Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Kyiazbek Asilbekov, Rustam Orozbaev, Etienne Skrzypek, Christoph Hauzenberger, Elena Ivleva, Daniela Gallhofer, Jian-Feng Gao, Nikolay Pak, Anatoliy Shevkunov, Anatoliy Bashkirov, Aizat Zhaanbaeva. Age and Petrogenesis of the newly Discovered Early Permian Granite in the Kumtor Gold Field, Kyrgyz Tien-Shan. Journal of Earth Science, 2025, 36(3): 1090-1108. doi: 10.1007/s12583-024-0085-1
Citation: Kyiazbek Asilbekov, Rustam Orozbaev, Etienne Skrzypek, Christoph Hauzenberger, Elena Ivleva, Daniela Gallhofer, Jian-Feng Gao, Nikolay Pak, Anatoliy Shevkunov, Anatoliy Bashkirov, Aizat Zhaanbaeva. Age and Petrogenesis of the newly Discovered Early Permian Granite in the Kumtor Gold Field, Kyrgyz Tien-Shan. Journal of Earth Science, 2025, 36(3): 1090-1108. doi: 10.1007/s12583-024-0085-1

Age and Petrogenesis of the newly Discovered Early Permian Granite in the Kumtor Gold Field, Kyrgyz Tien-Shan

doi: 10.1007/s12583-024-0085-1
More Information
  • Corresponding author: Kyiazbek Asilbekov, asilbekov_90@mail.ru
  • Received Date: 13 Jan 2023
  • Accepted Date: 19 Apr 2024
  • Issue Publish Date: 30 Jun 2025
  • Permian intrusions are widespread in the Middle and Southern Tien-Shan, with fewer occurrences in the Northern Tien-Shan. Notably, many of these intrusions are spatially associated with a variety of ore deposits, indicating a significant link between magmatic activity and mineralization processes in these areas. We studied granite samples recently recovered from drilling in the Kumtor gold field to evaluate their potential relationships with gold mineralization. The major and trace element geochemistry, zircon U-Pb age and Hf isotope data for this so-called Kumtor granite are reported. The Kumtor granite is metaluminous to peraluminous and belongs to the high-K and calc-alkaline series with Ⅰ-type geochemical characteristics. The relatively high K2O and Na2O concentrations and low high field strength elements (HFSE) and heavy rare earth elements (HREE), the presence of biotite within these Ⅰ-type granites, together with their low zircon saturation temperatures (731–779 ℃), suggest that they were likely derived from a hydrous source formed by dehydration melting of mica-bearing, medium- to high-K metabasaltic rocks. The zircon U-Pb dating results indicate that the Kumtor granite intruded at 293 ± 1.7 Ma, which is consistent with the age range of other Middle Tien-Shan granitoids. The zircon Hf isotopic composition is εHf(t) = -7.56 to -5.05, indicating an ancient (1.39 to 1.52 Ga) crustal origin. Petrographical, geochemical and geochronological data indicate that the Kumtor granite is similar to leucogranites of the Terekty Complex. These results indicate that the Kumtor granite was emplaced in the Early Permian in a post-collision setting and may have temporal and genetic relationships with gold mineralization.

     

  • Electronic Supplementary Materials: Supplementary materials (Table S1) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0085-1.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abeleira, A., Ansdell, K., Heaman, L., 2000. U-Pb and Nd Isotope Constraints on the Evolution of the Tien Shan, Kumtor Region, Kyrgyzstan. Geological Society of America Abstracts with Programs, 32(7): A-32
    Alekseiev, D. V., Degtyarev, K. E., Kotov, A. B., et al., 2009. Late Paleozoic Subductional and Collisional Igneous Complexes in the Naryn Segment of the Middle Tien Shan (Kyrgyzstan). Doklady Earth Sciences, 427(1): 760–763. https://doi.org/10.1134/s1028334x09050122
    Alexeiev, D. V., Biske, Y. S., Djenchuraeva, A. V., et al., 2019. Late Carboniferous (Kasimovian) Closure of the South Tianshan Ocean: No Triassic Subduction. Journal of Asian Earth Sciences, 173: 54–60. https://doi.org/10.1016/j.jseaes.2019.01.021
    Bakirov, A. B., Ges', M. D., Jenchuraeva, R. D., et al., 2014. Geodynamika i Orudenenie Tian-Shanya (Kyrgyzstan). Ilim, Bishkek. 280
    Biske, Y. S., 1996. Paleozoiskaya Struktura i Istoriya Yujnogo Tian-Shanya, S. -Peterburg University Publishing, St. Petersburg. 190
    Blichert-Toft, J., 2008. The Hf Isotopic Composition of Zircon Reference Material 91500. Chemical Geology, 253(3/4): 252–257. https://doi.org/10.1016/j.chemgeo.2008.05.014
    Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007
    Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
    Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. In: Brown, P. E., Chappell, B. W., eds., The Second Hutton Symposium on the Origin of Granites and Related Rocks. Geological Society of America. 1–26. https://doi.org/10.1130/spe272-p1
    Charvet, J., Shu, L. S., Laurent-Charvet, S., 2007. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30(3): 162–186
    Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567–1574. https://doi.org/10.1039/b206707b
    Clemens, J. D., 2003. S-Type Granitic Magmas—Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 61(1/2): 1–18. https://doi.org/10.1016/s0012-8252(02)00107-1
    De Grave, J., Glorie, S., Buslov, M. M., et al., 2011. The Thermo-Tectonic History of the Song-Kul Plateau, Kyrgyz Tien Shan: Constraints by Apatite and Titanite Thermochronometry and Zircon U/Pb Dating. Gondwana Research, 20(4): 745–763. https://doi.org/10.1016/j.gr.2011.03.011
    De la Roche, H., Leterrier, J., Grandclaude, P., et al., 1980. A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 29(3/4): 183–210. https://doi.org/10.1016/0009-2541(80)90020-0
    Dolgopolova, A., Seltmann, R., Konopelko, D., et al., 2017. Geodynamic Evolution of the Western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP Geochronology and Sr-Nd-Pb-Hf Isotope Mapping of Granitoids. Gondwana Research, 47: 76–109. https://doi.org/10.1016/j.gr.2016.10.022
    Feldstein, S. N., Lange, R. A., 1999. Pliocene Potassic Magmas from the Kings River Region, Sierra Nevada, California: Evidence for Melting of a Subduction-Modified Mantle. Journal of Petrology, 40(8): 1301–1320. https://doi.org/10.1093/petroj/40.8.1301
    Fisher, C. M., Hanchar, J. M., Samson, S. D., et al., 2011. Synthetic Zircon Doped with Hafnium and Rare Earth Elements: A Reference Material for in situ Hafnium Isotope Analysis. Chemical Geology, 286(1/2): 32–47. https://doi.org/10.1016/j.chemgeo.2011.04.013
    Frost, B. R., Frost, C. D., 2008. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11): 1955–1969. https://doi.org/10.1093/petrology/egn054
    Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221–1238. https://doi.org/10.1007/s00531-008-0370-8
    Ghes, M. D., 2008. Terrane Structure and Geodynamic Evolution of the Caledonides of Tian-Shan. Altyn Tamga Publishing House, Bishkek. 158
    Glorie, S., De Grave, J., Buslov, M. M., et al., 2010. Multi-Method Chronometric Constraints on the Evolution of the Northern Kyrgyz Tien Shan Granitoids (Central Asian Orogenic Belt): From Emplacement to Exhumation. Journal of Asian Earth Sciences, 38(3/4): 131–146. https://doi.org/10.1016/j.jseaes.2009.12.009
    Glorie, S., De Grave, J., Buslov, M. M., et al., 2011. Tectonic History of the Kyrgyz South Tien Shan (Atbashi-Inylchek) Suture Zone: The Role of Inherited Structures during Deformation-Propagation. Tectonics, 30(6): 2011TC002949. https://doi.org/10.1029/2011tc002949
    Horstwood, M. S. A., Košler, J., Gehrels, G., et al., 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology—Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research, 40(3): 311–332. https://doi.org/10.1111/j.1751-908x.2016.00379.x
    Ivanov, S. M., Ansdell, K. M., Melrose, D. L., 2000. Ore Texture and Stable Isotope Constraints on Ore Deposition Mechanisms at the Kumtor Lode Gold Deposit. In: Bucci, L. A., Mair, J. L., eds., Gold in 2000. Society of Economic Geologists, Littleton. 47–52
    Ivleva, E., Pak, N., 2014. Model of the Formation of the Super-Large Gold Deposit Kumtor in Central Asia. In: Proceedings of International Symposium on Giant Gold Deposits of Central Asia. Strengthening the Gold Ore Potential of Kazakhstan, Almaty. 107–110
    Ivleva, E. A., Pak, N. T., Asilbekov, K. A., et al., 2022. Gold Mineralization Associated with Permian Magmatism in the Eastern Part of Southern and Middle Tien Shan (Kyrgyzstan). Vestnik of the Kyrgyz-Russian Slavic University, 22(4): 180–191. https://doi.org/10.36979/1694-500x-2022-22-4-180-191
    Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    Jenchuraeva, R., Asilbekov, K., Jumagulov, U., 2015. A-Granitoids of the Eastern Tien-Shan and Their Ore Potential (Kyrgyzstan). In: Proc. International Conference Dedicated to the 100th Anniversary of Acad. M. M. Adyshev. Institute of Geology NAS KR, Bishkek. 89–95
    Jenchuraeva, R., Pak, N., Nikonorov, V., et al., 2020. Gold Deposits of Kyrgyzstan. Ilim, Bishkek. 494
    King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. https://doi.org/10.1093/petroj/38.3.371
    Konopelko, D., Biske, G., Seltmann, R., et al., 2007. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 97(1/2): 140–160. https://doi.org/10.1016/j.lithos.2006.12.005
    Konopelko, D., Biske, G., Seltmann, R., et al., 2008. Deciphering Caledonian Events: Timing and Geochemistry of the Caledonian Magmatic Arc in the Kyrgyz Tien Shan. Journal of Asian Earth Sciences, 32(2/3/4): 131–141. https://doi.org/10.1016/j.jseaes.2007.10.017
    Konopelko, D., Seltmann, R., Biske, G., et al., 2009. Possible Source Dichotomy of Contemporaneous Post-Collisional Barren I-Type versus Tin-Bearing A-Type Granites, Lying on Opposite Sides of the South Tien Shan Suture. Ore Geology Reviews, 35(2): 206–216. https://doi.org/10.1016/j.oregeorev.2009.01.002
    Konopelko, D., Biske, G., Seltmann, R., et al., 2014. Age and Petrogenesis of the Neoproterozoic Chon-Ashu Alkaline Complex, and a New Discovery of Chalcopyrite Mineralization in the Eastern Kyrgyz Tien Shan. Ore Geology Reviews, 61: 175–191. https://doi.org/10.1016/j.oregeorev.2014.02.004
    Konopelko, D., Wilde, S. A., Seltmann, R., et al., 2018. Early Permian Intrusions of the Alai Range: Understanding Tectonic Settings of Hercynian Post-Collisional Magmatism in the South Tien Shan, Kyrgyzstan. Lithos, 302: 405–420. https://doi.org/10.1016/j.lithos.2018.01.024
    Korobeinikov, A., 2007. Mantle Magma-Thermofluid-Dynamic and Intracrustal Granitoid-Hydrothermal-Matasomatic Gold-Bearing Systems. Proceedings of the Tomsk Polytechnic University, 311: 36–45
    Kryazhev, S., 2017. Genetic Models and Criteria for Forecasting Gold Deposits in Carbonaceous-Terrigenous Complexes: [Disserta-tion]. Central Research Geological Prospecting Institute of Non-Ferrous and Precious Metals, Moscow. 288 (in Russian)
    Kröner, A., Alexeiev, D. V., Kovach, V. P., et al., 2017. Zircon Ages, Geochemistry and Nd Isotopic Systematics for the Palaeo-proterozoic 2.3–1.8 Ga Kuilyu Complex, East Kyrgyzstan—The Oldest Continental Basement Fragment in the Tianshan Orogenic Belt. Journal of Asian Earth Sciences, 135: 122–135. https://doi.org/10.1016/j.jseaes.2016.12.022
    Kurbanov, N. K., 1988. Geological and Genetic Models of the Formation of Gold Deposits in Carbonaceous-Terrigenous Complexes. In: Kurbanov, N. K., ed., Ore Potential of Sedimentary Complexes. Nauka, Leningrad. 138–147
    Le Maitre, R. W., Streckeisen, A., Zanettin, B., et al., 2002. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, New York. 254
    Liu, C. S., Chen, X. M., Chen, P. R., et al., 2003. Subdivision, Discrimination Criteria and Genesis for a Type Rock Suites. Geological Journal of China Universities, 9(4): 573–591 (in Chinese with English Abstract)
    Lomize, M. G., Demina, L. I., Zarshchikov, A. A., 1997. The Kyrgyz-Terskei Paleooceanic Basin, Tien Shan. Geodynamics, 31(6): 463–482
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
    Mao, J., Konopelko, D., Seltmann, R., et al., 2004. Postcollisional Age of the Kumtor Gold Deposit and Timing of Hercynian Events in the Tien Shan, Kyrgyzstan. Economic Geology, 99(8): 1771–1780. https://doi.org/10.2113/gsecongeo.99.8.1771
    Mikolaichuk, A., Kurenkov, K., Degtyarev, V., et al., 1997. Northern Tien-Shan, Main Stages of Geodynamic Evolution in the Late Precambrian and Early Palaeozoic. Geotectonics, 31(6): 445–462
    Morelli, R., Creaser, R. A., Seltmann, R., et al., 2007. Age and Source Constraints for the Giant Muruntau Gold Deposit, Uzbekistan, from Coupled Re-Os-He Isotopes in Arsenopyrite. Geology, 35(9): 795–798. https://doi.org/10.1130/g23521a.1
    Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257—A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247–265. https://doi.org/10.1111/j.1751-908x.2008.00914.x
    Nikonorov, V., Karaev, Y., Borisov, F., et al., 2004. Gold of Kyrgyzstan. Book 1: Geology. Localization conditions. Nasi, Bishkek. 271
    Pak, N., 2008. Large Gold Deposits in the Black Shale Strata of the Tien Shan. In: Proc. Rudogenez. Sbornik Nauchnyh Statei, Miass-Ekaterinburg. 235–238
    Pak, N., Ivleva, E., 2015. Super-Large Gold Deposits in the Black Shale Strata of Central Asia. In: Proc. Petrology and Minerageny of Central Asia. Donish, Dushanbe. 94–101
    Patchett, J. P., Kouvo, O., Hedge, C. E., et al., 1982. Evolution of Continental Crust and Mantle Heterogeneity: Evidence from Hf Isotopes. Contributions to Mineralogy and Petrology, 78(3): 279–297. https://doi.org/10.1007/bf00398923
    Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. 25(8): 743–746. https://doi.org/10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2
    Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009gc002618
    Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508. https://doi.org/10.1039/c1ja10172b
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
    Potts, P. J., Kane, J. S., 2005. International Association of Geoanalysts Certificate of Analysis: Certified Reference Material OU-6 (Penrhyn Slate). Geostandards and Geoanalytical Research, 29(2): 233–236. https://doi.org/10.1111/j.1751-908x.2005.tb00895.x
    Rafailovich, M. S., Mizernaya, M. A., Dyachkov, B. A., 2011. Large Gold Deposits in Black Shale Strata: Conditions of Formation, Signs of Similarity. Luxe Media Group, Almaty. 272
    Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Calc-Alkaline, Ⅰ-Type Granitoids. 21(9): 825–828. https://doi.org/10.1130/0091-7613(1993)021<0825:oohpta>2.3.co;2
    Sakiev, K. S., 2002. Conditions of Metamorphism of Tien Shan Ophiolites: [Dissertation]. Institute of Geology NAS KR, Bishkek. 310 (in Russian)
    Sang, M., Xiao, W. J., Bakirov, A., et al., 2017. Oblique Wedge Extrusion of UHP/HP Complexes in the Late Triassic: Structural Analysis and Zircon Ages of the Atbashi Complex, South Tianshan, Kyrgyzstan. International Geology Review, 59(10): 1369–1389. https://doi.org/10.1080/00206814.2016.1241163
    Satybaev, M., Ding, L., Takasu, A., et al., 2018. Petrology of Metamorphic Rocks from the Atbashy Complex, Southern Tien-Shan, Kyrgyzstan. Geoscience Frontiers, 9(6): 1795–1807. https://doi.org/10.1016/j.gsf.2017.11.005
    Şengör, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: An, Y., Harrison, T. M., eds., The Tectonic Evolution of Asia. Cambridge University Press. 486–640
    Seltmann, R., Konopelko, D., Biske, G., et al., 2011. Hercynian Post-Collisional Magmatism in the Context of Paleozoic Magmatic Evolution of the Tien Shan Orogenic Belt. Journal of Asian Earth Sciences, 42(5): 821–838. https://doi.org/10.1016/j.jseaes.2010.08.016
    Seltmann, R., Goldfarb, R. J., Zu, B., et al., 2020. Chapter 24: Muruntau, Uzbekistan: The World's Largest Epigenetic Gold Deposit. Geology of the World's Major Gold Deposits and Provinces. Society of Economic Geologists. 497–521. https://doi.org/10.5382/sp.23.24
    Shayakubov, T. S., Tsoi, R. V., Golovanov, I. M., et al., 1991. Muruntau Superdeep Well. Sovetskaya Geologiya, 10: 10–20
    Shevkunov, A. G., Guda, A. A., Skorynina, A. A., et al., 2022. Studies of Mineral Composition of Ores of the Kumtor Deposit (Central Tien Shan) by QXRD and XRF Methods. Mineralogy, 8(3): 79–101. https://doi.org/10.35597/313-545x-2022-8-3-5
    Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635–661. https://doi.org/10.1007/s00410-004-0632-9
    Skjerlie, K. P., Johnston, A. D., 1993. Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites. Journal of Petrology, 34(4): 785–815. https://doi.org/10.1093/petrology/34.4.785
    Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311–324. https://doi.org/10.1016/s0012-821x(04)00012-3
    Solomovich, L. I., 1996. K-Ar and Rb-Sr Isotope Analysis of Granites from the South Tien Shan. Kyrgyz Mining and Metallurgical Institute Bulletin, 1: 32–41 (in Russian)
    Solomovich, L. I., Trifonov, B. A., 2002. Postcollisional Granites in the South Tien Shan Variscan Collisional Belt, Kyrgyzstan. Journal of Asian Earth Sciences, 21(1): 7–21. https://doi.org/10.1016/s1367-9120(02)00008-1
    Solomovich, L. I., Trifonov, B. A., 2014. Rapakivi Granites within Phanerozoic Collisional Orogens as a Possible Consequence of Continental Subduction and Following Exhumation of the Precambrian Crust: Evidences from the Permian Jangart Rapakivi in South Tien Shan Collisional Belt, Eastern Kyrgyzstan. Journal of Asian Earth Sciences, 96: 332–343. https://doi.org/10.1016/j.jseaes.2014.09.028
    Solomovich, L. I., Trifonov, B. A., Sabelnikov, S. E., 2012. Geology and Mineralization of the Uchkoshkon Tin Deposit Associated with a Breccia Pipe, Eastern Kyrgyzstan. Ore Geology Reviews, 44: 59–69. https://doi.org/10.1016/j.oregeorev.2011.09.001
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Thompson, M., Potts, P. J., Kane, J. S., et al., 2000. GeoPT5. An Inter-national Proficiency Test for Analytical Geochemistry Laboratories—Report on Round 5. Geostandards Newsletter, 24(1): E1–E28. https://doi.org/10.1111/j.1751-908x.2000.tb00592.x
    Trifonov, B. A., Solomovich, L. I., 2018. Metallogeny of the Saryjaz Ore District, Eastern Kyrgyz Tien Shan. Ore Geology Reviews, 99: 380–397. https://doi.org/10.1016/j.oregeorev.2018.06.017
    Tursungaziev, B. T., Petrov, O. V., Zubkov, V. P., et al., 2008. Geological Map of Kyrgyz Republic, 1 : 500 000. VSEGEI, St. Petersburg
    Vervoort, J. D., Patchett, P. J., Söderlund, U., et al., 2004. Isotopic Composition of Yb and the Determination of Lu Concentrations and Lu/Hf Ratios by Isotope Dilution Using MC-ICPMS. Geochemistry, Geophysics, Geosystems, 5(11): Q11002. https://doi.org/10.1029/2004gc000721
    Vervoort, J. D., Kemp, A. I., Fisher, C. M., 2018. Hf Isotope Constraints on Evolution of the Depleted Mantle and Growth of Continental Crust. AGU Fall Meeting Abstracts. 2018AGUFM. V23A. 07V
    Wang, R. K., Zhao, X. B., Xue, C. J., et al., 2024. Petrogenesis of the U-Rich Permian Akkulen Syenite Intrusion, Tien Shan, Kyrgyzstan: Insights into Its Magmatic Evolution and Geodynamic Setting. International Geology Review, 66(12): 2269–2290. https://doi.org/10.1080/00206814.2023.2278061
    Windley, B. F., Allen, M. B., Zhang, C., et al., 1990. Paleozoic Accretion and Cenozoic Redeformation of the Chinese Tien Shan Range, Central Asia. Geology, 18(2): 128–131. https://doi.org/10.1130/0091-7613(1990)018<0128:paacro>2.3.co;2 doi: 10.1130/0091-7613(1990)018<0128:paacro>2.3.co;2
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Woodhead, J. D., Hergt, J. M., 2007. A Preliminary Appraisal of Seven Natural Zircon Reference Materials for in situ Hf Isotope Deter-mination. Geostandards and Geoanalytical Research, 29(2): 183–195. https://doi.org/10.1111/j.1751-908x.2005.tb00891.x
    Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821x(83)90211-x
    Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339–342. https://doi.org/10.1144/0016-764903-165
    Xue, C. J., Zhao, X. B., Mo, X. X., et al., 2014. Asian Gold Belt in Western Tianshan and Its Dynamic Setting, Metallogenic Control and Exploration. Earth Science Frontiers, 21(5): 128–155. https://doi.org/10.13745/j.esf.2014.05.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views(113) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return