation in Gorontalo Bay, Sulawesi, Indonesia: New Observations from the Togian Islands. In: Hall, R. , Cottam, M. A. , Wilson, M. E. J. , eds. , The SE Asian Gateway: History and Tectonics of the Australia-Asia Collision. Geological Society, London, Special Publications, 355(1): 177–202. https://doi.org/10.1144/sp355.9
    Daly, M. C. , Cooper, M. A. , Wilson, I. , et al. , 1991. Cenozoic Plate Tectonics and Basin Evolution in Indonesia. Marine and Petroleum Geology, 8(1): 2–21. https://doi.org/10.1016/0264-8172(91)90041-x
    Defant, M. J. , Drummond, M. S. , 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0
    Di Leo, J. F. , Wookey, J. , Hammond, J. O. S. , et al. , 2012. Deformation and Mantle Flow beneath the Sangihe Subduction Zone from Seismic Anisotropy. Physics of the Earth and Planetary Interiors, 194: 38–54. https://doi.org/10.1016/j.pepi.2012.01.008
    Ding, L. I. N. , Kapp, P. , Zhong, D. , et al. , 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833–1865. https://doi.org/10.1093/petrology/egg061
    Elburg, M. , Foden, J. , 1998. Temporal Changes in Arc Magma Geochemistry, Northern Sulawesi, Indonesia. Earth and Planetary Science Letters, 163(1/2/3/4): 381–398. https://doi.org/10.1016/s0012-821x(98)00143-5
    Elburg, M. , van Leeuwen, T. , Foden, J. , et al. , 2003. Spatial and Temporal Isotopic Domains of Contrasting Igneous Suites in Western and Northern Sulawesi, Indonesia. Chemical Geology, 199(3/4): 243–276. https://doi.org/10.1016/s0009-2541(03)00084-6
    Fang, G. , Zhang, J. , Hao, T. Y. , et al. , 2022. The Causal Mechanism of the Sangihe Forearc Thrust, Molucca Sea, Northeast Indonesia, from Numerical Simulation. Journal of Asian Earth Sciences, 237: 105350. https://doi.org/10.1016/j.jseaes.2022.105350
    Furnes, H. , Dilek, Y. , 2017. Geochemical Characterization and Petrogenesis of Intermediate to Silicic Rocks in Ophiolites: A Global Synthesis. Earth-Science Reviews, 166: 1–37. https://doi.org/10.1016/j.earscirev.2017.01.001
    Gan, C. S. , Wang, Y. J. , Qian, X. , et al. , 2022. Diorite Enclaves and Host Granite of the Early Miocene Gorontalo Pluton in the North Sulawesi Arc, Indonesia: Implications for Recycled Oceanic Crust and Crust-Mantle Interaction. Journal of Asian Earth Sciences, 227: 105101. https://doi.org/10.1016/j.jseaes.2022.105101
    GEBCO Compilation Group, 2020. GEBCO 2020 Grid. The Nippon Foundation-GEBCO-Seabed 2030 Project. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
    Grimes, C. B. , John, B. E. , Kelemen, P. B. , et al. , 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643. https://doi.org/10.1130/g23603a.1
    Grimes, C. B. , Ushikubo, T. , Kozdon, R. , et al. , 2013. Perspectives on the Origin of Plagiogranite in Ophiolites from Oxygen Isotopes in Zircon. Lithos, 179: 48–66. https://doi.org/10.1016/j.lithos.2013.07.026
    Hall, R. , 2011. Australia-SE Asia Collision: Plate Tectonics and Crustal Flow. The SE Asian Gateway: History and Tectonics. Geological Society of London Special Publications, 355: 75–109. https://doi.org/10.1144/sp355.5
    Hall, R. , 1996. Reconstructing Cenozoic SE Asia. In: Hall, R. , Blundell, D. J. , eds. , Tectonic Evolution of SE Asia. Geological Society, London, Special Publications, 106(1): 153–184. https://doi.org/10.1144/gsl.sp.1996.106.01.11
    Hall, R. , 2012. Late Jurassic–Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 570: 1–41. https://doi.org/10.1016/j.tecto.2012.04.021
    Hamilton, W. B. , 1979. Tectonics of the Indonesian Region. US Government Printing Office. 1078
    Hanyu, T. , Gill, J. , Tatsumi, Y. , et al. , 2012. Across- and Along-Arc Geochemical Variations of Lava Chemistry in the Sangihe Arc: Various Fluid and Melt Slab Fluxes in Response to Slab Temperature. Geochemistry, Geophysics, Geosystems, 13(10): Q10021. https://doi.org/10.1029/2012gc004346
    Hart, S. R. , 1984. A Large-Scale Isotope Anomaly in the Southern Hemisphere Mantle. Nature, 309: 753–757. https://doi.org/10.1038/309753a0
    Hoskin, P. W. O. , Schaltegger, U. , 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027
    Hu, P. Y. , Li, C. , Wu, Y. W. , et al. , 2014. Opening of the Longmu Co-Shuanghu-Lancangjiang Ocean: Constraints from Plagio-granites. Chinese Science Bulletin, 59(25): 3188–3199. https://doi.org/10.1007/s11434-014-0434-z
    Irber, W. , 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3/4): 489–508. https://doi.org/10.1016/s0016-7037(99)00027-7
    Irvine, T. N. , Baragar, W. R. A. F. , 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
    Kadarusman, A. , Miyashita, S. , Maruyama, S. , et al. , 2004. Petrology, Geochemistry and Paleogeographic Reconstruction of the East Sulawesi Ophiolite, Indonesia. Tectonophysics, 392(1/2/3/4): 55–83. https://doi.org/10.1016/j.tecto.2004.04.008
    Kavalieris, I. , van Leeuwen, T. M. , Wilson, M. , 1992. Geological Setting and Styles of Mineralization, North Arm of Sulawesi, Indonesia. Journal of Southeast Asian Earth Sciences, 7(2/3): 113–129. https://doi.org/10.1016/0743-9547(92)90046-e
    Kay, R. W. , 1978. Aleutian Magnesian Andesites: Melts from Subducted Pacific Ocean Crust. Journal of Volcanology and Geothermal Research, 4(1/2): 117–132. https://doi.org/10.1016/0377-0273(78)90032-x
    Kay, R. W. , Kay, S. M. , 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3): 177–189. https://doi.org/10.1016/0040-1951(93)90295-u
    Koepke, J. , Berndt, J. , Feig, S. T. , et al. , 2007. The Formation of SiO2-Rich Melts within the Deep Oceanic Crust by Hydrous Partial Melting of Gabbros. Contributions to Mineralogy and Petrology, 153(1): 67–84. https://doi.org/10.1007/s00410-006-0135-y
    Koepke, J. , Feig, S. T. , Snow, J. , et al. , 2004. Petrogenesis of Oceanic Plagiogranites by Partial Melting of Gabbros: An Experimental Study. Contributions to Mineralogy and Petrology, 146(4): 414–432. https://doi.org/10.1007/s00410-003-0511-9
    Kopp, C. , Flueh, E. R. , Neben, S. , 1999. Rupture and Accretion of the Celebes Sea Crust Related to the North-Sulawesi Subduction: Combined Interpretation of Reflection and Refraction Seismic Measurements. Journal of Geodynamics, 27(3): 309–325. https://doi.org/10.1016/s0264-3707(98)00004-0
    Laurent, O. , Martin, H. , Moyen, J. F. , et al. , 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of “Modern-Style” Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208–235. https://doi.org/10.1016/j.lithos.2014.06.012
    Lee, C. A. , Morton, D. M. , 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23–31. https://doi.org/10.1016/j.epsl.2014.10.040
    Li, H. L. , Qian, X. , Yu, X. Q. , et al. , 2023. Petrogenesis of Triassic Granites from Kontum Massif in Vietnam and Its Tethyan Tectonic Implications. Earth Science, 48(4): 1441–1460. https://doi.org/10.3799/dqkx.2022.335 (in Chinese with English Abstract)
    Li, X. , Wang, L. Z. , Tu, B. , et al. , 2023. Zircon Geochronology and Petrogenesis of Hedong Highly Fractionated I-Type Granite in Lianshan, Guangdong Province. Earth Science, 48(10): 3577–3596. https://doi.org/10.3799/dqkx.2021.175 (in Chinese with English Abstract)
    Li, W. X. , Li, X. H. , 2003. Rock Types and Tectonic Significance of the Granitoids Rocks within Ophiolites. Advance in Earth Sciences, 18(3): 392–397. https://doi.org/10.11867/j.issn.1001-8166.2003.03.0392 (in Chinese with English Abstract)
    Liao, J. P. , Nebel, O. , Cawood, P. , et al. , 2023. Geochronological and Geochemical Constraints on the East Sulawesi Ophiolite with Implications for Tectonic Reconstructions in Southeast Asia. Goldschmidt 2023 Abstracts. July 9–14, 2023, Lyon. https://doi.org/10.7185/gold2023.15472
    Liu, W. , Liu, X. J. , Liu, L. J. , 2013. Underplating Generated A- and I-Type Granitoids of the East Junggar from the Lower and the Upper Oceanic Crust with Mixing of Mafic Magma: Insights from Integrated Zircon U-Pb Ages, Petrography, Geochemistry and Nd-Sr-Hf Isotopes. Lithos, 179: 293–319. https://doi.org/10.1016/j.lithos.2013.08.009
    Lu, G. M. , Cawood, P. A. , Spencer, C. J. , et al. , 2023. Contrasting Topography of Rodinia and Gondwana Recorded by Continental-Arc Basalts. Lithos, 442: 107094. https://doi.org/10.1016/j.lithos.2023.107094
    Lu, X. , Qian, X. , Gan, C. , et al. , 2022. Petrogenesis of ~10 Ma Diorite from Central North Sulawesi, Indonesia, and Its Implications for the Continuous Subduction of the Celebes Sea. Geotectonic et Metallogenia, 46: 569–584. https://doi.org/10.16539/j.ddgzyckx.2022.03.011
    Luffi, P. , Ducea, M. N. , 2022. Chemical Mohometry: Assessing Crustal Thickness of Ancient Orogens Using Geochemical and Isotopic Data. Reviews of Geophysics, 60(2): e2021RG000753. https://doi.org/10.1029/2021rg000753
    Maulana, A. , Imai, A. , Van Leeuwen, T. , et al. , 2016. Origin and Geodynamic Setting of Late Cenozoic Granitoids in Sulawesi, Indonesia. Journal of Asian Earth Sciences, 124: 102–125. https://doi.org/10.1016/j.jseaes.2016.04.018
    Monnier, C. , Bellon, H. , Girardeau, J. , 1994. 40K-40Ar Dating of the Sulawesi Ophiolite, Indonesia. Comptes Rendus, 319: 349–356
    Nelson, B. , DePaolo, D. , 1985. Rapid Production of Continental Crust 1.7 to 1.9 B. y. Ago: Nd Isotopic Evidence from the Basement of the North American Mid-Continent. Geological Society of America Bulletin, 96: 746–754.https://doi.org/10.1130/0016-7606(1985)96746:rpocct>2.0.co;2 doi: 10.1130/0016-7606(1985)96746:rpocct>2.0.co;2
    Parkinson, C. , 1998a. Emplacement of the East Sulawesi Ophiolite: Evidence from Subophiolite Metamorphic Rocks. Journal of Asian Earth Sciences, 16(1): 13–28. https://doi.org/10.1016/s0743-9547(97)00039-1
    Parkinson, C. , 1998b. An Outline of the Petrology, Structure and Age of the Pompangeo Schist Complex of Central Sulawesi, Indonesia. Island Arc, 7(1/2): 231–245. https://doi.org/10.1046/j.1440-1738.1998.00171.x
    Pearce, J. , 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
    Pearce, J. A. , Harris, N. B. W. , Tindle, A. G. , 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
    Peccerillo, A. , Taylor, S. R. , 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745
    Polvé, M. , Maury, R. C. , Bellon, H. , et al. , 1997. Magmatic Evolution of Sulawesi (Indonesia): Constraints on the Cenozoic Geodynamic History of the Sundaland Active Margin. Tectonophysics, 272(1): 69–92. https://doi.org/10.1016/s0040-1951(96)00276-4
    Qin, J. F. , Lai, S. C. , Grapes, R. , et al. , 2009. Geochemical Evidence for Origin of Magma Mixing for the Triassic Monzonitic Granite and Its Enclaves at Mishuling in the Qinling Orogen (Central China). Lithos, 112(3/4): 259–276. https://doi.org/10.1016/j.lithos.2009.03.007
    Rangin, C. , Maury, R. , Polvé, M. , et al. , 1997. Eocene to Miocene Back-Arc Basin Basalts and Associated Island Arc Tholeiites from Northern Sulawesi (Indonesia); Implications for the Geodynamic Evolution of the Celebes Basin. Bulletin de la Societe Geologique de France, 168(5): 627–635
    Rangin, C. , Spakman, W. , Pubellier, M. , et al. , 1999. Tomographic and Geological Constraints on Subduction along the Eastern Sundaland Continental Margin (South-East Asia). Bulletin de la Societe Geologique de France, 170(6): 775–788
    Sar, A. , Kürüm, S. , Bingöl, A. F. , 2023. Early Cretaceous to Middle Eocene Magmatic Evolution of Eastern Pontides: Zircon U-Pb Ages and Hf Isotopes, and Geochemical and Sr-Nd Isotopic Constraints from Multiphase Granitoids, NE Turkey. Journal of Earth Science, 34(2): 518–535. https://doi.org/10.1007/s12583-022-1640-2
    Serri, G. , Spadea, P. , Beccaluva, L. , et al. , 1991. Petrology of Igneous Rocks from the Celebes Sea Basement. Proceedings of the Ocean Drilling Program, 124 Scientific Results. Ocean Drilling Program, College Station TX. 271–296. https://doi.org/10.2973/odp.proc.sr.124.160.1991
    Silver, E. A. , McCaffrey, R. , Smith, R. B. , 1983. Collision, Rotation, and the Initiation of Subduction in the Evolution of Sulawesi, Indonesia. Journal of Geophysical Research: Solid Earth, 88(B11): 9407–9418. https://doi.org/10.1029/jb088ib11p09407
    Simandjuntak, T. O. , 1986. Sedimentology and Tectonics of the Collision Complex in the East Arm of Sulawesi, Indonesia: [Dissertation]. Royal Holloway and Bedford New College, University of London, London
    Smith, R. B. , Silver, E. A. , 1991. Geology of a Miocene Collision Complex, Buton, Eastern Indonesia. Geological Society of America Bulletin, 103(5): 660–678.https://doi.org/10.1130/0016-7606(1991)1030660:goamcc>2.3.co;2 doi: 10.1130/0016-7606(1991)1030660:goamcc>2.3.co;2
    Socquet, A. , Vigny, C. , Chamot-Rooke, N. , et al. , 2006. India and Sunda Plates Motion and Deformation along Their Boundary in Myanmar Determined by GPS. Journal of Geophysical Research: Solid Earth, 111(B5): B05406. https://doi.org/10.1029/2005jb003877
    Sun, S. S. , McDonough, W. F. , 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D. , Norry, M. J. , eds. , Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Surmont, J. , Laj, C. , Kissel, C. , et al. , 1994. New Paleomagnetic Constraints on the Cenozoic Tectonic Evolution of the North Arm of Sulawesi, Indonesia. Earth and Planetary Science Letters, 121(3/4): 629–638. https://doi.org/10.1016/0012-821x(94)90096-5
    Sylvester, P. J. , 1989. Post-Collisional Alkaline Granites. The Journal of Geology, 97(3): 261–280. https://doi.org/10.1086/629302
    Sylvester, P. J. , 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29–44. https://doi.org/10.1016/s0024-4937(98)00024-3
    Tan, H. Q. , Lü, F. Q. , Li, C. , et al. , 2023. Genetic Linking between Pegmatite-Type Veined Molybdenum Deposit and Dichishan Highly Differentiated Granite in West Sichuan. Earth Science, 48(11): 3978–3994. https://doi.org/10.3799/dqkx.2022.027 (in Chinese with English Abstract)
    Tang, M. , Ji, W. Q. , Chu, X. , et al. , 2021. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons. Geology, 49(1): 76–80. https://doi.org/10.1130/g47745.1
    Tao, J. H. , Li, W. X. , Li, X. H. , et al. , 2013. Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Science China Earth Sciences, 56(6): 922–939. https://doi.org/10.1007/s11430-013-4593-6
    Tian, J. , Xin, H. T. , Teng, X. J. , et al. , 2023. Petrogenesis and Tectonic Implications of the Late Silurian–Early Devonian Bimodal Intrusive Rocks in the Central Beishan Orogenic Belt, NW China: Constraints by Petrology, Geochemistry and Hf Isotope. Journal of Earth Science, 34(2): 431–443. https://doi.org/10.1007/s12583-020-1078-3
    Tuttle, O. F. , Bowen, N. L. , 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America, 74. https://doi.org/10.1130/mem74
    Valley, J. W. , Chiarenzelli, J. R. , McLelland, J. M. , 1994. Oxygen Isotope Geochemistry of Zircon. Earth and Planetary Science Letters, 126(4): 187–206. https://doi.org/10.1016/0012-821x(94)90106-6
    van Leeuwen, T. M. , Muhardjo, 2005. Stratigraphy and Tectonic Setting of the Cretaceous and Paleogene Volcanic-Sedimentary Successions in Northwest Sulawesi, Indonesia: Implications for the Cenozoic Evolution of Western and Northern Sulawesi. Journal of Asian Earth Sciences, 25(3): 481–511. https://doi.org/10.1016/j.jseaes.2004.05.004
    van Leeuwen, T. , Allen, C. M. , Kadarusman, A. , et al. , 2007. Petrologic, Isotopic, and Radiometric Age Constraints on the Origin and Tectonic History of the Malino Metamorphic Complex, NW Sulawesi, Indonesia. Journal of Asian Earth Sciences, 29(5/6): 751–777. https://doi.org/10.1016/j.jseaes.2006.05.002
    Vroon, P. Z. , Van Bergen, M. J. , Forde, E. J. , 1996. Pb and Nd Isotope Constraints on the Provenance of Tectonically Dispersed Continental Fragments in East Indonesia. Geological Society, London, Special Publications, 106(1): 445–453. https://doi.org/10.1144/gsl.sp.1996.106.01.27
    Wang, Y. J. , Fan, W. M. , Cawood, P. A. , et al. , 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3/4): 297–308. https://doi.org/10.1016/j.lithos.2008.07.019
    Wang, Y. J. , Zhang, A. M. , Qian, X. , et al. , 2021. Cretaceous Kuching Accretionary Orogenesis in Malaysia Sarawak: Geochronological and Geochemical Constraints from Mafic and Sedimentary Rocks. Lithos, 400: 106425. https://doi.org/10.1016/j.lithos.2021.106425
    Wang, Y. J. , Qian, X. , Cawood, P. A. , et al. , 2022. Cretaceous Tethyan Subduction in SE Borneo: Geochronological and Geochemical Constraints from the Igneous Rocks in the Meratus Complex. Journal of Asian Earth Sciences, 226: 105084. https://doi.org/10.1016/j.jseaes.2022.105084
    Weissel, J. K. , 1980. Evidence for Eocene Oceanic Crust in the Celebes Basin. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. American Geophysical Union, Washington, D. C. 37–47. https://doi.org/10.1029/gm023p0037
    Whalen, J. B. , Currie, K. L. , Chappell, B. W. , 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    White, L. T. , Hall, R. , Armstrong, R. A. , et al. , 2017. The Geological History of the Latimojong Region of Western Sulawesi, Indonesia. Journal of Asian Earth Sciences, 138: 72–91. https://doi.org/10.1016/j.jseaes.2017.02.005
    Wu, F. Y. , Jahn, B. M. , Wilde, S. A. , et al. , 2003. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3/4): 241–273. https://doi.org/10.1016/s0024-4937(02)00222-0
    Wu, S. N. , Wang, Y. J. , Qian, X. , et al. , 2022. Discovery of the Late Cretaceous Barru Adakite in SW Sulawesi and Slab Break-off beneath the Central Indonesian Accretionary Complex. Journal of Asian Earth Sciences, 232: 105214. https://doi.org/10.1016/j.jseaes.2022.105214
    Yang, J. H. , Wu, F. Y. , Wilde, S. A. , et al. , 2007. Tracing Magma Mixing in Granite Genesis: In situ U-Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2): 177–190. https://doi.org/10.1007/s00410-006-0139-7
    Zhang, X. R. , Huang, T. N. , Chung, S. L. , et al. , 2022. Late Eocene Subduction Initiation of the Indian Ocean in the North Sulawesi Arc, Indonesia, Induced by Abrupt Australian Plate Acceleration. Lithos, 422: 106742. https://doi.org/10.1016/j.lithos.2022.106742
    Zhang, Y. Z. , Yang, X. , Wang, Y. J. , et al. , 2021. Rifting and Subduction Records of the Paleo-Tethys in North Laos: Constraints from Late Paleozoic Mafic and Plagiogranitic Magmatism along the Song Ma Tectonic Zone. GSA Bulletin, 133(1/2): 212–232. https://doi.org/10.1130/b35537.1
    Zindler, A. , Hart, S. , 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493–571. https://doi.org/10.1146/annurev.earth.14.1.493
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(26) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return