Citation: | Yuke Liu, Huajian Wang, Jinyou Zhang, Yuntao Ye, Xiaomei Wang, Shuichang Zhang. Uncover the Diagenetic Water Condition and Dolomite Formation in the Songliao Basin 91 Ma. Journal of Earth Science, 2025, 36(3): 1109-1128. doi: 10.1007/s12583-024-0079-z |
Lacustrine dolomite is paid increasing attention to uncover the diagenetic water condition of paleo-lake and "dolomite problem". Here, a dolomite nodule from the Qingshankou Formation in the Songliao Basin was analyzed to explore the salinity, alkalinity, and redox conditions of the diagenetic water. Multiple proxies, including bulk boron (B) content, B isotope composition (δ11Bbul), boron to gallium weight ratio (B/Ga) and carbonate oxygen isotope composition (δ18Ocarb), were used to determine the diagenetic water to be brackish-fresh. Through numerical simulation, we calculated the B contents, δ11B values and B/Ga in detritus (e.g., clay, quartz and feldspar) and dolomite as two endmembers, confirming the intense interference of clay minerals on δ11Bbul. By using the fitted δ11B of dolomite endmember (20.6‰), we calculated the pH value of the diagenetic water to be 8.2. The negative δ11B value of detritus endmember (-12.9‰) might be related to the terrestrial weathering. The indicative nature of strontium to barium weight ratio (Sr/Ba) was discussed to deny its applicability as a proxy of salinity in carbonate system. High Sr/Ba ratio in this dolomite nodule indicates a sulfate-poor water condition, consistent with the iron-manganese (Fe-Mn) reduction environments reflected by the Mn/Fe molar ratio. The positive carbonate carbon isotopes (δ13Ccarb, 4.5‰‒9.4‰) indicate that methanogenesis dominated the formation of dolomite, coinciding with the weak sulfate reduction reaction in sulfate-poor water. The growth of dolomite nodule might be related to the microbial activities of methanogen and iron reducing bacteria, which had not only maintained the salinity, pH, and redox status of the diagenetic water, but also led to a ferric-methane transition zone (FMTZ). This research depicts a scenario about the diagenetic water environment of lacustrine dolomite formed in brackish-fresh water, which is different from that occurred in sulfate-rich condition.
Adeyilola, A., Nordeng, S., Hu, Q. H., 2022. Porosity and Pore Networks in Tight Dolostone-Mudstone Reservoirs: Insights from the Devonian Three Forks Formation, Williston Basin, USA. Journal of Earth Science, 33(2): 462–481. https://doi.org/10.1007/s12583-021-1458-3 |
Akam, S. A., Swanner, E. D., Yao, H. M., et al., 2023. Methane-Derived Authigenic Carbonates—A Case for a Globally Relevant Marine Carbonate Factory. Earth-Science Reviews, 243: 104487. https://doi.org/10.1016/j.earscirev.2023.104487 |
Alibrahim, A., Duane, M. J., Dittrich, M., 2021. Dolomite Genesis in Bioturbated Marine Zones of an Early–Middle Miocene Coastal Mud Volcano Outcrop (Kuwait). Scientific Reports, 11: 6636. https://doi.org/10.1038/s41598-021-85978-w |
Arvidson, R. S., Mackenzie, F. T., 1999. The Dolomite Problem; Control of Precipitation Kinetics by Temperature and Saturation State. American Journal of Science, 299(4): 257–288. https://doi.org/10.2475/ajs.299.4.257 |
Barnaby, R. J., Rimstidt, J. D., 1989. Redox Conditions of Calcite Cementation Interpreted from Mn and Fe Contents of Authigenic Calcites. Geological Society of America Bulletin, 101(6): 795–804. https://doi.org/10.1130/0016-7606(1989)101<0795:rcocci>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0795:rcocci>2.3.co;2 |
Bechtel, A., Jia, J. L., Strobl, S. A. I., et al., 2012. Palaeoenvironmental Conditions during Deposition of the Upper Cretaceous Oil Shale Sequences in the Songliao Basin (NE China): Implications from Geochemical Analysis. Organic Geochemistry, 46: 76–95. https://doi.org/10.1016/j.orggeochem.2012.02.003 |
Canfield, D. E., Thamdrup, B., 2009. Towards a Consistent Classification Scheme for Geochemical Environments, Or, why we Wish the Term 'Suboxic' would Go away. Geobiology, 7(4): 385–392. https://doi.org/10.1111/j.1472-4669.2009.00214.x |
Cao, H. S., He, W. T., Chen, F. J., et al., 2020. Superheavy Pyrite in the Upper Cretaceous Mudstone of the Songliao Basin, NE China and Its Implication for Paleolimnological Environments. Journal of Asian Earth Sciences, 189: 104156. https://doi.org/10.1016/j.jseaes.2019.104156 |
Cao, H. S., He, W. T., Chen, F. J., et al., 2021. Integrated Chemo-stratigraphy (δ13C-δ34S-δ15N) Constrains Cretaceous Lacustrine Anoxic Events Triggered by Marine Sulfate Input. Chemical Geology, 559: 119912. https://doi.org/10.1016/j.chemgeo.2020.119912 |
Cao, H. S., Kaufman, A. J., Shan, X. L., et al., 2016. Sulfur Isotope Constraints on Marine Transgression in the Lacustrine Upper Cretaceous Songliao Basin, Northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 451: 152–163. https://doi.org/10.1016/j.palaeo.2016.02.041 |
Chang, M., Chow, C., Liu, Z., 1977. Cretaceous Fishes from Northeast China. Part 4: The Age and Depositional Environment of Cretaceous Fish-Bearing Strata of Northeast China. Vertebrata Palasiatica, 15: 194–197 |
Chaussidon, M., Albarède, F., 1992. Secular Boron Isotope Variations in the Continental Crust: An Ion Microprobe Study. Earth and Planetary Science Letters, 108(4): 229–241. https://doi.org/10.1016/0012-821x(92)90025-q |
Dickson, A. G., 1990. Thermodynamics of the Dissociation of Boric Acid in Synthetic Seawater from 273.15 to 318.15 K. Deep Sea Research Part A Oceanographic Research Papers, 37(5): 755–766. https://doi.org/10.1016/0198-0149(90)90004-f |
Dong, H. L., Zhang, G. X., Jiang, H. C., et al., 2006. Microbial Diversity in Sediments of Saline Qinghai Lake, China: Linking Geochemical Controls to Microbial Ecology. Microbial Ecology, 51(1): 65–82. https://doi.org/10.1007/s00248-005-0228-6 |
Feng, J. X., Li, N., Liang, J. Q., et al., 2021. Using Multi-Proxy Approach to Constrain Temporal Variations of Methane Flux in Methane-Rich Sediments of the Southern South China Sea. Marine and Petroleum Geology, 132: 105152. https://doi.org/10.1016/j.marpetgeo.2021.105152 |
Feng, Z. H., Fang, W., Li, Z. G., et al., 2011. Depositional Environment of Terrestrial Petroleum Source Rocks and Geochemical Indicators in the Songliao Basin. Science China Earth Sciences, 54(9): 1304–1317. https://doi.org/10.1007/s11430-011-4268-0 |
Feng, Z. Q., Jia, C. Z., Xie, X. N., et al., 2010. Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin, Northeast China. Basin Research, 22(1): 79–95. https://doi.org/10.1111/j.1365-2117.2009.00445.x |
Gao, R. Q., Qiao, X. Y., He, C. Q., 1992. Cretaceous Microphytoplankton from the Songliao Basin and Its Depositional Environment. Acta Micropalaeontologica Sinica, 9(2): 111–126, 235–238 (in Chinese with English Abstract) |
Gao, X., Wang, P. K., Li, D. R., et al., 2012. Petrologic Characteristics and Genesis of Dolostone from the Campanian of the SK-Ⅰ Well Core in the Songliao Basin, China. Geoscience Frontiers, 3(5): 669–680. https://doi.org/10.1016/j.gsf.2011.12.014 |
García-Ruiz, J. M., 2023. A Fluctuating Solution to the Dolomite Problem. Science, 382(6673): 883–884. https://doi.org/10.1126/science.adl1734 |
Geng, M. M., Wang, K. L., Yang, N., et al., 2021. Evaluation and Variation Trends Analysis of Water Quality in Response to Water Regime Changes in a Typical River-Connected Lake (Dongting Lake), China. Environmental Pollution, 268: 115761. https://doi.org/10.1016/j.envpol.2020.115761 |
Golan, R., Gavrieli, I., Ganor, J., et al., 2016. Controls on the pH of Hyper-Saline Lakes—A Lesson from the Dead Sea. Earth and Planetary Science Letters, 434: 289–297. https://doi.org/10.1016/j.epsl.2015.11.022 |
Guo, P., Wen, H. G., Li, C. Z., et al., 2023. Lacustrine Dolomite in Deep Time: What Really Matters in Early Dolomite Formation and Accumulation? Earth-Science Reviews, 246: 104575. https://doi.org/10.1016/j.earscirev.2023.104575 |
Hemming, N. G., Hanson, G. N., 1992. Boron Isotopic Composition and Concentration in Modern Marine Carbonates. Geochimica et Cosmochimica Acta, 56(1): 537–543. https://doi.org/10.1016/0016-7037(92)90151-8 |
Hu, J. F., Peng, P. A., Liu, M. Y., et al., 2015. Seawater Incursion Events in a Cretaceous Paleo-Lake Revealed by Specific Marine Biological Markers. Scientific Reports, 5: 9508. https://doi.org/10.1038/srep09508 |
Huang, W. L., Longo, J. M., Pevear, D. R., 1993. An Experimentally Derived Kinetic Model for Smectite-to-Illite Conversion and Its Use as a Geothermometer. Clays and Clay Minerals, 41(2): 162–177. https://doi.org/10.1346/ccmn.1993.0410205 |
Huang, Y. J., Yang, G. S., Gu, J., et al., 2013. Marine Incursion Events in the Late Cretaceous Songliao Basin: Constraints from Sulfur Geochemistry Records. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 152–161. https://doi.org/10.1016/j.palaeo.2013.03.017 |
Jewuła, K., Jan, Ś., Kuligiewicz, A., et al., 2022. Critical Evaluation of Geochemical Indices of Palaeosalinity Involving Boron. Geochimica et Cosmochimica Acta, 322: 1–23. https://doi.org/10.1016/j.gca.2022.01.027 |
Jia, J. L., Liu, Z. J., Bechtel, A., et al., 2013. Tectonic and Climate Control of Oil Shale Deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). International Journal of Earth Sciences, 102(6): 1717–1734. https://doi.org/10.1007/s00531-013-0903-7 |
Jones, M. M., Ibarra, D. E., Gao, Y., et al., 2018. Evaluating Late Cretaceous OAEs and the Influence of Marine Incursions on Organic Carbon Burial in an Expansive East Asian Paleo-Lake. Earth and Planetary Science Letters, 484: 41–52. https://doi.org/10.1016/j.epsl.2017.11.046 |
Kallay, N., Pastuovic, M., Matijević, E., 1985. Solubility and Enthalpy of Precipitation of Magnesium, Calcium, Strontium, and Barium Dodecyl Sulfates. Journal of Colloid and Interface Science, 106(2): 452–458. https://doi.org/10.1016/s0021-9797(85)80019-9 |
Karahan, S., Yurdakoç, M., Seki, Y., et al., 2006. Removal of Boron from Aqueous Solution by Clays and Modified Clays. Journal of Colloid and Interface Science, 293(1): 36–42. https://doi.org/10.1016/j.jcis.2005.06.048 |
Kell-Duivestein, I. J., Baldermann, A., Mavromatis, V., et al., 2019. Controls of Temperature, Alkalinity and Calcium Carbonate Reactant on the Evolution of Dolomite and Magnesite Stoichiometry and Dolomite Cation Ordering Degree—An Experimental Approach. Chemical Geology, 529: 119292. https://doi.org/10.1016/j.chemgeo.2019.119292 |
Klochko, K., Kaufman, A. J., Yao, W. S., et al., 2006. Experimental Measurement of Boron Isotope Fractionation in Seawater. Earth and Planetary Science Letters, 248(1/2): 276–285. https://doi.org/10.1016/j.epsl.2006.05.034 |
Leeman, W. P., Sisson, V. B., 1996. Geochemistry of Boron and Its Implications for Crustal and Mantle Processes. Reviews in Mineralogy and Geochemistry, 33(1): 645–708. https://doi.org/10.1515/9781501509223-014 |
Lemarchand, E., Schott, J., Gaillardet, J., 2005. Boron Isotopic Fractionation Related to Boron Sorption on Humic Acid and the Structure of Surface Complexes Formed. Geochimica et Cosmochimica Acta, 69(14): 3519–3533. https://doi.org/10.1016/j.gca.2005.02.024 |
Lemarchand, E., Schott, J., Gaillardet, J., 2007. How Surface Complexes Impact Boron Isotope Fractionation: Evidence from Fe and Mn Oxides Sorption Experiments. Earth and Planetary Science Letters, 260(1/2): 277–296. https://doi.org/10.1016/j.epsl.2007.05.039 |
Li, C., Yang, S. Y., Lian, E. G., et al., 2016. Damming Effect on the Changjiang (Yangtze River) River Water Cycle Based on Stable Hydrogen and Oxygen Isotopic Records. Journal of Geochemical Exploration, 165: 125–133. https://doi.org/10.1016/j.gexplo.2016.03.006 |
Li, Y. C., Wei, H. Z., Palmer, M. R., et al., 2021. Boron Coordination and B/Si Ordering Controls over Equilibrium Boron Isotope Fractionation among Minerals, Melts, and Fluids. Chemical Geology, 561: 120030. https://doi.org/10.1016/j.chemgeo.2020.120030 |
Lin, J., Yang, A., Lin, R., et al., 2023. Review on in situ Isotopic Analysis by LA-MC-ICP-MS. Journal of Earth Science, 34(6): 1663–1691. https://doi.org/10.1007/s12583-023-2002-4 |
Liu, B., Yan, M., Sun, X. D., et al., 2020. Microscopic and Fractal Characterization of Organic Matter within Lacustrine Shale Reservoirs in the First Member of Cretaceous Qingshankou Formation, Songliao Basin, NorthEast China. Journal of Earth Science, 31(6): 1241–1250. https://doi.org/10.1007/s12583-020-1345-3 |
Liu, M. L., Zheng, A. T., Shang, J. B., et al., 2023. Progress in Study of Boron Geochemistry in High Temperature Geothermal Fluids. Earth Science, 48(3): 878–893. https://doi.org/10.3799/dqkx.2022.235 (in Chinese with English Abstract) |
Liu, W. G., Li, X. Z., Zhang, L., et al., 2009. Evaluation of Oxygen Isotopes in Carbonate as an Indicator of Lake Evolution in Arid Areas: The Modern Qinghai Lake, Qinghai-Tibet Plateau. Chemical Geology, 268(1/2): 126–136. https://doi.org/10.1016/j.chemgeo.2009.08.004 |
Liu, W., Liu, M., Yang, T., et al., 2022. Organic Matter Accumulations in the Santonian-Campanian (Upper Cretaceous) Lacustrine Nenjiang Shale (K2n) in the Songliao Basin, NE China: Terrestrial Responses to OAE3? International Journal of Coal Geology, 260: 104069. https://doi.org/10.1016/j.coal.2022.104069 |
Liu, Y. K., He, W. Y., Zhang, J. Y., et al., 2022. Multielement Imaging Reveals the Diagenetic Features and Varied Water Redox Conditions of a Lacustrine Dolomite Nodule. Geofluids, 2022(1): 9019061. https://doi.org/10.1155/2022/9019061 |
Liu, Y. K., Wang, H. J., Zhang, J. Y., et al., 2023. Rare Earth Elemental and Sr Isotopic Evidence for Seawater Intrusion Event of the Songliao Basin 91 Million Years Ago. Petroleum Science, 20(3): 1347–1362. https://doi.org/10.1016/j.petsci.2022.11.015 |
Liu, Z. W., Liu, Y. K., Du, X. J., et al., 2023. Early Diagenesis in the Lacustrine Ostracods from the Songliao Basin 91.35 Million Years Ago and Its Geological Implications. Minerals, 13(1): 5. https://doi.org/10.3390/min13010005 |
Lyu, Z., Shao, N. N., Akinyemi, T., et al., 2018. Methanogenesis. Current Biology, 28(13): R727–R732. https://doi.org/10.1016/j.cub.2018.05.021 |
Makri, S., Wienhues, G., Bigalke, M., et al., 2021. Variations of Sedimentary Fe and Mn Fractions under Changing Lake Mixing Regimes, Oxygenation and Land Surface Processes during Late-Glacial and Holocene Times. Science of the Total Environment, 755: 143418. https://doi.org/10.1016/j.scitotenv.2020.143418 |
Mao, H. R., Liu, C. Q., Zhao, Z. Q., 2019. Source and Evolution of Dissolved Boron in Rivers: Insights from Boron Isotope Signatures of End-Members and Model of Boron Isotopes during Weathering Processes. Earth-Science Reviews, 190: 439–459. https://doi.org/10.1016/j.earscirev.2019.01.016 |
Mavromatis, V., Montouillout, V., Noireaux, J., et al., 2015. Characterization of Boron Incorporation and Speciation in Calcite and Aragonite from Co-Precipitation Experiments under Controlled pH, Temperature and Precipitation Rate. Geochimica et Cosmochimica Acta, 150: 299–313. https://doi.org/10.1016/j.gca.2014.10.024 |
Minor, E. C., Tennant, C. J., Brown, E. T., 2019. A Seasonal to Interannual View of Inorganic and Organic Carbon and pH in Western Lake Superior. Journal of Geophysical Research: Biogeosciences, 124(2): 405–419. https://doi.org/10.1029/2018jg004664 |
Naeher, S., Gilli, A., North, R. P., et al., 2013. Tracing Bottom Water Oxygenation with Sedimentary Mn/Fe Ratios in Lake Zurich, Switzerland. Chemical Geology, 352: 125–133. https://doi.org/10.1016/j.chemgeo.2013.06.006 |
Noireaux, J., Sullivan, P. L., Gaillardet, J., et al., 2021. Developing Boron Isotopes to Elucidate Shale Weathering in the Critical Zone. Chemical Geology, 559: 119900. https://doi.org/10.1016/j.chemgeo.2020.119900 |
Pagani, M., Lemarchand, D., Spivack, A., et al., 2005. A Critical Evaluation of the Boron Isotope-pH Proxy: The Accuracy of Ancient Ocean pH Estimates. Geochimica et Cosmochimica Acta, 69(4): 953–961. https://doi.org/10.1016/j.gca.2004.07.029 |
Palmer, M. R., Swihart, G. H., 1996. Boron Isotope Geochemistry: An Overview. Reviews in Mineralogy and Geochemistry, 33(1): 709–744. https://doi.org/10.1515/9781501509223-015 |
Park, H., Schlesinger, W. H., 2002. Global Biogeochemical Cycle of Boron. Global Biogeochemical Cycles, 16(4): 1072. https://doi.org/10.1029/2001gb001766 |
Raiswell, R., Fisher, Q. J., 2000. Mudrockhosted Carbonate Concretions: A Review of Growth Mechanisms and Their Influence on Chemical and Isotopic Composition. Journal of the Geological Society, 157(1): 239–251. https://doi.org/10.1144/jgs.157.1.239 |
Raiswell, R., Hardisty, D. S., Lyons, T. W., et al., 2018. The Iron Paleoredox Proxies: A Guide to the Pitfalls, Problems and Proper Practice. American Journal of Science, 318(5): 491–526. https://doi.org/10.2475/05.2018.03 |
Riechelmann, S., Mavromatis, V., Buhl, D., et al., 2020. Controls on Formation and Alteration of Early Diagenetic Dolomite: A Multi-Proxy Δ44/40Ca, δ26Mg, δ18O and δ13C Approach. Geochimica et Cosmochimica Acta, 283: 167–183. https://doi.org/10.1016/j.gca.2020.06.010 |
Saito, A., Kagi, H., Marugata, S., et al., 2020. Incorporation of Incompatible Strontium and Barium Ions into Calcite (CaCO3) through Amorphous Calcium Carbonate. Minerals, 10(3): 270. https://doi.org/10.3390/min10030270 |
Sala, R., Deom, J. M., Aladin, N. V., et al., 2020. Geological History and Present Conditions of Lake Balkhash. In: Mischke, S., ed., Large Asian Lakes in a Changing World. Springer International Publishing, Cham. 143–175. |
Simon, L., Lécuyer, C., Maréchal, C., et al., 2006. Modelling the Geochemical Cycle of Boron: Implications for the Long-Term δ11B Evolution of Seawater and Oceanic Crust. Chemical Geology, 225(1/2): 61–76. https://doi.org/10.1016/j.chemgeo.2005.08.011 |
Sun, F. N., Hu, W. X., Cao, J., et al., 2022. Sustained and Intensified Lacustrine Methane Cycling during Early Permian Climate Warming. Nature Communications, 13(1): 4856. https://doi.org/10.1038/s41467-022-32438-2 |
Sun, F. N., Hu, W. X., Wang, X. L., et al., 2021. Methanogen Microfossils and Methanogenesis in Permian Lake Deposits. Geology, 49(1): 13–18. https://doi.org/10.1130/g47857.1 |
Susanti, D., Mukhopadhyay, B., 2012. An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate Reduction. PLoS One, 7(9): e45313. https://doi.org/10.1371/journal.pone.0045313 |
Talbot, M. R., 1990. A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates. Chemical Geology: Isotope Geoscience Section, 80(4): 261–279. https://doi.org/10.1016/0168-9622(90)90009-2 |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. https://doi.org/10.1016/j.chemgeo. 2006.02.012 doi: 10.1016/j.chemgeo.2006.02.012 |
Veizer, J., Clayton, R. N., Hlnton, R. W., et al., 1990. Geochemistry of Precambrian Carbonates: 3-Shelf Seas and Non-Marine Environments of the Archean. Geochimica et Cosmochimica Acta, 54(10): 2717–2729. https://doi.org/10.1016/0016-7037(90)90007-8 |
Vengosh, A., Barth, S., Heumann, K. G., et al., 1999. Boron Isotopic Composition of Freshwater Lakes from Central Europe and Possible Contamination Sources. Acta Hydrochimica et Hydro-biologica, 27(6): 416–421. https://doi.org/10.1002/(sici)1521-401x(199912)27:6<416::aid-aheh416>3.0.co;2-2 doi: 10.1002/(sici)1521-401x(199912)27:6<416::aid-aheh416>3.0.co;2-2 |
Vengosh, A., Starinsky, A., Kolodny, Y., et al., 1991. Boron Isotope Geochemistry as a Tracer for the Evolution of Brines and Associated Hot Springs from the Dead Sea, Israel. Geochimica et Cosmochimica Acta, 55(6): 1689–1695. https://doi.org/10.1016/0016-7037(91)90139-v |
Wallenius, A. J., Dalcin Martins, P., Slomp, C. P., et al., 2021. Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments. Frontiers in Microbiology, 12: 631621. https://doi.org/10.3389/fmicb.2021.631621 |
Wang, C. S., Feng, Z. Q., Zhang, L. M., et al., 2013a. Cretaceous Paleogeography and Paleoclimate and the Setting of SKI Borehole Sites in Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 17–30. https://doi.org/10.1016/j.palaeo.2012.01.030 |
Wang, C. S., Scott, R. W., Wan, X. Q., et al., 2013b. Late Cretaceous Climate Changes Recorded in Eastern Asian Lacustrine Deposits and North American Epieric Sea Strata. Earth-Science Reviews, 126: 275–299. https://doi.org/10.1016/j.earscirev.2013.08.016 |
Wang, G. D., Cheng, R. H., Wang, P. J., et al., 2008. The Forming Mechanism of Dolostone of Nengjiang Formation in Songliao Basin—Example from CCSD-SK Ⅱ. Acta Geologica Sinica, 82(1): 48–54, 146. https://doi.org/10.3321/j.issn:0001-5717.2008.01.006 (in Chinese with English Abstract) |
Wang, H. J., Ye, Y. T., Deng, Y., et al., 2021. Multi-Element Imaging of a 1.4 Ga Authigenic Siderite Crystal. Minerals, 11(12): 1395. https://doi.org/10.3390/min11121395 |
Wang, H. J., Ye, Y. T., Deng, Y., et al., 2022. Isotope Evidence for the Coupled Iron and Carbon Cycles 1.4 Billion Years Ago. Geochemical Perspectives Letters, 21: 1–6. https://doi.org/10.7185/geochemlet.2208 |
Wang, P. K., Huang, Y. J., Wang, C. S., et al., 2013. Pyrite Morphology in the First Member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385: 125–136. https://doi.org/10.1016/j.palaeo.2012.09.027 |
Wang, T. T., Wang, C. S., Ramezani, J., et al., 2022. High-Precision Geochronology of the Early Cretaceous Yingcheng Formation and Its Stratigraphic Implications for Songliao Basin, China. Geoscience Frontiers, 13(4): 101386. https://doi.org/10.1016/j.gsf.2022.101386 |
Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1/2/3): 1–81. https://doi.org/10.1016/s0012-8252(00)00022-2 |
Wei, H. Z., Jiang, S. Y., Tan, H. B., et al., 2014. Boron Isotope Geochemistry of Salt Sediments from the Dongtai Salt Lake in Qaidam Basin: Boron Budget and Sources. Chemical Geology, 380: 74–83. https://doi.org/10.1016/j.chemgeo.2014.04.026 |
Wei, W., Algeo, T. J., 2020. Elemental Proxies for Paleosalinity Analysis of Ancient Shales and Mudrocks. Geochimica et Cosmochimica Acta, 287: 341–366. https://doi.org/10.1016/j.gca.2019.06.034 |
Wei, H. Z., Zhao, Y., Liu, X., et al., 2021. Evolution of Paleo-Climate and Seawater pH from the Late Permian to Postindustrial Periods Recorded by Boron Isotopes and B/Ca in Biogenic Carbonates. Earth-Science Reviews, 215: 103546. https://doi.org/10.1016/j.earscirev.2021.103546 |
Wei, W., Yu, W. C., Algeo, T. J., et al., 2022. Boron Proxies Record Paleosalinity Variation in the North American Midcontinent Sea in Response to Carboniferous Glacio-Eustasy. Geology, 50(5): 537–541. https://doi.org/10.1130/g49521.1 |
Williams, L. B., Hervig, R. L., Holloway, J. R., et al., 2001a. Boron Isotope Geochemistry during Diagenesis. Part Ⅰ. Experimental Determination of Fractionation during Illitization of Smectite. Geochimica et Cosmochimica Acta, 65(11): 1769–1782. https://doi.org/10.1016/s0016-7037(01)00557-9 |
Williams, L. B., Hervig, R. L., Hutcheon, I., 2001b. Boron Isotope Geochemistry during Diagenesis. Part Ⅱ. Applications to Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 65(11): 1783–1794. https://doi.org/10.1016/s0016-7037(01)00558-0 |
Xi, D. P., Cao, W. X., Huang, Q. H., et al., 2016. Late Cretaceous Marine Fossils and Seawater Incursion Events in the Songliao Basin, NE China. Cretaceous Research, 62: 172–182. https://doi.org/10.1016/j.cretres.2015.10.025 |
Xiao, J., Zhao, Z. Q., Bouchez, J., et al., 2023. Geothermal Input Significantly Influences Riverine and Oceanic Boron Budgets. Earth and Planetary Science Letters, 621(1): 118397. https://doi.org/10.1016/j.epsl.2023.118397 |
Xiao, Y. K., Li, S. Z., Wei, H. Z., et al., 2006. An Unusual Isotopic Fractionation of Boron in Synthetic Calcium Carbonate Precipitated from Seawater and Saline Water. Science in China Series B: Chemistry, 49(5): 454–465. https://doi.org/10.1007/s11426-006-2013-x |
Xu, C., Shan, X. L., He, W. T., 2022. The Fluctuation of Warm Paleoclimatic Controls on Lacustrine Carbonate Deposition in the Late Cretaceous (Late Santonian), Southern Songliao Basin, Northeast China. International Journal of Earth Sciences, 111(1): 85–102. https://doi.org/10.1007/s00531-021-02100-1 |
Xu, J. J., Liu, Z. J., Bechtel, A., et al., 2019. Organic Matter Accumulation in the Upper Cretaceous Qingshankou and Nenjiang Formations, Songliao Basin (NE China): Implications from High-Resolution Geochemical Analysis. Marine and Petroleum Geology, 102: 187–201. https://doi.org/10.1016/j.marpetgeo.2018.12.037 |
Yang, Y., Gao, F. H., Pu, X. G., et al., 2013. Changes to Depositional Palaeoenvironments within the Qikou Depression (Bohaiwan Basin, China): Carbon and Oxygen Isotopes in Lacustrine Carbonates of the Palaeogene Shahejie Formation. International Geology Review, 55(15): 1909–1921. https://doi.org/10.1080/00206814.2013.805926 |
Yu, W. C., Polgári, M., Gyollai, I., et al., 2021. Microbial Metallogenesis of Early Carboniferous Manganese Deposit in Central Guangxi, South China. Ore Geology Reviews, 136: 104251. https://doi.org/10.1016/j.oregeorev.2021.104251 |
Zeebe, R. E., 2001. Seawater pH and Isotopic Paleotemperatures of Cretaceous Oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 170(1/2): 49–57. https://doi.org/10.1016/S0031-0182(01)00226-7 |
Zeng, L. Q., Gätjen, J., Reinhardt, M., et al., 2023. Extremely 13C-Enriched Dolomite Records Interval of Strong Methanogenesis Following a Sulfate Decline in the Miocene Ries Impact Crater Lake. Geochimica et Cosmochimica Acta, 362: 22–40. https://doi.org/10.1016/j.gca.2023.10.013 |
Zhai, T. L., Huang, S. X., Qin, S., et al., 2021. Redox-Induced Destabilization of Dolomite at Earth's Mantle Transition Zone. Journal of Earth Science, 32(4): 880–886. https://doi.org/10.1007/s12583-021-1410-6 |
Zhang, L., Liu, J. T., Zhang, D. W., et al., 2018. Seasonal and Spatial Variations of Microcystins in Poyang Lake, the Largest Freshwater Lake in China. Environmental Science and Pollution Research International, 25(7): 6300–6307. https://doi.org/10.1007/s11356-017-0967-1 |
Zhang, S. C., Zhang, B., Wang, X. M., et al., 2023. Gulong Shale Oil Enrichment Mechanism and Orderly Distribution of Conventional-Unconventional Oils in the Cretaceous Qingshankou Formation, Songliao Basin, NE China. Petroleum Exploration and Development, 50(5): 1045–1059. https://doi.org/10.1016/s1876-3804(23)60448-3 |
Zhang, X., 2020. Boron Isotope Fractionation in Salk Lake and Its Tracer to the Evolution of the Qarhan Satl Lake: [Dissertation]. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining. 147 (in Chinese with English Abstract) |
Zhang, X. R., Li, Q. K., Qin, Z. J., et al., 2019. Boron Isotope Geochemistry of a Brine-Carbonate System in the Qaidam Basin, Western China. Sedimentary Geology, 383: 293–302. https://doi.org/10.1016/j.sedgeo.2019.02.011 |
Zhang, X. J., Zhang, S. M., Gou, Y. C., et al., 2019. Characteristics and Origin Analysis of Lacustrine Dolomites in the Lower Ganchaigou Formation, Western Qaidam Basin. Acta Sedimentologica Sinica, 37(4): 785–797. https://doi.org/10.14027/j.issn.1000-0550.2018.177 (in Chinese with English Abstract) |
Zhao, W. Z., Shen, A. J., Zheng, J. F., et al., 2014. The Porosity Origin of Dolostone Reservoirs in the Tarim, Sichuan and Ordos Basins and Its Implication to Reservoir Prediction. Science China Earth Sciences, 57(10): 2498–2511. https://doi.org/10.1007/s11430-014-4920-6 |
Zheng, Y. F., Zhou, G. T., Gong, B., 1997. Theoretical Study on Oxygen Isotope Fractionation of Carbonate Minerals. Geological Journal of China Universities, 3(3): 241–255 (in Chinese with English Abstract) |
Zhou, M. F., Frenking, G., 2021. Transition-Metal Chemistry of the Heavier Alkaline Earth Atoms Ca, Sr, and Ba. Accounts of Chemical Research, 54(15): 3071–3082. https://doi.org/10.1021/acs.accounts.1c00277 |
Zhu, C. F., Cui, X. Q., He, Y. X., et al., 2020. Extended 3β-Methylhopanes up to C45 in Source Rocks from the Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Organic Geochemistry, 142: 103998. https://doi.org/10.1016/j.orggeochem.2020.103998 |
Zhu, R. K., Cui, J. W., Luo, Z., et al., 2020. Isotopic Geochemical Characteristics of Two Types of Carbonate Concretions of Chang 7 Member in the Middle–Upper Triassic Yanchang Formation, Ordos Basin, Central China. Marine and Petroleum Geology, 116: 104312. https://doi.org/10.1016/j.marpetgeo.2020.104312 |
Zhu, X. M., Cao, J., Xia, L. W., et al., 2023. Links between Marine Incursions, Lacustrine Anoxia and Organic Matter Enrichment in the Upper Cretaceous Qingshankou Formation, Songliao Basin, China. Marine and Petroleum Geology, 158: 106536. https://doi.org/10.1016/j.marpetgeo.2023.106536 |