Citation: | Ruiqi Shao, Peng Lin, Zhenhao Xu, Fumin Liu, Yilong Liu. Machine Learning of Element Geochemical Anomalies for Adverse Geology Identification in Tunnels. Journal of Earth Science, 2025, 36(3): 1261-1276. doi: 10.1007/s12583-024-0090-4 |
Geological analysis, despite being a long-term method for identifying adverse geology in tunnels, has significant limitations due to its reliance on empirical analysis. The quantitative aspects of geochemical anomalies associated with adverse geology provide a novel strategy for addressing these limitations. However, statistical methods for identifying geochemical anomalies are insufficient for tunnel engineering. In contrast, data mining techniques such as machine learning have demonstrated greater efficacy when applied to geological data. Herein, a method for identifying adverse geology using machine learning of geochemical anomalies is proposed. The method was identified geochemical anomalies in tunnel that were not identified by statistical methods. We by employing robust factor analysis and self-organizing maps to reduce the dimensionality of geochemical data and extract the anomaly elements combination (AEC). Using the AEC sample data, we trained an isolation forest model to identify the multi-element anomalies, successfully. We analyzed the adverse geological features based the multi-element anomalies. This study, therefore, extends the traditional approach of geological analysis in tunnels and demonstrates that machine learning is an effective tool for intelligent geological analysis. Correspondingly, the research offers new insights regarding the adverse geology and the prevention of hazards during the construction of tunnels and underground engineering projects.
Abd Elmola, A., Charpentier, D., Buatier, M., et al., 2017. Textural-Chemical Changes and Deformation Conditions Registered by Phyllosilicates in a Fault Zone (Pic de Port Vieux Thrust, Pyrenees). Applied Clay Science, 144: 88–103. https://doi.org/10.1016/j.clay.2017.05.008 |
Aitchison, J., 1982. The Statistical Analysis of Compositional Data. Journal of the Royal Statistical Society Series B: Statistical Methodology, 44(2): 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x |
Bigdeli, A., Maghsoudi, A., Ghezelbash, R., 2022. Application of Self-Organizing Map (SOM) and k-Means Clustering Algorithms for Portraying Geochemical Anomaly Patterns in Moalleman District, NE Iran. Journal of Geochemical Exploration, 233: 106923. https://doi.org/10.1016/j.gexplo.2021.106923 |
Billi, A., Salvini, F., Storti, F., 2003. The Damage Zone-Fault Core Transition in Carbonate Rocks: implications for Fault Growth, Structure and Permeability. Journal of Structural Geology, 25(11): 1779–1794. https://doi.org/10.1016/s0191-8141(03)00037-3 |
Birch, J. B., Tukey, J. W., 1978. Exploratory Data Analysis. Journal of the American Statistical Association, 73(364): 885–887. https://doi.org/10.2307/2286300 |
Boulton, C., Menzies, C. D., Toy, V. G., et al., 2017. Geochemical and Microstructural Evidence for Interseismic Changes in Fault Zone Permeability and Strength, Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems, 18(1): 238–265. https://doi.org/10.1002/2016gc006588 |
Bu, L., Li, S. C., Shi, S. S., et al., 2019. Application of the Comprehensive Forecast System for Water-Bearing Structures in a Karst Tunnel: A Case Study. Bulletin of Engineering Geology and the Environment, 78(1): 357–373. https://doi.org/10.1007/s10064-017-1114-4 |
Callahan, O. A., Eichhubl, P., Davatzes, N. C., 2020. Mineral Precipitation as a Mechanism of Fault Core Growth. Journal of Structural Geology, 140: 104156. https://doi.org/10.1016/j.jsg.2020.104156 |
Chen, G. X., Cheng, Q. M., Puetz, S., 2023. Special Issue: Data-Driven Discovery in Geosciences: Opportunities and Challenges. Mathematical Geosciences, 55(3): 287–293. https://doi.org/10.1007/s11004-023-10054-0 |
Chen, J. P., Xiang, J., Hu, Q., et al., 2016. Quantitative Geoscience and Geological Big Data Development: A Review. Acta Geologica Sinica—English Edition, 90(4): 1490–1515. https://doi.org/10.1111/1755-6724.12782 |
Chen, L., Wang, H. T., Xu, X. J., et al., 2020. Geological Exploration Using Integrated Geophysical Methods in Tunnel: A Case. Geotechnical and Geological Engineering, 38(2): 1111–1119. https://doi.org/10.1007/s10706-019-01075-w |
Chen, W. D., Tanaka, H., Huang, H. J., et al., 2007. Fluid Infiltration Associated with Seismic faulting: Examining Chemical and Mineralogical Compositions of Fault Rocks from the Active Chelungpu Fault. Tectonophysics, 443(3/4): 243–254. https://doi.org/10.1016/j.tecto.2007.01.025 |
Chen, Y. Q., Zhao, P. D., Chen, J. G., et al., 2001. Application of the Geo-Anomaly Unit Concept in Quantitative Delineation and Assessment of Gold Ore Targets in Western Shandong Uplift Terrain, Eastern China. Natural Resources Research, 10(1): 35–49. https://doi.org/10.1023/a:1011581414877 |
Chen, Y. L., Wang, S. C., Zhao, Q. Y., et al., 2021. Detection of Multivariate Geochemical Anomalies Using the Bat-Optimized Isolation Forest and Bat-Optimized Elliptic Envelope Models. Journal of Earth Science, 32(2): 415–426. https://doi.org/10.1007/s12583-021-1402-6 |
Chen, Z. Y., Xiong, Y. H., Yin, B. J., et al., 2023. Recognizing Geochemical Patterns Related to Mineralization Using a Self-Organizing Map. Applied Geochemistry, 151: 105621. https://doi.org/10.1016/j.apgeochem.2023.105621 |
Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314–324. https://doi.org/10.1016/j.oregeorev.2006.10.002 |
Eggert, R. G., Kerrick, D. M., 1981. Metamorphic Equilibria in the Siliceous Dolomite System: 6 kbar Experimental Data and Geologic Implications. Geochimica et Cosmochimica Acta, 45(7): 1039–1049. https://doi.org/10.1016/0016-7037(81)90130-7 |
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003. Isometric Logratio Transformations for Compositional Data Analysis. Mathematical Geology, 35(3): 279–300. https://doi.org/10.1023/a:1023818214614 |
Evans, J. P., Chester, F. M., 1995. Fluid-Rock Interaction in Faults of the San Andreas System: Inferences from San Gabriel Fault Rock Geochemistry and Microstructures. Journal of Geophysical Research: Solid Earth, 100(B7): 13007–13020. https://doi.org/10.1029/94JB02625 |
Filzmoser, P., Hron, K., Reimann, C., 2009a. Univariate Statistical Analysis of Environmental (Compositional) Data: Problems and Possibilities. Science of the Total Environment, 407(23): 6100–6108. https://doi.org/10.1016/j.scitotenv.2009.08.008 |
Filzmoser, P., Hron, K., Reimann, C., 2009b. Principal Component Analysis for Compositional Data with Outliers. Environmetrics, 20(6): 621–632. https://doi.org/10.1002/env.966 |
Filzmoser, P., Hron, K., Reimann, C., et al., 2009c. Robust Factor Analysis for Compositional Data. Computers & Geosciences, 35(9): 1854–1861. https://doi.org/10.1016/j.cageo.2008.12.005 |
Filzmoser, P., Hron, K., 2009. Correlation Analysis for Compositional Data. Mathematical Geosciences, 41(8): 905–919. https://doi.org/10.1007/s11004-008-9196-y |
Fujimoto, K., Tanaka, H., Higuchi, T., et al., 2001. Alteration and Mass Transfer Inferred from the Hirabayashi GSJ Drill Penetrating the Nojima Fault, Japan. Island Arc, 10(3/4): 401–410. https://doi.org/10.1111/j.1440-1738.2001.00338.x |
Goddard, J. V., Evans, J. P., 1995. Chemical Changes and Fluid-Rock Interaction in Faults of Crystalline Thrust Sheets, Northwestern Wyoming, U. S. A. Journal of Structural Geology, 17(4): 533–547. https://doi.org/10.1016/0191-8141(94)00068-b |
Gonbadi, A. M., Tabatabaei, S. H., Carranza, E. J. M., 2015. Supervised Geochemical Anomaly Detection by Pattern Recognition. Journal of Geochemical Exploration, 157: 81–91. https://doi.org/10.1016/j.gexplo.2015.06.001 |
Gong, Q. M., Yin, L. J., Ma, H. S., et al., 2016. TBM Tunnelling under Adverse Geological conditions: An Overview. Tunnelling and Underground Space Technology, 57: 4–17. https://doi.org/10.1016/j.tust.2016.04.002 |
Guan, P., Shao, C. F., Jiao, Y. Y., et al., 2024. 3-D Tunnel Seismic Advance Prediction Method with Wide Illumination and High-Precision. Journal of Earth Science, 35(3): 970–979. https://doi.org/10.1007/s12583-021-1503-2 |
Hariri, S., Kind, M. C., Brunner, R. J., 2021. Extended Isolation Forest. IEEE Transactions on Knowledge and Data Engineering, 33(4): 1479–1489. https://doi.org/10.1109/tkde.2019.2947676 |
Hawkes, H. E., Webb, J. S., 1963. Geochemistry in Mineral Exploration. Soil Science, 95(4): 283. https://doi.org/10.1097/00010694-196304000-00016 |
Jia, Z. J., Peng, J. B., Lu, Q. Z., et al., 2022. Formation Mechanism of Ground Fissures Originated from the Hanging Wall of Normal Fault: A Case in Fen-Wei Basin, China. Journal of Earth Science, 33(2): 482–492. https://doi.org/10.1007/s12583-021-1508-x |
Kohonen, T., 1990. The Self-Organizing Map. Proceedings of the IEEE, 78(9): 1464–1480. https://doi.org/10.1109/5.58325 |
Li, L. P., Tu, W. F., Shi, S. S., et al., 2016. Mechanism of Water Inrush in Tunnel Construction in Karst Area. Geomatics, Natural Hazards and Risk, 7(Suppl. 1): 35–46. https://doi.org/10.1080/19475705.2016.1181342 |
Li, S., Chen, J. P., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327–347. https://doi.org/10.1007/s12583-020-1365-z |
Li, S. C., Li, S. C., Zhang, Q. S., et al., 2010. Predicting Geological Hazards during Tunnel Construction. Journal of Rock Mechanics and Geotechnical Engineering, 2(3): 232–242. https://doi.org/10.3724/sp.j.1235.2010.00232 |
Li, S. C., Liu, B., Xu, X. J., et al., 2017. An Overview of Ahead Geological Prospecting in Tunneling. Tunnelling and Underground Space Technology, 63: 69–94. https://doi.org/10.1016/j.tust.2016.12.011 |
Li, T., Sun, G. H., Yang, C. P., et al., 2018. Using Self-Organizing Map for Coastal Water Quality classification: Towards a Better Understanding of Patterns and Processes. Science of the Total Environment, 628: 1446–1459. https://doi.org/10.1016/j.scitotenv.2018.02.163 |
Lin, P., Shao, R. Q., Xu, Z. H., et al., 2023. Integrated Fault Identification in Granite Tunnel Based on the Analysis of Structural and Mineral Characteristics of Rock Masses: A Case Study. Quarterly Journal of Engineering Geology and Hydrogeology, 56(2): qjegh2022–qjegh2053. https://doi.org/10.1144/qjegh2022-053 |
Liu, B., Wang, J. S., Yang, S. L., et al., 2023. Forward Prediction for Tunnel Geology and Classification of Surrounding Rock Based on Seismic Wave Velocity Layered Tomography. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 179–190. https://doi.org/10.1016/j.jrmge.2022.10.004 |
Liu, F. T., Ting, K. M., Zhou, Z. -H., 2012. Isolation-Based Anomaly Detection. ACM Transactions on Knowledge Discovery from Data, 6(1): 1–39. https://doi.org/10.1145/2133360.2133363 |
López-Moro, F. J., 2012. EASYGRESGRANT—A Microsoft Excel Spreadsheet to Quantify Volume Changes and to Perform Mass-Balance Modeling in Metasomatic Systems. Computers & Geosciences, 39: 191–196. https://doi.org/10.1016/j.cageo.2011.07.014 |
Luo, Z. J., Zuo, R. G., Xiong, Y. H., et al., 2021. Detection of Geochemical Anomalies Related to Mineralization Using the GANomaly Network. Applied Geochemistry, 131: 105043. https://doi.org/10.1016/j.apgeochem.2021.105043 |
Maruyama, S., Liou, J. G., 1987. Clinopyroxene—A Mineral Telescoped through the Processes of Blueschist Facies Metamorphism. Journal of Metamorphic Geology, 5(4): 529–552. https://doi.org/10.1111/j.1525-1314.1987.tb00400.x |
Morishita, T., Soe, H. M., Htay, H., et al., 2023. Origin and Evolution of Ultramafic Rocks along the Sagaing Fault, Myanmar. Journal of Earth Science, 34(1): 122–132. https://doi.org/10.1007/s12583-021-1435-x |
Niwa, M., Shimada, K., Ishimaru, T., et al., 2019. Identification of Capable Faults Using Fault Rock Geochemical signatures: A Case Study from Offset Granitic Bedrock on the Tsuruga Peninsula, Central Japan. Engineering Geology, 260: 105235. https://doi.org/10.1016/j.enggeo.2019.105235 |
Park, H. S., Jun, C. H., 2009. A Simple and Fast Algorithm for K-Medoids Clustering. Expert Systems with Applications, 36(2): 3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039 |
Parsa, M., Sadeghi, M., Grunsky, E., 2022. Innovative Methods Applied to Processing and Interpreting Geochemical Data. Journal of Geochemical Exploration, 237: 106983. https://doi.org/10.1016/j.gexplo.2022.106983 |
Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150: 121–138. https://doi.org/10.1016/j.earscirev.2015.07.011 |
Schleicher, A. M., Tourscher, S. N., van der Pluijm, B. A., et al., 2009. Constraints on Mineralization, Fluid-Rock Interaction, and Mass Transfer during Faulting at 2–3 km Depth from the SAFOD Drill Hole. Journal of Geophysical Research: Solid Earth, 114(B4): B04202. https://doi.org/10.1029/2008jb006092 |
Sinclair, A. J., 1974. Selection of Threshold Values in Geochemical Data Using Probability Graphs. Journal of Geochemical Exploration, 3(2): 129–149. https://doi.org/10.1016/0375-6742(74)90030-2 |
Shao, R. Q., Lin, P., Xu, Z. H., 2024a. Integrated Natural Language Processing Method for Text Mining and Visualization of Underground Engineering Text Reports. Automation in Construction, 166: 105636. https://doi.org/10.1016/j.autcon.2024.105636 |
Shao, R. Q., Xu, Z. H., Lin, P., 2024b. Cataclastic Deformation and Alteration Induced Fault Water inrush: Cross Effect, Hazard Characteristics and Identification Method. Tunnelling and Underground Space Technology, 153: 105968. https://doi.org/10.1016/j.tust.2024.105968 |
Sun, Y., Shen, X. Z., Liu, S. H., 1984. Preliminary Discussion on Geochemical Features of Fault Structures. Geotectonica et Metallogenia, 8(1): 29–44. https://doi.org/10.16539/j.ddgzyckx.1984.01.006 (in Chinese with English Abstract) |
Susto, G. A., Beghi, A., McLoone, S., 2017. Anomaly Detection through On-Line Isolation Forest: An Application to Plasma Etching. In: 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). May 15–18, 2017, Saratoga. Springs, NY, USA. IEEE: 89–94. |
Tobiszewski, M., Tsakovski, S., Simeonov, V., et al., 2012. Chlorinated Solvents in a Petrochemical Wastewater Treatment Plant: An Assessment of Their Removal Using Self-Organising Maps. Chemosphere, 87(8): 962–968. https://doi.org/10.1016/j.chemosphere.2012.01.057 |
Toshniwal, A., Mahesh, K., Jayashree, R., 2020. Overview of Anomaly Detection Techniques in Machine Learning. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), IEEE. Oct. 7–9, 2020. Palladam, India. 808–815. |
Wang, J., Zhou, Y. Z., Xiao, F., 2020. Identification of Multi-Element Geochemical Anomalies Using Unsupervised Machine Learning algorithms: A Case Study from Ag-Pb-Zn Deposits in North-Western Zhejiang, China. Applied Geochemistry, 120: 104679. https://doi.org/10.1016/j.apgeochem.2020.104679 |
Wang, J., Zuo, R. G., Caers, J., 2017. Discovering Geochemical Patterns by Factor-Based Cluster Analysis. Journal of Geochemical Exploration, 181: 106–115. https://doi.org/10.1016/j.gexplo.2017.07.006 |
Wikipedia, 2023. 最大隧道掘进机列表. |
Williams, R. T., Rowe, C. D., Okamoto, K., et al., 2021. How Fault Rocks Form and Evolve in the Shallow San Andreas Fault. Geochemistry, Geophysics, Geosystems, 22(11): e2021GC010092. https://doi.org/10.1029/2021gc010092 |
Xiong, Y. H., Zuo, R. G., 2016. Recognition of Geochemical Anomalies Using a Deep Autoencoder Network. Computers & Geosciences, 86: 75–82. https://doi.org/10.1016/j.cageo.2015.10.006 |
Xu, Z. H., Wang, W. Y., Lin, P., et al., 2021a. Hard-Rock TBM Jamming Subject to Adverse Geological conditions: Influencing Factor, Hazard Mode and a Case Study of Gaoligongshan Tunnel. Tunnelling and Underground Space Technology, 108: 103683. https://doi.org/10.1016/j.tust.2020.103683 |
Xu, Z. H., Liu, F. M., Lin, P., et al., 2021b. Non-Destructive, in-situ, Fast Identification of Adverse Geology in Tunnels Based on Anomalies Analysis of Element Content. Tunnelling and Underground Space Technology, 118: 104146. https://doi.org/10.1016/j.tust.2021.104146 |
Xu, Z. H., Yu, T. F., Lin, P., et al., 2023a. Adverse Geology Identification through Mineral Anomaly Analysis during Tunneling: Methodology and Case Study. Engineering, 27: 150–160. https://doi.org/10.1016/j.eng.2022.09.013 |
Xu, Z. H., Yu, T. F., Lin, P., et al., 2023b. Anomalous Patterns of Clay Minerals in Fault Zones. Engineering Geology, 325: 107279. https://doi.org/10.1016/j.enggeo.2023.107279 |
Xu, Z. H., Yu, T. F., Li, S. C., et al., 2025. Intelligent Identification of Lithology and Adverse geology: A State-of-the-Art Review. Smart Underground Engineering. https://doi.org/10.1016/j.sue.2025.04.001 |
Zhang, W. S., Jiao, Y. Y., Zhang, G. H., et al., 2022. Analysis of the Mechanism of Water Inrush Geohazards in Deep-Buried Tunnels under the Complex Geological Environment of Karst Cave-Fractured Zone. Journal of Earth Science, 33(5): 1204–1218. https://doi.org/10.1007/s12583-022-1619-z |
Zhang, Z. Y., 1983. Dynamic Differentiation and Association of Chemical Elements in Fault Zones. Geochimica, 1: 62–72 (in Chinese with English Abstract) |
Zhao, P. D., Chi, S. D., 1991. A Preliminary View on Geological Anomaly. Earth Science—Journal of China University of Geosciences, 16(3): 241–248 (in Chinese with English Abstract) |
Zhao, P. D., 1992. Theories, Principles, and Methods for the Statistical Prediction of Mineral Deposits. Mathematical Geology, 24(6): 589–595. https://doi.org/10.1007/bf00894226 |
Zhao, P. D., Cheng, Q. M., Xia, Q. L., 2008. Quantitative Prediction for Deep Mineral Exploration. Journal of China University of Geosciences, 19(4): 309–318. https://doi.org/10.1016/s1002-0705(08)60063-1 |
Zuo, R. G., Wang, J., Xiong, Y. H., et al., 2021. The Processing Methods of Geochemical Exploration Data: Past, Present, and Future. Applied Geochemistry, 132: 105072. https://doi.org/10.1016/j.apgeochem.2021.105072 |
Zuo, R. G., Xia, Q. L., Wang, H. C., 2013. Compositional Data Analysis in the Study of Integrated Geochemical Anomalies Associated with Mineralization. Applied Geochemistry, 28: 202–211. https://doi.org/10.1016/j.apgeochem.2012.10.031 |
Zuo, R. G., Xiong, Y. H., 2018. Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods. Natural Resources Research, 27(1): 5–13.https://doi.org/10.1007/s11053-017-9357-0 doi: 10.1007/s11053-1-9357-0 |
Zuo, R. G., Xiong, Y. H., Wang, J., et al., 2019. Deep Learning and Its Application in Geochemical Mapping. Earth-Science Reviews, 192: 1–14. https://doi.org/10.1016/j.earscirev.2019.02.023 |