Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Xueyan Yan, Yamin Deng, Xianzhong Ke, Kang Peng, Xianjun Xie, Yiqun Gan, Qinghua Li. Sedimentary Evolution and Mangrove Dynamics in Dongzhai Harbor, Hainan Island since the Late Pleistocene. Journal of Earth Science, 2025, 36(5): 2251-2265. doi: 10.1007/s12583-024-0089-x
Citation: Xueyan Yan, Yamin Deng, Xianzhong Ke, Kang Peng, Xianjun Xie, Yiqun Gan, Qinghua Li. Sedimentary Evolution and Mangrove Dynamics in Dongzhai Harbor, Hainan Island since the Late Pleistocene. Journal of Earth Science, 2025, 36(5): 2251-2265. doi: 10.1007/s12583-024-0089-x

Sedimentary Evolution and Mangrove Dynamics in Dongzhai Harbor, Hainan Island since the Late Pleistocene

doi: 10.1007/s12583-024-0089-x
More Information
  • Corresponding author: Yamin Deng, yamin.deng@cug.edu.cn
  • Received Date: 02 Jul 2024
  • Accepted Date: 08 Oct 2024
  • Available Online: 14 Oct 2025
  • Issue Publish Date: 30 Oct 2025
  • Mangrove wetlands are a vital component of the blue carbon ecosystem, which is of great significance to coastal ecosystems and the global carbon balance. However, mangrove forests worldwide face a combination of natural and anthropogenic threats. This study employs high-resolution sedimentology, geochemistry, and pollen analysis to reveal the sedimentary evolution and vegetation succession in the mangrove wetland of Dongzhai Harbor, Hainan Island. By utilizing multiple proxies, including 14C chronology, δ13C, C/N, and the chemical index of alteration (CIA), we identified three distinct stages in the sedimentary records spanning from the Late Pleistocene to the modern age. Prior to the last glaciation, during the Late Pleistocene, the study area exhibited marine carbonate facies, with an abundance of marine-derived organic matter. During the low sea-level stage of the last glaciation, the strata in the core location were exposed. Following the last glaciation, the study area gradually transitioned into intertidal settings in response to fluctuating sea levels. Since the Middle Holocene or even earlier, sedimentary organic matter continued to accumulate as terrestrial C3 vegetation and mangrove forests established, persisted, and developed. This period witnessed the formation of the current estuarine environment. Simultaneously, the pioneering mangrove species, probably represented by Avicennia, might be initially established, followed by Rhizophora, Bruguiera and Ceriops communities, ultimately being replaced by Kandelia obovata to date. These findings not only fill the gap in the study of paleo-mangroves in China but also contribute valuable knowledge to the global reconstruction of paleo-mangroves, providing crucial reference for the conservation of mangroves and prediction of their responses in the context of climate change.

     

  • Electronic Supplementary Materials: Supplementary materials (Text S1; Figures S1–S2; Tables S1–S4) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0089-x.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Andrews, T. J., Clough, B. F., Muller, G. J., 1984. Photosynthetic Gas Exchange Properties and Carbon Isotope Ratios of Some Mangroves in North Queensland. Physiology and Management of Mangroves. Springer Netherlands, Dordrecht. 15–23. https://doi.org/10.1007/978-94-009-6572-0_2
    Angeli, J. L. F., Rubio, B., Kim, B. S. M., et al., 2019. Environmental Changes Reflected by Sedimentary Geochemistry for the Last One Hundred Years of a Tropical Estuary. Journal of Marine Systems, 189: 36–49. https://doi.org/10.1016/j.jmarsys.2018.09.004
    Babechuk, M. G., Widdowson, M., Kamber, B. S., 2014. Quantifying Chemical Weathering Intensity and Trace Element Release from Two Contrasting Basalt Profiles, Deccan Traps, India. Chemical Geology, 363: 56–75. https://doi.org/10.1016/j.chemgeo.2013.10.027
    Blott, S. J., Pye, K., 2001. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surface Processes and Landforms, 26(11): 1237–1248. https://doi.org/10.1002/esp.261
    Bozi, B. S., Figueiredo, B. L., Rodrigues, E., et al., 2021. Impacts of Sea-Level Changes on Mangroves from Southeastern Brazil during the Holocene and Anthropocene Using a Multi-Proxy Approach. Geomorphology, 390: 107860. https://doi.org/10.1016/j.geomorph.2021.107860
    Cohen, M. C. L., Figueiredo, B. L., Oliveira, N. N., et al., 2020. Impacts of Holocene and Modern Sea-Level Changes on Estuarine Mangroves from Northeastern Brazil. Earth Surface Processes and Landforms, 45(2): 375–392. https://doi.org/10.1002/esp.4737
    Collins, D. S., Nguyen, V. L., Ta, T. K. O., et al., 2021. Sedimentary Evolution of a Delta-Margin Mangrove in Can Gio, Northeastern Mekong River Delta, Vietnam. Marine Geology, 433: 106417. https://doi.org/10.1016/j.margeo.2020.106417
    Cordero-Oviedo, C., Correa-Metrio, A., Urrego, L. E., et al., 2019. Holocene Establishment of Mangrove Forests in the Western Coast of the Gulf of Mexico. CATENA, 180: 212–223. https://doi.org/10.1016/j.catena.2019.04.025
    Costa, E. S., Sá, F., Gomes, L. E. O., et al., 2020. Can Severe Drought Periods Increase Metal Concentrations in Mangrove Sediments? A Case Study in Eastern Brazil. Science of the Total Environment, 748: 142443. https://doi.org/10.1016/j.scitotenv.2020.142443
    Cragg, S. M., Friess, D. A., Gillis, L. G., et al., 2020. Vascular Plants are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. Annual Review of Marine Science, 12: 469–497. https://doi.org/10.1146/annurev-marine-010318-095333
    de Souza, J. R. B., Costa, A. B., de Azevedo, A. E. G., et al., 2013. Carbon and Nitrogen Stable Isotope Compositions of Organic Matter in Marine Sediment Cores from the Abrolhos Region: Indicators of Sources and Preservation. Geochimica Brasiliensis, 27(1): 13–23. https://doi.org/10.5327/z0102-9800201300010002
    Dittmar, T., Hertkorn, N., Kattner, G., et al., 2006. Mangroves, a Major Source of Dissolved Organic Carbon to the Oceans. Global Biogeochemical Cycles, 20(1): 2005GB002570. https://doi.org/10.1029/2005gb002570
    Ellison, J. C., 2008. Long-Term Retrospection on Mangrove Development Using Sediment Cores and Pollen Analysis: A Review. Aquatic Botany, 89(2): 93–104. https://doi.org/10.1016/j.aquabot.2008.02.007
    Etemadi, H., Smoak, J. M., Abbasi, E., 2021. Spatiotemporal Pattern of Degradation in Arid Mangrove Forests of the Northern Persian Gulf. Oceanologia, 63(1): 99–114. https://doi.org/10.1016/j.oceano.2020.10.003
    Figueiredo, B. L., Alves, I. C. C., Cohen, M. C. L., et al., 2021. Climate, Sea-Level, and Anthropogenic Influences on Coastal Vegetation of the Southern Bahia, Northeastern Brazil, during the Mid–Late Holocene. Geomorphology, 394: 107967. https://doi.org/10.1016/j.geomorph.2021.107967
    França, M. C., Alves, I. C. C., Castro, D. F., et al., 2015. A Multi-Proxy Evidence for the Transition from Estuarine Mangroves to Deltaic Freshwater Marshes, Southeastern Brazil, Due to Climatic and Sea-Level Changes during the Late Holocene. CATENA, 128: 155–166. https://doi.org/10.1016/j.catena.2015.02.005
    Friess, D. A., Rogers, K., Lovelock, C. E., et al., 2019. The State of the World's Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44: 89–115. https://doi.org/10.1146/annurev-environ-101718-033302
    Fu, H. F., Zhang, Y. M., Ao, X. H., et al., 2019. High Surface Elevation Gains and Prediction of Mangrove Responses to Sea-Level Rise Based on Dynamic Surface Elevation Changes at Dongzhaigang Bay, China. Geomorphology, 334: 194–202. https://doi.org/10.1016/j.geomorph.2019.03.012
    Ge, C., Wang. Y., Pedersen, T. F., et al., 2007. Variability of Organic Carbon Isotope, Nitrogen Isotope, and C/N in the Wanquan River Estuary, Eastern Hainan Island, China and Its Environment Implications. Quaternary Sciences, 27(5): 845–852 (in Chinese with English Abstract)
    Giri, C., 2021. Recent Advancement in Mangrove Forests Mapping and Monitoring of the World Using Earth Observation Satellite Data. Remote Sensing, 13(4): 563. https://doi.org/10.3390/rs13040563
    Göltenboth, F., Schoppe, S., 2006. Ecology of Insular Southeast Asia. In: Göltenboth, F., Timotius, K. H., Milan, P. P., et al., eds., Ecotones and Special Ecosystems, Elsevier, Amsterdam. 187–214. https://doi.org/10.1016/b978-044452739-4/50011-5
    Grimm, E., 1990. TILIA and TILIAGRAPH: PC Spreadsheet and Graphic Software for Pollen Data. INQUA, Sub-Commission on Data-Handling Methods. Newsletter, 4: 5–7
    Hanebuth, T. J. J., Voris, H. K., Yokoyama, Y., et al., 2011. Formation and Fate of Sedimentary Depocentres on Southeast Asia's Sunda Shelf over the Past Sea-Level Cycle and Biogeographic Implications. Earth-Science Reviews, 104(1/2/3): 92–110. https://doi.org/10.1016/j.earscirev.2010.09.006
    Hardage, K., Street, J., Herrera-Silveira, J. A., et al., 2022. Late Holocene Environmental Change in Celestun Lagoon, Yucatan, Mexico. Journal of Paleolimnology, 67(2): 131–162. https://doi.org/10.1007/s10933-021-00227-4
    He, Z., Feng, X., Chen, Q., et al., 2022. Evolution of Coastal Forests Based on a Full Set of Mangrove Genomes. Nat. Ecol. Evol., 6(6): 738–749. https://doi.org10.1038/s41559-022-01744-9
    Herbeck, L. S., Krumme, U., Andersen, T. J., et al., 2020. Decadal Trends in Mangrove and Pond Aquaculture Cover on Hainan (China) since 1966: Mangrove Loss, Fragmentation and Associated Biogeochemical Changes. Estuarine, Coastal and Shelf Science, 233: 106531. https://doi.org/10.1016/j.ecss.2019.106531
    Hernes, P. J., Benner, R., Cowie, G. L., et al., 2001. Tannin Diagenesis in Mangrove Leaves from a Tropical Estuary: A Novel Molecular Approach. Geochimica et Cosmochimica Acta, 65(18): 3109–3122. https://doi.org/10.1016/s0016-7037(01)00641-x
    Huang, J. H., Lin, G. H., Han, X. G., 2005. Comparative Studies on Water Use Efficiency of Rhizophoraceae Plants Grown in Different Environments. Acta Phytoecologica Sinica, 29(4): 530–536 (in Chinese with English Abstract)
    Huang, X., Wang, X. P., Li, X. Z., et al., 2018. Distribution Pattern and Influencing Factors for Soil Organic Carbon (SOC) in Mangrove Communities at Dongzhaigang, China. Journal of Coastal Research, 342: 434–442. https://doi.org/10.2112/jcoastres-d-16-00207.1
    Hughes, R. H., Hughes, J. S., Bernacsek, G., 1992. A Directory of African Wetlands. IUCN. ISBN 978-2-88032-949-5. https://portals.iucn.org/library/sites/library/files/documents/1992-007.pdf
    Institute of Botany and South China Botanical Garden, Chinese Academy of Sciences (IB and SCIB), 1982. Pollen Morphology of Chinese Tropical and Subtropical Angiosperms. Science Press, Beijing
    Irabien, M. J., Cearreta, A., Gómez-Arozamena, J., et al., 2020. Holocene vs. Anthropocene Sedimentary Records in a Human-Altered Estuary: The Pasaia Case (Northern Spain). Marine Geology, 429: 106292. https://doi.org/10.1016/j.margeo.2020.106292
    Jenoh, E. M., Robert, E. M., Lehmann, I., et al., 2016. Wide Ranging Insect Infestation of the Pioneer Mangrove Sonneratia Alba by Two Insect Species along the Kenyan Coast. PLoS One, 11(5): e0154849. https://doi.org/10.1371/journal.pone.0154849
    Jiang, Y. M., Saito, Y., Ta, T. K. O., et al., 2020. Spatial and Seasonal Variability in Grain Size, Magnetic Susceptibility, and Organic Elemental Geochemistry of Channel-Bed Sediments from the Mekong Delta, Vietnam: Implications for Hydro-Sedimentary Dynamic Processes. Marine Geology, 420: 106089. https://doi.org/10.1016/j.margeo.2019.106089
    Jones, M. C., Wingard, G. L., Stackhouse, B., et al., 2019. Rapid Inundation of Southern Florida Coastline Despite Low Relative Sea-Level Rise Rates during the Late-Holocene. Nat. Commun., 10(1): 3231. https://doi.org10.1038/s41467-019-11138-4
    Khan, N. S., Vane, C. H., Engelhart, S. E., et al., 2019. The Application of δ13C, TOC and C/N Geochemistry of Mangrove Sediments to Reconstruct Holocene Paleoenvironments and Relative Sea Levels, Puerto Rico. Marine Geology, 415: 105963. https://doi.org/10.1016/j.margeo.2019.105963
    Kimeli, A., Cherono, S., Mutisya, B., et al., 2021. Tracing Organic Matter Sources in the Estuarine Sediments of Vanga, Kenya, and Provenance Implications. Estuarine, Coastal and Shelf Science, 263: 107636. https://doi.org/10.1016/j.ecss.2021.107636
    Krauss, K. W., Lovelock, C. E., McKee, K. L., et al., 2008. Environmental Drivers in Mangrove Establishment and Early Development: A Review. Aquatic Botany, 89(2): 105–127. https://doi.org/10.1016/j.aquabot.2007.12.014
    Kristensen, E., Bouillon, S., Dittmar, T., et al., 2008. Organic Carbon Dynamics in Mangrove Ecosystems: A Review. Aquatic Botany, 89(2): 201–219. https://doi.org/10.1016/j.aquabot.2007.12.005
    Lamb, A. L., Wilson, G. P., Leng, M. J., 2006. A Review of Coastal Palaeoclimate and Relative Sea-Level Reconstructions Using δ 13C and C/N Ratios in Organic Material. Earth-Science Reviews, 75(1/2/3/4): 29–57. https://doi.org/10.1016/j.earscirev.2005.10.003
    Li, B., Dong, Y., Li, C., et al., 2003. Distribution and Compound Specific Carbon Isotope of Individual Long Chain Alkanes from Leaves of Kandelis Candel and Ficus Microcarpa and Their Photosynthesis. Journal of Tropical Oceangraphy, 22(1): 62–69 (in Chinese with English Abstract)
    Li, H. L., Xia, Y. Q., Geng, X. L., 2013. Hydrogeology and Hydrochemistry along Two Transects in Mangrove Tidal Marshes at Dongzhaigang National Nature Reserve, Hainan, China. Groundwater in the Coastal Zones of Asia-Pacific. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-5648-9_2
    Li, Z., Li, Z., Zhang, W., et al., 2010. Pollen Assemblages and Sedimentary Environment Evolution in the Coastal Zone in Qinzhou Bay, Guangxi Province. Quaternary Sciences, 30(3): 598–608 (in Chinese with English Abstract)
    Lin, S., Lin, H. Y., 2018. Ecological Research on the Terrestrial Flora Resources in Hainan Dongzhaigang National Natural Reserves and Its Adjacent Rural Area. Chinese Journal of Tropical Crops, 39(2): 398–404 (in Chinese with English Abstract)
    Mao, L. M., Zhang, Y. L., Bi, H., 2006. Modern Pollen Deposits in Coastal Mangrove Swamps from Northern Hainan Island, China. Journal of Coastal Research, 226: 1423–1436. https://doi.org/10.2112/05-0516.1
    Marcott, S. A., Shakun, J. D., Clark, P. U., et al., 2013. A Reconstruction of Regional and Global Temperature for the Past 11 300 Years. Science, 339: 6124. https://www.science.org/doi/10.1126/science.1228026 doi: 10.1126/science.1228026
    Meng, X. W., Xia, P., Li, Z., et al., 2016. Mangrove Degradation and Response to Anthropogenic Disturbance in the Maowei Sea (SW China) since 1926 AD: Mangrove-Derived OM and Pollen. Organic Geochemistry, 98: 166–175. https://doi.org/10.1016/j.orggeochem.2016.06.001
    Meng, X. W., Xia, P., Li, Z., et al., 2017. Mangrove Development and Its Response to Asian Monsoon in the Yingluo Bay (SW China) over the Last 2000 Years. Estuaries and Coasts, 40(2): 540–552. https://doi.org/10.1007/s12237-016-0156-3
    Meyers, P. A., 1994. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chemical Geology, 114(3/4): 289–302. https://doi.org/10.1016/0009-2541(94)90059-0
    Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715–717. https://doi.org/10.1038/299715a0
    Ning, K., Wang, N. A., Yang, Z. J., et al., 2021. Holocene Vegetation History and Environmental Changes Inferred from Pollen Records of a Groundwater Recharge Lake, Badain Jaran Desert, Northwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110538. https://doi.org/10.1016/j.palaeo.2021.110538
    Noël, V., Morin, G., Juillot, F., et al., 2015. Ni Cycling in Mangrove Sediments from New Caledonia. Geochimica et Cosmochimica Acta, 169: 82–98. https://doi.org/10.1016/j.gca.2015.07.024
    Osman, M. B., Tierney, J. E., Zhu, J., et al., 2021. Globally Resolved Surface Temperatures since the Last Glacial Maximum. Nature, 599(7884): 239–244. https://doi.org/10.1038/s41586-021-03984-4
    Ouyang, X. G., Lee, S. Y., Connolly, R. M., 2017. The Role of Root Decomposition in Global Mangrove and Saltmarsh Carbon Budgets. Earth-Science Reviews, 166: 53–63. https://doi.org/10.1016/j.earscirev.2017.01.004
    Overare, B., Azmy, K., Garzanti, E., et al., 2021. Decrypting Geochemical Signatures in Subsurface Niger Delta Sediments: Implication for Provenance, Weathering, and Paleo-Environmental Conditions. Marine and Petroleum Geology, 126: 104879. https://doi.org/10.1016/j.marpetgeo.2020.104879
    Punwong, P., Selby, K., Marchant, R., 2018. Holocene Mangrove Dynamics and Relative Sea-Level Changes along the Tanzanian Coast, East Africa. Estuarine, Coastal and Shelf Science, 212: 105–117. https://doi.org/10.1016/j.ecss.2018.07.004
    Ranjan, R. K., Routh, J., Ramanathan, A., et al., 2011. Elemental and Stable Isotope Records of Organic Matter Input and Its Fate in the Pichavaram Mangrove-Estuarine Sediments (Tamil Nadu, India). Marine Chemistry, 126(1/2/3/4): 163–172. https://doi.org/10.1016/j.marchem.2011.05.005
    Reimer, P. J., Austin, W. E. N., Bard, E., et al., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 Cal kBP). Radiocarbon, 62(4): 725–757. https://doi.org/10.1017/rdc.2020.41
    Rodrigues, E., Cohen, M. C. L., Liu, K. B., et al., 2021. The Effect of Global Warming on the Establishment of Mangroves in Coastal Louisiana during the Holocene. Geomorphology, 381: 107648. https://doi.org/10.1016/j.geomorph.2021.107648
    Sang, S. X., Liu, H. J., Shi, J., 1993. Study of the Transgressive Genesis on the Hainan Mangrove Peats and Its Significance. Marine Geology & Quaternary Geology, 13(4): 57–64 (in Chinese with English Abstract)
    Sarkar, A., Sengupta, S., McArthur, J. M., et al., 2009. Evolution of Ganges-Brahmaputra Western Delta Plain: Clues from Sedimentology and Carbon Isotopes. Quaternary Science Reviews, 28(25/26): 2564–2581. https://doi.org/10.1016/j.quascirev.2009.05.016
    Srivastava, J., Farooqui, A., Seth, P., 2019. Pollen-Vegetation Relationship in Surface Sediments, Coringa Mangrove Ecosystem, India: Palaeoecological Applications. Palynology, 43(3): 451–466. https://doi.org/10.1080/01916122.2018.1458755
    Stuiver, M., Reimer, P. J., 1993. Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon, 35(1): 215–230. https://doi.org/10.1017/s0033822200013904
    Sun, X. J., Li, X., Luo, Y. L., et al., 2000. The Vegetation and Climate at the Last Glaciation on the Emerged Continental Shelf of the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3/4): 301–316. https://doi.org/10.1016/s0031-0182(00)00078-x
    Sun, Y. Y., Xiong, H. X., Lee, M. T., et al., 2021. Geochemical Dynamics and Depositional History from Mangrove Sediments within the Pearl River Estuary. Palaeogeography, Palaeoclimatology, Palaeoecology, 584: 110701. https://doi.org/10.1016/j.palaeo.2021.110701
    Tamura, T., Saito, Y., Sieng, S., et al., 2009. Initiation of the Mekong River Delta at 8 Ka: Evidence from the Sedimentary Succession in the Cambodian Lowland. Quaternary Science Reviews, 28(3/4): 327–344. https://doi.org/10.1016/j.quascirev.2008.10.010
    Thatoi, H., Samantaray, D., Das, S. K., 2016. The genusAvicennia, a Pioneer Group of Dominant Mangrove Plant Species with Potential Medicinal Values: A Review. Frontiers in Life Science, 9(4): 267–291. https://doi.org/10.1080/21553769.2016.1235619
    Wang, F. X., Qian, N. F., Wang, Y. L., et al., 1960. Chinese Plant Pollen (Second Edition). Science Press, Beijing
    Wang, K. F., Jiang, H., Zhang, Y. L., 1990. Quaternary Pollen and Spores in the South China Sea and Coastal Areas. Tongji University Press, Shanghai
    Wang, L., Liu, Y., Ding, F., et al., 2022. Occurrence and Cross-Interface Transfer of Phthalate Esters in the Mangrove Wetland in Dongzhai Harbor, China. Science of the Total Environment, 807(3): 151062. https://doi.org/10.1016/j.scitotenv.2021.151062
    Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial-Interglacial Transitions in Earth History. Earth-Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032
    Wang, W. Q., Zhang, L. T., Zhong, C. R., 2015. Mangrove Plants in Hainan. https://www.undp.org/china/publications/mangrove-plants-hainan
    Wang, W. Z., Meng, X. W., Wang, X. Q., et al., 2019. The Sub-Fossils of Leaf Fragments in Sediments as an Indicator of Mangrove Development in the Yingluo Bay, Guangxi, Southwest China over the Last 130 Years. Acta Oceanologica Sinica, 38(8): 27–34. https://doi.org/10.1007/s13131-018-1221-5
    Wang, Y. J., Jiang, W. Y., Yang, X. X., et al., 2024. Environmental Changes over the Last 39 ka as Reconstructed from Grain Size Characteristics of Sediments in Dongzhaigang Harbor, Hainan Island. Quaternary Sciences, 44(5): 1362–1370 (in Chinese with English Abstract)
    Watanabe, K., Seike, K., Kajihara, R., et al., 2019. Relative Sea-Level Change Regulates Organic Carbon Accumulation in Coastal Habitats. Glob. Chang. Biol., 25(3): 1063–1077. https://doi.org/10.1111/gcb.14558
    Woodroffe, C. D., Rogers, K., McKee, K. L., et al., 2016. Mangrove Sedimentation and Response to Relative Sea-Level Rise. Ann. Rev. Mar. Sci., 8: 243–266. https://doi.org/10.1146/annurev-marine-122414-034025
    Wooller, M. J., Morgan, R., Fowell, S., et al., 2007. A Multiproxy Peat Record of Holocene Mangrove Palaeoecology from Twin Cays, Belize. The Holocene, 17(8): 1129–1139. https://doi.org/10.1177/0959683607082553
    Wu, H., Chang, F., Zhang, H., et al., 2020. Changes of Organic C and N Stable Isotope and Their Environmental Implication during the Past 100 Years of Lake Yilong. China Journal of Ecology, 39(8): 2478–2487 (in Chinese with English Abstract)
    Xia, P., Meng, X. W., Li, Z., et al., 2019. Late Holocene Mangrove Development and Response to Sea Level Change in the Northwestern South China Sea. Acta Oceanologica Sinica, 38(11): 111–120. https://doi.org/10.1007/s13131-019-1359-9
    Xiao, D., Cao, J., Luo, B., et al., 2021. Neoproterozoic Postglacial Paleoenvironment and Hydrocarbon Potential: A Review and New Insights from the Doushantuo Formation Sichuan Basin, China. Earth-Science Reviews, 212: 103453. https://doi.org/10.1016/j.earscirev.2020.103453
    Xu, D., Liao, B. W., Zhu, N. H., et al., 2014. A Primary Analysis on Mangroves Degradation in Dongzhaigang of Hainan Island. Ecological Science, 33(2): 294–300 (in Chinese with English Abstract)
    Yan, L., Xie, X. J., Peng, K., et al., 2021. Sources and Compositional Characterization of Chromophoric Dissolved Organic Matter in a Hainan Tropical Mangrove-Estuary. Journal of Hydrology, 600: 126572. https://doi.org/10.1016/j.jhydrol.2021.126572
    Yan, X. Y., Ke, X. Z., Li, Q. H., et al., 2024. Evolution of the Mangrove Wetland since the Holocene: Current Progress and Future Perspectives. Journal of Earth Science, 35(5): 1669–1678. https://doi.org/10.1007/s12583-022-1756-4
    Yang, T., Su, C., Han, W., et al., 2021. Research Progress and Application Prospect of Carallia brachiata (Lour.) Merr. Journal of Anhui Agricultural Sciences, 49(10): 32–34, 52 (in Chinese with English Abstract)
    Yang, Y., Gao, S., Zhou, L., et al., 2016. Grain Size Distribution of Surface Sediments and Sedimentary Environment in the Lagoon of Xincun, Hainan Island. Haiyang Xuebao, 38(1): 94–105 (in Chinese with English Abstract)
    Yang, Z. J., Yang, Q. H., 2013. Principle and Method of Pollen and Spore Analysis. Geological Press, Beijing
    Yao, Q., Cohen, M., Liu, K. B., et al., 2022. Mangrove Expansion at Poleward Range Limits in North and South America: Late-Holocene Climate Variability or Anthropocene Global Warming? CATENA, 216: 106413. https://doi.org/10.1016/j.catena.2022.106413
    Zeng, S. Q., Wang, J., Fu, X. G., et al., 2015. Geochemical Characteristics, Redox Conditions, and Organic Matter Accumulation of Marine Oil Shale from the Changliang Mountain Area, Northern Tibet, China. Marine and Petroleum Geology, 64: 203–221. https://doi.org/10.1016/j.marpetgeo.2015.02.031
    Zhang, H. N., Zhao, H. M., 1990. Preliminary Investigation of Late Pleistocene to Holocene Sea-Level Changes along the South China Coast. Acta Oceanologica Sinica, 12(5): 620–630 (in Chinese with English Abstract)
    Zhang, J., Meng, X. W., Xia, P., et al., 2020. The Potential of Contribution of Mangrove-Derived Organic Matter in Intertidal Sediments as a Proxy of Mangrove Development in the Northern Beibu Gulf. Acta Oceanologica Sinica, 39(12): 21–29. https://doi.org/10.1007/s13131-020-1640-y
    Zhang, Y. L., Feng, W. Q., Wang, K. F., et al., 2000. The Evolution of Mangrove Forest on the Basis of Palynological Study of Holocene in Hainan Island. Acta Oceanologica Sinica, 22(3): 117–122 (in Chinese with English Abstract)
    Zhang, Y. L., Wang, K. F., Zhang, W. D., 1999. Evolution of Mangrove Forests in Northeastern Hainan Island since Mid-Holocene. Marine Science Bulletin, 18(2): 52–57 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return