Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Tao Hong, Zhang Zhang, Zeli Jiang, Mingxi Hu, Pengli Jiao. Coupled Dissolution-Precipitation Mineralized Process in Bailongshan Li Deposit, West Kunlun (NW China), Evidenced by the Mineralogy of Cassiterite, Columbite-Group Minerals and Elbaite. Journal of Earth Science, 2025, 36(3): 1033-1050. doi: 10.1007/s12583-024-0096-y
Citation: Tao Hong, Zhang Zhang, Zeli Jiang, Mingxi Hu, Pengli Jiao. Coupled Dissolution-Precipitation Mineralized Process in Bailongshan Li Deposit, West Kunlun (NW China), Evidenced by the Mineralogy of Cassiterite, Columbite-Group Minerals and Elbaite. Journal of Earth Science, 2025, 36(3): 1033-1050. doi: 10.1007/s12583-024-0096-y

Coupled Dissolution-Precipitation Mineralized Process in Bailongshan Li Deposit, West Kunlun (NW China), Evidenced by the Mineralogy of Cassiterite, Columbite-Group Minerals and Elbaite

doi: 10.1007/s12583-024-0096-y
More Information
  • Corresponding author: Tao Hong, hongt5@mail.sysu.edu.cn
  • Received Date: 14 Jun 2024
  • Accepted Date: 15 Oct 2024
  • Available Online: 11 Jun 2025
  • Issue Publish Date: 30 Jun 2025
  • Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites. This mechanism involves the simultaneous dissolution of primary mineral phases and the precipitation of secondary phases, driven by changes in the chemical environment, often mediated by hydrothermal fluids. The Bailongshan Li deposit, located in the West Kunlun region of northwest China, is a significant geological formation known for its rich lithium content and associated rare metals such as tantalum, niobium, and tin. This study investigates the coupled dissolution-precipitation processes that have played a crucial role in the mineralization of this deposit, focusing on key minerals, including cassiterite (Cst), columbite-group minerals (CGM), and elbaite (Elb). Using a combination of petrographic analysis, back-scattered electron (BSE) imaging, cathodoluminescence (CL) imaging, and micro X-ray fluorescence (XRF) mapping, we examined the textural and chemical characteristics of these minerals. Our findings reveal intricate patchy zoning patterns and element distributions (indicated by the Nb, Ta, W, Mn, Fe, Hf, Ti for CGM; Hf, Ti Rb, W, Nb, Ta for Cst; Ti, Zn, Fe, W, Hf, Mn, K for Elb) that indicate multiple stages of mineral alteration driven by fluid-mediated processes. The coupled dissolution-precipitation mechanisms observed in the Bailongshan deposit have resulted in significant redistribution and enrichment of economically valuable elements. The study highlights the importance of hydrothermal fluids in altering primary mineral phases and precipitating secondary phases with distinct compositions. These processes not only modified the mineralogical makeup of the pegmatite but also enhanced its economic potential by concentrating rare metals. Signatures of coupled dissolution-precipitation processes can serve as an essential tool for mineral exploration, guiding the search for high-grade zones within similar pegmatitic formations.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Andersen, T., Neumann, E. R., 2001. Fluid Inclusions in Granitic Pegmatites: A Review. Mineralogical Magazine, 65(1): 1–19 doi: 10.1180/002646101550073
    Banks, D. A., Yardley, B. W. D., Campbell, A. R., et al., 1994. REE Composition of an Aqueous Magmatic Fluid: A Fluid Inclusion Study from the Capitan Pluton, New Mexico, U. S. A. Chemical Geology, 113(3/4): 259–272. https://doi.org/10.1016/0009-2541(94)90070-1
    Bau, M., Dulski, P., 1995. Comparative Study of Yttrium and Rare-Earth Element Behaviours in Fluorine-Rich Hydrothermal Fluids. Contributions to Mineralogy and Petrology, 119(2): 213–223. https://doi.org/10.1007/bf00307282
    Bibienne, T., Magnan, J. F., Rupp, A., et al., 2020. From Mine to Mind and Mobiles: Society's Increasing Dependence on Lithium. Elements, 16(4): 265–270. https://doi.org/10.2138/gselements.16.4.265
    Bowell, R. J., Lagos, L., de los Hoyos, C. R., et al., 2020. Classification and Characteristics of Natural Lithium Resources. Elements, 16(4): 259–264. https://doi.org/10.2138/gselements.16.4.259
    Cao, R., Gao, Y. B., Chen, B., et al., 2023. Pegmatite Magmatic Evolution and Rare Metal Mineralization of the Dahongliutan Pegmatite Field, Western Kunlun Orogen: Constraints from the B Isotopic Composition and Mineral-Chemistry. International Geology Review, 65(7): 1224–1242. https://doi.org/10.1080/00206814.2021.1899062
    Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites Revisited. The Canadian Mineralogist, 43(6): 2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005
    Černý, P., 1991. Rare-Element Granitic Pegmatites. Part Ⅱ: Regional to Global Environments and Petrogenesis. Geoscience Canada, 18(2): 68–81. https://journals.lib.unb.ca/index.php/gc/article/view/3723
    Černý, P., 2002. Mineralogy of Lithium Pegmatites. Reviews in Mineralogy and Geochemistry, 51: 207–246
    Charoy, B., Noronha, F., Lima, A., 2001. Spodumene Petalite Eucryptite: Mutual Relationships and Pattern of Alteration in Li-Rich Aplite Pegmatite Dykes from Northern Portugal. The Canadian Mineralogist, 39(3): 729–746. https://doi.org/10.2113/gscanmin.39.3.729
    Che, X., Glodny, J., 2014. Coupled Dissolution-Reprecipitation at High Temperatures in Hydrothermal Experiments: Implications for Element Mobility and Mineral Replacement. Contributions to Mineralogy and Petrology, 168: 1044 doi: 10.1007/s00410-014-1044-0
    Ding, K., Liang, T., Yang, X. Q., et al., 2019. Geochronology, Petrogenesis and Tectonic Significance of Dahongliutan Pluton in Western Kunlun Orogenic Belt, NW China. Journal of Central South University, 26(12): 3420–3435. https://doi.org/10.1007/s11771-019-4264-7
    European Commission, 2023. Study on the Critical Raw Materials for the EU 2023 Final Report. Publications Office of the European Union, Brussels
    Evensen, N. M., London, D., Wendlandt, R. F., 1999. Solubility and Stability of REE Phosphates in Aqueous Solutions: Implications for the Transport of Rare Earth Elements in Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 63(5/6): 1581–1595
    Fan, J. J., Tang, G. J., Wei, G. J., et al., 2020. Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 352: 105236. https://doi.org/10.1016/j.lithos.2019.105236
    Gao, Y. B., Bagas, L., Li, K., et al., 2020. Newly Discovered Triassic Lithium Deposits in the Dahongliutan Area, Northwest China: A Case Study for the Detection of Lithium-Bearing Pegmatite Deposits in Rugged Terrains Using Remote-Sensing Data and Images. Frontiers in Earth Science, 8: 591966. https://doi.org/10.3389/feart.2020.591966
    Harlov, D. E., Wirth, R., 2000. Dissolution-Reprecipitation vs. Solid-State Diffusion: Implications for the Replacement of Phosphates in Nature. Geochimica et Cosmochimica Acta, 64: 1785–1790
    Hong, T., Hu, M. X., Tang, J. L., et al., 2024. Metallogenic Characteristics of Superimposed Deformation and Mineralization of Dahongliutan Granite-Pegmatite Type Lithium Deposit Belt in West Kunlun, Xinjiang: Constraints from Ore Structure, 3D Imaging Technology and Chronology. Acta Petrologica Sinica, 40(2): 553–570. https://doi.org/10.18654/1000-0569/2024.02.11 (in Chinese with English Abstract)
    Hu, J., Wang, H., Huang, C. Y., et al., 2016. Geological Characteristics and Age of the Dahongliutan Fe-Ore Deposit in the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China. Journal of Asian Earth Sciences, 116: 1–25. https://doi.org/10.1016/j.jseaes.2015.08.014
    Jiang, S. Y., Wang, W., Su, H. M., 2023. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. Journal of Earth Science, 34(4): 1295–1298. https://doi.org/10.1007/s12583-023-2001-5
    Jochum, K. P., Weis, U., Stoll, B., et al., 2011. Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35(4): 397–429. https://doi.org/10.1111/j.1751-908X.2011.00120.x
    Kontak, D. J., Dostal, J., Kyser, T. K., et al., 2002. A Petrological, Geochemical, Isotopic and Fluid-Inclusion Study of 370 Ma Pegmatite-Aplite Sheets, Peggys Cove, Nova Scotia, Canada. The Canadian Mineralogist, 40(5): 1249–1286. https://doi.org/10.2113/gscanmin.40.5.1249
    Lin, J., Yang, A., Lin, R., et al., 2023. Review on in Situ Isotopic Analysis by LA-MC-ICP-MS. Journal of Earth Science, 34(6): 1663–1691. https://doi.org/10.1007/s12583-023-2002-4
    Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth's Crust. Contributions to Mineralogy and Petrology, 128(2): 213–227. https://doi.org/10.1007/s004100050304
    Linnen, R. L., Van Lichtervelde, M., Černý, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275–280. https://doi.org/10.2113/gselements.8.4.275
    London, D., Kontak, D. J., 2012. Granitic Pegmatites: Scientific Wonders and Economic Bonanzas. Elements, 8(4): 257–261. https://doi.org/10.2113/gselements.8.4.257
    London, D., Hunt, L. E., Schwing, C. R., et al., 2020. Feldspar Thermometry in Pegmatites: Truth and Consequences. Contributions to Mineralogy and Petrology, 175(1): 8. https://doi.org/10.1007/s00410-019-1617-z
    London, D., Morgan, G. B., Paul, K. A., et al., 2012. Internal Evolution of Miarolitic Granitic Pegmatites at the Little Three Mine, Ramona, California, USA. The Canadian Mineralogist, 50(4): 1025–1054. https://doi.org/10.3749/canmin.50.4.1025
    London, D., 2008. Pegmatites. Canadian Mineralogist Special Publication 10. Mineralogical Association of Canada. 347
    Manning, D. A. C., Henderson, P., 1984. The Behavior of Rare Earth Elements in Hydrothermal Fluids and Their Interaction with Surrounding Rocks. Geochimica et Cosmochimica Acta, 48: 461–472
    Martin, R. F., De Vito, C., 2005. The Patterns of Enrichment in Felsic Pegmatites Ultimately Depend on Tectonic Setting. The Canadian Mineralogist, 43(6): 2027–2048. https://doi.org/10.2113/gscanmin.43.6.2027
    Martins, T., Lima, A., Simmons, W. B., et al., 2011. Geochemical Fractionation of Nb-Ta Oxides in Li-Bearing Pegmatites from the barroso-Alvao Pegmatite Field, Northern Portugal. The Canadian Mineralogist, 49(3): 777–791. https://doi.org/10.3749/canmin.49.3.777
    Müller, A., Keyser, W., Simmons, W. B., et al., 2021. Quartz Chemistry of Granitic Pegmatites: Implications for Classification, Genesis and Exploration. Chemical Geology, 584: 120507. https://doi.org/10.1016/j.chemgeo.2021.120507
    Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508–2518. https://doi.org/10.1039/c1ja10172b
    Peretyazhko, I. S., Savina, E. A., 2013. Hydrothermal Alteration and Leaching of Granitic Pegmatites. Geochemistry International, 51: 551–572
    Pollok, K., Putnis, C. V., Putnis, A., 2011. Mineral Replacement Reactions in Solid Solution-Aqueous Solution Systems: Volume Changes, Reactions Paths and End-Points Using the Example of Model Salt Systems. American Journal of Science, 311(3): 211–236. https://doi.org/10.2475/03.2011.02
    Putnis, A., 2002. Mineral Replacement Reactions: From Macroscopic Observations to Microscopic Mechanisms. Mineralogical Magazine, 66(5): 689–708. https://doi.org/10.1180/0026461026650056
    Putnis, A., 2009. Mineral Replacement Reactions. Reviews in Mineralogy and Geochemistry, 70(1): 87–124. https://doi.org/10.2138/rmg.2009.70.3
    Putzolu, F., Seltmann, R., Dolgopolova, A., et al., 2024. Influence of Magmatic and Magmatic-Hydrothermal Processes on the Lithium Endowment of Micas in the Cornubian Batholith (SW England). Mineralium Deposita, 59(6): 1067–1088. https://doi.org/10.1007/s00126-024-01248-5
    Qiao, G. B., Wu, Y. Z., Liu, T., 2020. Formation Age of the Dahongliutan Pegmatite Type Rare Metal Deposit in Western Kunlun Mountains: Evidence from Muscovite 40Ar/39Ar Isotopic Dating. Geology in China, 47(5): 1591–1593. https://doi.org/10.12029/gc20200523 (in Chinese with English Abstract)
    Qiao, G. B., Zhangk H. D., Wuk Y. Z., et al., 2015. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics. Acta Geologica Sinica, 89(7): 1180–1194. https://doi.org/10.3969/j.issn.0001-5717.2015.07.003 (in Chinese with English Abstract)
    Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2016. Geology and Mineralogy of Li Mineralization in the Central Iberian Zone (Spain and Portugal). Mineralogical Magazine, 80(1): 103–126. https://doi.org/10.1180/minmag.2016.080.049
    Ruiz-Agudo, E., Putnis, C. V., Putnis, A., 2014. Coupled Dissolution and Precipitation at Mineral-Fluid Interfaces. Chemical Geology, 383: 132–146. https://doi.org/10.1016/j.chemgeo.2014.06.007
    Smith, M. P., Henderson, P., 2000. Preliminary Fluid Inclusion Constraints on Fluid Evolution in the Strange Lake Peralkaline Granite-Pegmatite Complex, Quebec-Labrador. Lithos, 51: 235–254. https://doi.org/10.2113/gsecongeo.95.7.1371
    Tang, J. L., Ke, Q., Xu, X. W., et al., 2022. Magma Evolution and Mineralization of Longmenshan Lithium-Beryllium Pegmatite in Dahongliutan Area, West Kunlun. Acta Petrologica Sinica, 38(3): 655–675. https://doi.org/10.18654/1000-0569/2022.03.05 (in Chinese with English Abstract)
    Thomas, R., Davidson, P., 2012. The Role of External Fluids in the Formation of Pegmatite-Hosted Mineralization. Ore Geology Reviews, 48: 125–134 doi: 10.1016/j.oregeorev.2012.02.010
    Thomas, R., Webster, J. D., Heinrich, W., 2000. Melt Inclusions in Pegmatite Quartz: Complete Miscibility between Silicate Melts and Hydrous Fluids at Low Pressure. Contributions to Mineralogy and Petrology, 139(4): 394–401. https://doi.org/10.1007/s004100000120
    U. S. Department of the Interior, 2022. Final List of Critical Minerals. Reston, VA, USA
    USGS, 2021. Lithium in 2019, Tables-Only Release. USGS National Information Center. (2021-6-17)https://www.usgs.gov/media/files/lithium-2019-tables-only-release
    Wang, H., Gao, H., Zhang, X. Y., et al., 2020. Geology and Geochronology of the Super-Large Bailongshan Li-Rb-(Be) Rare-Metal Pegmatite Deposit, West Kunlun Orogenic Belt, NW China. Lithos, 360/361: 105449. https://doi.org/10.1016/j.lithos.2020.105449
    Wang, H., Huang, L., Ma, H. D., et al., 2023. Geological Characteristics and Metallogenic Regularity of Lithium Deposits in Dahongliutan-Bailongshan Area, West Kunlun, China. Acta Petrologica Sinaca, 39: 1931–1949 (in Chinese with English Abstract)
    Wang, H., Li, P., Ma, H. D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6): 1053–1062 (in Chinese with English Abstract)
    Xing, C. M., Wang, C. Y., Wang, H., 2020. Magmatic-Hydrothermal Processes Recorded by Muscovite Andcolumbite-Group Minerals from the Bailongshan Rare-Element Pegmatites in the West Kunlun-Karakorum Orogenic Belt, NW China. Lithos, 364: 105507. https://doi.org/10.1016/j.lithos.2020.105507
    Xu, Z. Q., Fu, X. F., Wang, R. C., et al., 2020. Generation of Lithium-Bearing Pegmatite Deposits within the Songpan-Ganze Orogenic Belt, East Tibet. Lithos, 354: 105281. https://doi.org/10.1016/j.lithos.2019.105281
    Yan, Q. H., Qiu, Z. W., Wang, H., et al., 2018. Age of the Dahongliutan Rare Metal Pegmatite Deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb Dating of Columbite-(Fe) and Cassiterite. Ore Geology Reviews, 100: 561–573. https://doi.org/10.1016/j.oregeorev.2016.11.010
    Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-km-long Late Triassic Rare Metal (Li-Rb-Be-Nb-Ta) Pegmatite Belt in the Western Kunlun Orogenic Belt, Western China. Economic Geology, 117(1): 213–236. https://doi.org/10.5382/econgeo.4858
    Yang, J., Zhang, Z. J., Cheng, Q. M., 2022. Resolution Enhancement in Micro-XRF Using Image Restoration Techniques. Journal of Analytical Atomic Spectrometry, 37(4): 750–758. https://doi.org/10.1039/d1ja00425e
    Yin, R., Huang, X. L., Xu, Y. G., et al., 2020. Mineralogical Constraints on the Magmatic-Hydrothermal Evolution of Rare-Elements Deposits in the Bailongshan Granitic Pegmatites, Xinjiang, NW China. Lithos, 352/353: 105208. https://doi.org/10.1016/j.lithos.2019.105208
    Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106–111 (in Chinese with English Abstract)
    Zhang, C. L., Zou, H. B., Ye, X. T., et al., 2019. Tectonic Evolution of the West Kunlun Orogenic Belt along the Northern Margin of the Tibetan Plateau: Implications for the Assembly of the Tarim Terrane to Gondwana. Geoscience Frontiers, 10(3): 973–988. https://doi.org/10.1016/j.gsf.2018.05.006
    Zhang, Q. C., Liu, Y., Wu, Z. H., et al., 2019. Late Triassic Granites from the Northwestern Margin of the Tibetan Plateau, the Dahongliutan Example: Petrogenesis and Tectonic Implications for the Evolution of the Kangxiwa Palaeo-Tethys. International Geology Review, 61(2): 175–194. https://doi.org/10.1080/00206814.2017.1419444
    Zhang, X. Y., Wang, H., Bai, H. Y., et al., 2024. Tourmaline Geochemical and Boron Isotopic Compositions of the Bailongshan Rare-Metal Pegmatite Deposit: Implications for Magmatic-Hydrothermal Evolution of the West Kunlun Orogen (NW China). Ore Geology Reviews, 166: 105894. https://doi.org/10.1016/j.oregeorev.2024.105894
    Zhang, X. Y., Wang, H., Yan, Q. H., 2022. Garnet Geochemical Compositions of the Bailongshan Lithium Polymetallic Deposit in Xinjiang Province: Implications for Magmatic-Hydrothermal Evolution. Ore Geology Reviews, 150: 105178. https://doi.org/10.1016/j.oregeorev.2022.105178
    Zhang, Z. Y., Jiang, Y. H., Niu, H. C., et al., 2021. Fluid Inclusion and Stable Isotope Constraints on the Source and Evolution of Ore-Forming Fluids in the Bailongshan Pegmatitic Li-Rb Deposit, Xinjiang, Western China. Lithos, 380: 105824. https://doi.org/10.1016/j.lithos.2020.105824
    Zhao, H., Chen, B., Zheng, B. Q., et al., 2024. Petrogenesis of Mesozoic Pegmatites in the Dahongliutan Li-Mineralized Belt (Western Kunlun, NW China). Journal of Asian Earth Sciences, 264: 106076. https://doi.org/10.1016/j.jseaes.2024.106076
    Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(6) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return