Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Ruiqi Shao, Peng Lin, Zhenhao Xu, Fumin Liu, Yilong Liu. Machine Learning of Element Geochemical Anomalies for Adverse Geology Identification in Tunnels. Journal of Earth Science, 2025, 36(3): 1261-1276. doi: 10.1007/s12583-024-0090-4
Citation: Ruiqi Shao, Peng Lin, Zhenhao Xu, Fumin Liu, Yilong Liu. Machine Learning of Element Geochemical Anomalies for Adverse Geology Identification in Tunnels. Journal of Earth Science, 2025, 36(3): 1261-1276. doi: 10.1007/s12583-024-0090-4

Machine Learning of Element Geochemical Anomalies for Adverse Geology Identification in Tunnels

doi: 10.1007/s12583-024-0090-4
More Information
  • Corresponding author: Zhenhao Xu, zhenhao_xu@sdu.edu.cn
  • Received Date: 16 Jan 2024
  • Accepted Date: 09 Oct 2024
  • Available Online: 11 Jun 2025
  • Issue Publish Date: 30 Jun 2025
  • Geological analysis, despite being a long-term method for identifying adverse geology in tunnels, has significant limitations due to its reliance on empirical analysis. The quantitative aspects of geochemical anomalies associated with adverse geology provide a novel strategy for addressing these limitations. However, statistical methods for identifying geochemical anomalies are insufficient for tunnel engineering. In contrast, data mining techniques such as machine learning have demonstrated greater efficacy when applied to geological data. Herein, a method for identifying adverse geology using machine learning of geochemical anomalies is proposed. The method was identified geochemical anomalies in tunnel that were not identified by statistical methods. We by employing robust factor analysis and self-organizing maps to reduce the dimensionality of geochemical data and extract the anomaly elements combination (AEC). Using the AEC sample data, we trained an isolation forest model to identify the multi-element anomalies, successfully. We analyzed the adverse geological features based the multi-element anomalies. This study, therefore, extends the traditional approach of geological analysis in tunnels and demonstrates that machine learning is an effective tool for intelligent geological analysis. Correspondingly, the research offers new insights regarding the adverse geology and the prevention of hazards during the construction of tunnels and underground engineering projects.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abd Elmola, A., Charpentier, D., Buatier, M., et al., 2017. Textural-Chemical Changes and Deformation Conditions Registered by Phyllosilicates in a Fault Zone (Pic de Port Vieux Thrust, Pyrenees). Applied Clay Science, 144: 88–103. https://doi.org/10.1016/j.clay.2017.05.008
    Aitchison, J., 1982. The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society Series B: Statistical Methodology, 44(2): 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x
    Bigdeli, A., Maghsoudi, A., Ghezelbash, R., 2022. Application of Self-Organizing Map (SOM) and k-Means Clustering Algorithms for Portraying Geochemical Anomaly Patterns in Moalleman District, NE Iran. Journal of Geochemical Exploration, 233: 106923. https://doi.org/10.1016/j.gexplo.2021.106923
    Billi, A., Salvini, F., Storti, F., 2003. The Damage Zone-Fault Core Transition in Carbonate Rocks: implications for Fault Growth, Structure and Permeability. Journal of Structural Geology, 25(11): 1779–1794. https://doi.org/10.1016/s0191-8141(03)00037-3
    Birch, J. B., Tukey, J. W., 1978. Exploratory Data Analysis. Journal of the American Statistical Association, 73(364): 885–887. https://doi.org/10.2307/2286300
    Boulton, C., Menzies, C. D., Toy, V. G., et al., 2017. Geochemical and Microstructural Evidence for Interseismic Changes in Fault Zone Permeability and Strength, Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems, 18(1): 238–265. https://doi.org/10.1002/2016gc006588
    Bu, L., Li, S. C., Shi, S. S., et al., 2019. Application of the Comprehensive Forecast System for Water-Bearing Structures in a Karst Tunnel: A Case Study. Bulletin of Engineering Geology and the Environment, 78(1): 357–373. https://doi.org/10.1007/s10064-017-1114-4
    Callahan, O. A., Eichhubl, P., Davatzes, N. C., 2020. Mineral Precipitation as a Mechanism of Fault Core Growth. Journal of Structural Geology, 140: 104156. https://doi.org/10.1016/j.jsg.2020.104156
    Chen, G. X., Cheng, Q. M., Puetz, S., 2023. Special Issue: Data-Driven Discovery in Geosciences: Opportunities and Challenges. Mathematical Geosciences, 55(3): 287–293. https://doi.org/10.1007/s11004-023-10054-0
    Chen, J. P., Xiang, J., Hu, Q., et al., 2016. Quantitative Geoscience and Geological Big Data Development: A Review. Acta Geologica Sinica—English Edition, 90(4): 1490–1515. https://doi.org/10.1111/1755-6724.12782
    Chen, L., Wang, H. T., Xu, X. J., et al., 2020. Geological Exploration Using Integrated Geophysical Methods in Tunnel: A Case. Geotechnical and Geological Engineering, 38(2): 1111–1119. https://doi.org/10.1007/s10706-019-01075-w
    Chen, W. D., Tanaka, H., Huang, H. J., et al., 2007. Fluid Infiltration Associated with Seismic faulting: Examining Chemical and Mineralogical Compositions of Fault Rocks from the Active Chelungpu Fault. Tectonophysics, 443(3/4): 243–254. https://doi.org/10.1016/j.tecto.2007.01.025
    Chen, Y. Q., Zhao, P. D., Chen, J. G., et al., 2001. Application of the Geo-Anomaly Unit Concept in Quantitative Delineation and Assessment of Gold Ore Targets in Western Shandong Uplift Terrain, Eastern China. Natural Resources Research, 10(1): 35–49. https://doi.org/10.1023/a:1011581414877
    Chen, Y. L., Wang, S. C., Zhao, Q. Y., et al., 2021. Detection of Multivariate Geochemical Anomalies Using the Bat-Optimized Isolation Forest and Bat-Optimized Elliptic Envelope Models. Journal of Earth Science, 32(2): 415–426. https://doi.org/10.1007/s12583-021-1402-6
    Chen, Z. Y., Xiong, Y. H., Yin, B. J., et al., 2023. Recognizing Geochemical Patterns Related to Mineralization Using a Self-Organizing Map. Applied Geochemistry, 151: 105621. https://doi.org/10.1016/j.apgeochem.2023.105621
    Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314–324. https://doi.org/10.1016/j.oregeorev.2006.10.002
    Eggert, R. G., Kerrick, D. M., 1981. Metamorphic Equilibria in the Siliceous Dolomite System: 6 kbar Experimental Data and Geologic Implications. Geochimica et Cosmochimica Acta, 45(7): 1039–1049. https://doi.org/10.1016/0016-7037(81)90130-7
    Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003. Isometric Logratio Transformations for Compositional Data Analysis. Mathematical Geology, 35(3): 279–300. https://doi.org/10.1023/a:1023818214614
    Evans, J. P., Chester, F. M., 1995. Fluid-Rock Interaction in Faults of the San Andreas System: Inferences from San Gabriel Fault Rock Geochemistry and Microstructures. Journal of Geophysical Research: Solid Earth, 100(B7): 13007–13020. https://doi.org/10.1029/94JB02625
    Filzmoser, P., Hron, K., Reimann, C., 2009a. Univariate Statistical Analysis of Environmental (Compositional) Data: Problems and Possibilities. Science of the Total Environment, 407(23): 6100–6108. https://doi.org/10.1016/j.scitotenv.2009.08.008
    Filzmoser, P., Hron, K., Reimann, C., 2009b. Principal Component Analysis for Compositional Data with Outliers. Environmetrics, 20(6): 621–632. https://doi.org/10.1002/env.966
    Filzmoser, P., Hron, K., Reimann, C., et al., 2009c. Robust Factor Analysis for Compositional Data. Computers & Geosciences, 35(9): 1854–1861. https://doi.org/10.1016/j.cageo.2008.12.005
    Filzmoser, P., Hron, K., 2009. Correlation Analysis for Compositional Data. Mathematical Geosciences, 41(8): 905–919. https://doi.org/10.1007/s11004-008-9196-y
    Fujimoto, K., Tanaka, H., Higuchi, T., et al., 2001. Alteration and Mass Transfer Inferred from the Hirabayashi GSJ Drill Penetrating the Nojima Fault, Japan. Island Arc, 10(3/4): 401–410. https://doi.org/10.1111/j.1440-1738.2001.00338.x
    Goddard, J. V., Evans, J. P., 1995. Chemical Changes and Fluid-Rock Interaction in Faults of Crystalline Thrust Sheets, Northwestern Wyoming, U. S. A. Journal of Structural Geology, 17(4): 533–547. https://doi.org/10.1016/0191-8141(94)00068-b
    Gonbadi, A. M., Tabatabaei, S. H., Carranza, E. J. M., 2015. Supervised Geochemical Anomaly Detection by Pattern Recognition. Journal of Geochemical Exploration, 157: 81–91. https://doi.org/10.1016/j.gexplo.2015.06.001
    Gong, Q. M., Yin, L. J., Ma, H. S., et al., 2016. TBM Tunnelling under Adverse Geological conditions: An Overview. Tunnelling and Underground Space Technology, 57: 4–17. https://doi.org/10.1016/j.tust.2016.04.002
    Guan, P., Shao, C. F., Jiao, Y. Y., et al., 2024. 3-D Tunnel Seismic Advance Prediction Method with Wide Illumination and High-Precision. Journal of Earth Science, 35(3): 970–979. https://doi.org/10.1007/s12583-021-1503-2
    Hariri, S., Kind, M. C., Brunner, R. J., 2021. Extended Isolation Forest. IEEE Transactions on Knowledge and Data Engineering, 33(4): 1479–1489. https://doi.org/10.1109/tkde.2019.2947676
    Hawkes, H. E., Webb, J. S., 1963. Geochemistry in Mineral Exploration. Soil Science, 95(4): 283. https://doi.org/10.1097/00010694-196304000-00016
    Jia, Z. J., Peng, J. B., Lu, Q. Z., et al., 2022. Formation Mechanism of Ground Fissures Originated from the Hanging Wall of Normal Fault: A Case in Fen-Wei Basin, China. Journal of Earth Science, 33(2): 482–492. https://doi.org/10.1007/s12583-021-1508-x
    Kohonen, T., 1990. The Self-Organizing Map. Proceedings of the IEEE, 78(9): 1464–1480. https://doi.org/10.1109/5.58325
    Li, L. P., Tu, W. F., Shi, S. S., et al., 2016. Mechanism of Water Inrush in Tunnel Construction in Karst Area. Geomatics, Natural Hazards and Risk, 7(Suppl. 1): 35–46. https://doi.org/10.1080/19475705.2016.1181342
    Li, S., Chen, J. P., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327–347. https://doi.org/10.1007/s12583-020-1365-z
    Li, S. C., Li, S. C., Zhang, Q. S., et al., 2010. Predicting Geological Hazards during Tunnel Construction. Journal of Rock Mechanics and Geotechnical Engineering, 2(3): 232–242. https://doi.org/10.3724/sp.j.1235.2010.00232
    Li, S. C., Liu, B., Xu, X. J., et al., 2017. An Overview of Ahead Geological Prospecting in Tunneling. Tunnelling and Underground Space Technology, 63: 69–94. https://doi.org/10.1016/j.tust.2016.12.011
    Li, T., Sun, G. H., Yang, C. P., et al., 2018. Using Self-Organizing Map for Coastal Water Quality classification: Towards a Better Understanding of Patterns and Processes. Science of the Total Environment, 628: 1446–1459. https://doi.org/10.1016/j.scitotenv.2018.02.163
    Lin, P., Shao, R. Q., Xu, Z. H., et al., 2023. Integrated Fault Identification in Granite Tunnel Based on the Analysis of Structural and Mineral Characteristics of Rock Masses: A Case Study. Quarterly Journal of Engineering Geology and Hydrogeology, 56(2): qjegh2022–qjegh2053. https://doi.org/10.1144/qjegh2022-053
    Liu, B., Wang, J. S., Yang, S. L., et al., 2023. Forward Prediction for Tunnel Geology and Classification of Surrounding Rock Based on Seismic Wave Velocity Layered Tomography. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 179–190. https://doi.org/10.1016/j.jrmge.2022.10.004
    Liu, F. T., Ting, K. M., Zhou, Z. -H., 2012. Isolation-Based Anomaly Detection. ACM Transactions on Knowledge Discovery from Data, 6(1): 1–39. https://doi.org/10.1145/2133360.2133363
    López-Moro, F. J., 2012. EASYGRESGRANT—A Microsoft Excel Spreadsheet to Quantify Volume Changes and to Perform Mass-Balance Modeling in Metasomatic Systems. Computers & Geosciences, 39: 191–196. https://doi.org/10.1016/j.cageo.2011.07.014
    Luo, Z. J., Zuo, R. G., Xiong, Y. H., et al., 2021. Detection of Geochemical Anomalies Related to Mineralization Using the GANomaly Network. Applied Geochemistry, 131: 105043. https://doi.org/10.1016/j.apgeochem.2021.105043
    Maruyama, S., Liou, J. G., 1987. Clinopyroxene—A Mineral Telescoped through the Processes of Blueschist Facies Metamorphism. Journal of Metamorphic Geology, 5(4): 529–552. https://doi.org/10.1111/j.1525-1314.1987.tb00400.x
    Morishita, T., Soe, H. M., Htay, H., et al., 2023. Origin and Evolution of Ultramafic Rocks along the Sagaing Fault, Myanmar. Journal of Earth Science, 34(1): 122–132. https://doi.org/10.1007/s12583-021-1435-x
    Niwa, M., Shimada, K., Ishimaru, T., et al., 2019. Identification of Capable Faults Using Fault Rock Geochemical signatures: A Case Study from Offset Granitic Bedrock on the Tsuruga Peninsula, Central Japan. Engineering Geology, 260: 105235. https://doi.org/10.1016/j.enggeo.2019.105235
    Park, H. S., Jun, C. H., 2009. A Simple and Fast Algorithm for K-Medoids Clustering. Expert Systems with Applications, 36(2): 3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039
    Parsa, M., Sadeghi, M., Grunsky, E., 2022. Innovative Methods Applied to Processing and Interpreting Geochemical Data. Journal of Geochemical Exploration, 237: 106983. https://doi.org/10.1016/j.gexplo.2022.106983
    Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150: 121–138. https://doi.org/10.1016/j.earscirev.2015.07.011
    Schleicher, A. M., Tourscher, S. N., van der Pluijm, B. A., et al., 2009. Constraints on Mineralization, Fluid-Rock Interaction, and Mass Transfer during Faulting at 2–3 km Depth from the SAFOD Drill Hole. Journal of Geophysical Research: Solid Earth, 114(B4): B04202. https://doi.org/10.1029/2008jb006092
    Sinclair, A. J., 1974. Selection of Threshold Values in Geochemical Data Using Probability Graphs. Journal of Geochemical Exploration, 3(2): 129–149. https://doi.org/10.1016/0375-6742(74)90030-2
    Shao, R. Q., Lin, P., Xu, Z. H., 2024a. Integrated Natural Language Processing Method for Text Mining and Visualization of Underground Engineering Text Reports. Automation in Construction, 166: 105636. https://doi.org/10.1016/j.autcon.2024.105636
    Shao, R. Q., Xu, Z. H., Lin, P., 2024b. Cataclastic Deformation and Alteration Induced Fault Water inrush: Cross Effect, Hazard Characteristics and Identification Method. Tunnelling and Underground Space Technology, 153: 105968. https://doi.org/10.1016/j.tust.2024.105968
    Sun, Y., Shen, X. Z., Liu, S. H., 1984. Preliminary Discussion on Geochemical Features of Fault Structures. Geotectonica et Metallogenia, 8(1): 29–44. https://doi.org/10.16539/j.ddgzyckx.1984.01.006 (in Chinese with English Abstract)
    Susto, G. A., Beghi, A., McLoone, S., 2017. Anomaly Detection through On-Line Isolation Forest: An Application to Plasma Etching. In: 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). May 15–18, 2017, Saratoga. Springs, NY, USA. IEEE: 89–94. https://doi.org/10.1109/asmc.2017.7969205
    Tobiszewski, M., Tsakovski, S., Simeonov, V., et al., 2012. Chlorinated Solvents in a Petrochemical Wastewater Treatment Plant: An Assessment of Their Removal Using Self-Organising Maps. Chemosphere, 87(8): 962–968. https://doi.org/10.1016/j.chemosphere.2012.01.057
    Toshniwal, A., Mahesh, K., Jayashree, R., 2020. Overview of Anomaly Detection Techniques in Machine Learning. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), IEEE. Oct. 7–9, 2020. Palladam, India. 808–815. https://doi.org/10.1109/i-smac49090.2020.9243329
    Wang, J., Zhou, Y. Z., Xiao, F., 2020. Identification of Multi-Element Geochemical Anomalies Using Unsupervised Machine Learning algorithms: A Case Study from Ag-Pb-Zn Deposits in North-Western Zhejiang, China. Applied Geochemistry, 120: 104679. https://doi.org/10.1016/j.apgeochem.2020.104679
    Wang, J., Zuo, R. G., Caers, J., 2017. Discovering Geochemical Patterns by Factor-Based Cluster Analysis. Journal of Geochemical Exploration, 181: 106–115. https://doi.org/10.1016/j.gexplo.2017.07.006
    Wikipedia, 2023. 最大隧道掘进机列表. https://zh.wikipedia.org/w/index.php?title=最大隧道掘进机列表&oldid=77111015
    Williams, R. T., Rowe, C. D., Okamoto, K., et al., 2021. How Fault Rocks Form and Evolve in the Shallow San Andreas Fault. Geochemistry, Geophysics, Geosystems, 22(11): e2021GC010092. https://doi.org/10.1029/2021gc010092
    Xiong, Y. H., Zuo, R. G., 2016. Recognition of Geochemical Anomalies Using a Deep Autoencoder Network. Computers & Geosciences, 86: 75–82. https://doi.org/10.1016/j.cageo.2015.10.006
    Xu, Z. H., Wang, W. Y., Lin, P., et al., 2021a. Hard-Rock TBM Jamming Subject to Adverse Geological conditions: Influencing Factor, Hazard Mode and a Case Study of Gaoligongshan Tunnel. Tunnelling and Underground Space Technology, 108: 103683. https://doi.org/10.1016/j.tust.2020.103683
    Xu, Z. H., Liu, F. M., Lin, P., et al., 2021b. Non-Destructive, in-situ, Fast Identification of Adverse Geology in Tunnels Based on Anomalies Analysis of Element Content. Tunnelling and Underground Space Technology, 118: 104146. https://doi.org/10.1016/j.tust.2021.104146
    Xu, Z. H., Yu, T. F., Lin, P., et al., 2023a. Adverse Geology Identification through Mineral Anomaly Analysis during Tunneling: Methodology and Case Study. Engineering, 27: 150–160. https://doi.org/10.1016/j.eng.2022.09.013
    Xu, Z. H., Yu, T. F., Lin, P., et al., 2023b. Anomalous Patterns of Clay Minerals in Fault Zones. Engineering Geology, 325: 107279. https://doi.org/10.1016/j.enggeo.2023.107279
    Xu, Z. H., Yu, T. F., Li, S. C., et al., 2025. Intelligent Identification of Lithology and Adverse geology: A State-of-the-Art Review. Smart Underground Engineering. https://doi.org/10.1016/j.sue.2025.04.001
    Zhang, W. S., Jiao, Y. Y., Zhang, G. H., et al., 2022. Analysis of the Mechanism of Water Inrush Geohazards in Deep-Buried Tunnels under the Complex Geological Environment of Karst Cave-Fractured Zone. Journal of Earth Science, 33(5): 1204–1218. https://doi.org/10.1007/s12583-022-1619-z
    Zhang, Z. Y., 1983. Dynamic Differentiation and Association of Chemical Elements in Fault Zones. Geochimica, 1: 62–72 (in Chinese with English Abstract)
    Zhao, P. D., Chi, S. D., 1991. A Preliminary View on Geological Anomaly. Earth Science—Journal of China University of Geosciences, 16(3): 241–248 (in Chinese with English Abstract)
    Zhao, P. D., 1992. Theories, Principles, and Methods for the Statistical Prediction of Mineral Deposits. Mathematical Geology, 24(6): 589–595. https://doi.org/10.1007/bf00894226
    Zhao, P. D., Cheng, Q. M., Xia, Q. L., 2008. Quantitative Prediction for Deep Mineral Exploration. Journal of China University of Geosciences, 19(4): 309–318. https://doi.org/10.1016/s1002-0705(08)60063-1
    Zuo, R. G., Wang, J., Xiong, Y. H., et al., 2021. The Processing Methods of Geochemical Exploration Data: Past, Present, and Future. Applied Geochemistry, 132: 105072. https://doi.org/10.1016/j.apgeochem.2021.105072
    Zuo, R. G., Xia, Q. L., Wang, H. C., 2013. Compositional Data Analysis in the Study of Integrated Geochemical Anomalies Associated with Mineralization. Applied Geochemistry, 28: 202–211. https://doi.org/10.1016/j.apgeochem.2012.10.031
    Zuo, R. G., Xiong, Y. H., 2018. Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods. Natural Resources Research, 27(1): 5–13.https://doi.org/10.1007/s11053-017-9357-0 doi: 10.1007/s11053-1-9357-0
    Zuo, R. G., Xiong, Y. H., Wang, J., et al., 2019. Deep Learning and Its Application in Geochemical Mapping. Earth-Science Reviews, 192: 1–14. https://doi.org/10.1016/j.earscirev.2019.02.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(7) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return