Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Naveed Rehman, Shu Jiang, Syed Haroon Ali, Asim Falak Naz, Muhammad Tariq. Effect of Diagenetic Processes and Depositional Facies on Reservoir Quality of the Eocene Carbonate Sequence (Sakesar Limestone) in the Central Salt Range, Pakistan. Journal of Earth Science, 2025, 36(3): 1129-1148. doi: 10.1007/s12583-024-0105-1
Citation: Naveed Rehman, Shu Jiang, Syed Haroon Ali, Asim Falak Naz, Muhammad Tariq. Effect of Diagenetic Processes and Depositional Facies on Reservoir Quality of the Eocene Carbonate Sequence (Sakesar Limestone) in the Central Salt Range, Pakistan. Journal of Earth Science, 2025, 36(3): 1129-1148. doi: 10.1007/s12583-024-0105-1

Effect of Diagenetic Processes and Depositional Facies on Reservoir Quality of the Eocene Carbonate Sequence (Sakesar Limestone) in the Central Salt Range, Pakistan

doi: 10.1007/s12583-024-0105-1
More Information
  • Corresponding author: Shu Jiang, jiangsu@cug.edu.cn
  • Received Date: 11 Aug 2024
  • Accepted Date: 12 Nov 2024
  • Available Online: 11 Jun 2025
  • Issue Publish Date: 30 Jun 2025
  • The effect of depositional facies and diagenesis on the reservoir potential of the Sakesar limestone has been assessed through core plug porosity and permeability data, scanning electron microscope (SEM), and petrographic study in three stratigraphic sections (Karuli, Badshah Pur, and Sardhai) of Central Salt Range. Field observations reveal three lithofacies: thin-bedded limestone with shale intercalation, thick-bedded nodular limestone, and highly fractured limestone. Based on a petrographic study, six microfacies have been identified: bioclastic mudstone facies (SKF-1), Lockhartia-nummulitic wackestone facies (SKF-2), Assilina-Alveolina packstone facies (SKF-3), Lockhartia-nummulitic packstone facies (SKF-4), Alveolina grainstone facies (SKF-5), and nummulitic grainstone facies (SKF-6). The Sakesar limestone shows various diagenetic changes such as compaction, dissolution, dolomitization, cementation, and fracturing, resulting in different types of pores. Two reservoir zones are identified in the Sakesar limestone: a mud-dominated reservoir in an outer ramp setting with interparticle and micropores and a bioclastic grain-dominated facies in an inner ramp setting with intraskeletal and fracture porosity. The porosity and permeability of grain-dominated facies (8%–30% and 0.8–8 mD) are higher than mud-dominated facies (4%–15% and 0.5–4 mD) due to intraskeletal/intraparticle pores and dolomitization.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aamir, M., Siddiqui, M. M., 2006. Interpretation and Visualization of Thrust Sheets in a Triangle Zone in Eastern Potwar, Pakistan. The Leading Edge, 25(1): 24–37. https://doi.org/10.1190/1.2164749
    Adabi, M. H., Zohdi, A., Ghabeishavi, A., et al., 2008. Applications of Nummulitids and Other Larger Benthic Foraminifera in Depositional Environment and Sequence Stratigraphy: An Example from the Eocene Deposits in Zagros Basin, SW Iran. Facies, 54(4): 499–512. https://doi.org/10.1007/s10347-008-0151-7
    Afzal, J., Butt, A. A., 2000. Lower Tertiary Planktonic Biostratigraphy of the Salt Range, Northern Pakistan. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, 2000(12): 721–747. https://doi.org/10.1127/njgpm/2000/2000/721
    Ahmad, N., Ahsan, N., Sameeni, S. J., et al., 2013. Sedimentology and Reservoir Potential of the Lower Eocene Sakesar Limestone of Dandot Area, Eastern Salt Range, District Chakwal, Pakistan. Science International (Lahore), 25(3): 521–529
    Ahmad, S., Wadood, B., Khan, S., et al., 2020. Integrating the Palynostratigraphy, Petrography, X-Ray Diffraction and Scanning Electron Microscopy Data for Evaluating Hydrocarbon Reservoir Potential of Jurassic Rocks in the Kala Chitta Range, Northwest Pakistan. Journal of Petroleum Exploration and Production Technology, 10(8): 3111–3123. https://doi.org/10.1007/s13202-020-00957-7
    Ali, R. I., Ghazi, S., Khan, M. J., et al., 2023. Sedimentological and Provenance Analysis of the Cambrian Succession in the Saiduwali Section, Trans Indus Ranges, Pakistan. Pakistan Journal of Hydrocarbon Research, 26: 23–48
    Bathurst, R. G. C., 1966. Boring Algae, Micrite Envelopes and Lithification of Molluscan Biosparites. Geological Journal, 5(1): 15–32. https://doi.org/10.1002/gj.3350050104
    Bathurst, R. G. C., 1982. Genesis of Stromatactis Cavities between Submarine Crusts in Palaeozoic Carbonate Mud Buildups. Journal of the Geological Society, 139(2): 165–181. https://doi.org/10.1144/gsjgs.139.2.0165
    Beavington-Penney, S. J., Racey, A., 2004. Ecology of Extant Nummulitids and Other Larger Benthic Foraminifera: Applications in Palaeoenvironmental Analysis. Earth-Science Reviews, 67(3/4): 219–265. https://doi.org/10.1016/j.earscirev.2004.02.005
    Bohnsack, D., Potten, M., Pfrang, D., et al., 2020. Porosity-Permeability Relationship Derived from Upper Jurassic Carbonate Rock Cores to Assess the Regional Hydraulic Matrix Properties of the Malm Reservoir in the South German Molasse Basin. Geothermal Energy, 8(1): 1–47. https://doi.org/10.1186/s40517-020-00166-9
    Brandano, M., Frezza, V., Tomassetti, L., et al., 2009. Heterozoan Carbonates in Oligotrophic Tropical Waters: The Attard Member of the Lower Coralline Limestone Formation (Upper Oligocene, Malta). Palaeogeography, Palaeoclimatology, Palaeoecology, 274(1/2): 54–63. https://doi.org/10.1016/j.palaeo.2008.12.018
    Budd, D. A., 2001. Permeability Loss with Depth in the Cenozoic Carbonate Platform of West-Central Florida. AAPG Bulletin, 85: 1253–1272. https://doi.org/10.1306/8626caaf-173b-11d7-8645000102c1865d
    Dunham, R. J., 1962. Classification of Carbonate Rocks According to Depositional Textures. American Association of Petroleum Geologists, 1: 108–121. https://doi.org/10.1306/m1357
    Ferket, H., Ortuño-Arzate, S., Roure, F., et al., 2003. Lithologic Control on Matrix Porosity in Shallow-Marine Cretaceous Reservoir Limestones: A Study of the Peñuela Reservoir Outcrop Analogue (Cordoba Platform, Southeastern Mexico). The American Association of Petroleum Geologists, Memoir, 79: 283–304. https://doi.org/10.1306/m79877c10
    Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Berlin, Heidelberg. 976
    Flügel, E., 2013. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, Berlin, Heidelberg. 984
    Garland, J., Neilson, J., Laubach, S. E., et al., 2012. Advances in Carbonate Exploration and Reservoir Analysis. Geological Society, London, Special Publications, 370(1): 1–15. https://doi.org/10.1144/sp370.15
    Geel, T., 2000. Recognition of Stratigraphic Sequences in Carbonate Platform and Slope Deposits: Empirical Models Based on Microfacies Analysis of Palaeogene Deposits in Southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(3/4): 211–238. https://doi.org/10.1016/s0031-0182(99)00117-0
    Grelaud, S., Sassi, W., de Lamotte, D. F., et al., 2002. Kinematics of Eastern Salt Range and South Potwar Basin (Pakistan): A New Scenario. Marine and Petroleum Geology, 19(9): 1127–1139. https://doi.org/10.1016/s0264-8172(02)00121-6
    Hassan, E. U., Hannan, A., Rashid, M. U., et al., 2020. Resource Assessment of Sakesar Limestone as Aggregate from Salt Range Pakistan Based on Geotechnical Properties. International Journal of Hydrology, 4(1): 24–29. https://doi.org/10.15406/ijh.2020.04.00222
    Hohenegger, J., 2005. Estimation of Environmental Paleogradient Values Based on Presence/Absence Data: A Case Study Using Benthic Foraminifera for Paleodepth Estimation. Palaeogeography, Palaeoclimatology, Palaeoecology, 217(1/2): 115–130. https://doi.org/10.1016/j.palaeo.2004.11.020
    Ishaq, M., Jan, I. U., Hanif, M., et al., 2019. Microfacies and Diagenetic Studies of the Early Eocene Sakesar Limestone, Potwar Plateau, Pakistan: Approach of Reservoir Evaluation Using Outcrop Analogue. Carbonates and Evaporites, 34(3): 623–656. https://doi.org/10.1007/s13146-018-0430-5
    Jadoon, M. S. K., Jadoon, I. A. K., Bhatti, A. H., et al., 2005. Fracture Characterization and Their Impact on the Field Development. SPE/PAPG Annual Technical Conference. Nov. 28–29, 2005, Islamabad, Pakistan. https://doi.org/10.2118/111053-ms
    Kazmi, A. H., Jan, M. Q., 1997. Geology and Tectonics of Pakistan. Graphic Publishers, Karachi
    Kennedy, D. M., Milkins, J., 2015. The Formation of Beaches on Shore Platforms in Microtidal Environments. Earth Surface Processes and Landforms, 40(1): 34–46. https://doi.org/10.1002/esp.3610
    Kent, D. M., Akhurst, M. C., Burton, J. B., 1984. Processes of Dolomitization-Important Factors Influencing Pore Geometry and Reservoir Quality in Mississippian Inner Shelf Carbonates of Southeastern Saskatchewan. Saskatchewan Geological Society, 7: 45–51
    Lai, J., Li, D., Wang, G. W., et al., 2019. Earth Stress and Reservoir Quality Evaluation in High and Steep Structure: The Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 101: 43–54. https://doi.org/10.1016/j.marpetgeo.2018.11.036
    Lavrov, A., 2017. From Fracture Gradient to Spectrum of Lost-Circulation Pressures: a Paradigm Shift? Energy Procedia, 114: 3185–3192. https://doi.org/10.1016/j.egypro.2017.03.1447
    Li, A., Ding, W. L., He, J. H., et al., 2016. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Shale Reservoirs: A Case Study of Lower Cambrian Qiongzhusi Formation in Malong Block of Eastern Yunnan Province, South China. Marine and Petroleum Geology, 70: 46–57. https://doi.org/10.1016/j.marpetgeo.2015.11.004
    Mateen, A., Wahid, A., Janjuhah, H. T., et al., 2022. Petrographic and Geochemical Analysis of Indus Sediments: Implications for Placer Gold Deposits, Peshawar Basin, NW Himalaya, Pakistan. Minerals, 12(8): 1059. https://doi.org/10.3390/min12081059
    Mehr, M. K., Adabi, M. H., 2014. Microfacies and Geochemical Evidence for Original Aragonite Mineralogy of a Foraminifera-Dominated Carbonate Ramp System in the Late Paleocene to Middle Eocene, Alborz Basin, Iran. Carbonates and Evaporites, 29(2): 155–175. https://doi.org/10.1007/s13146-013-0163-4
    Mehrabi, H., Bahrehvar, M., Rahimpour-Bonab, H., 2021. Porosity Evolution in Sequence Stratigraphic Framework: A Case from Cretaceous Carbonate Reservoir in the Persian Gulf, Southern Iran. Journal of Petroleum Science and Engineering, 196: 107699. https://doi.org/10.1016/j.petrol.2020.107699
    Mehrabi, H., Rahimpour-Bonab, H., Enayati-Bidgoli, A. H., et al., 2014. Depositional Environment and Sequence Stratigraphy of the Upper Cretaceous Ilam Formation in Central and Southern Parts of the Dezful Embayment, SW Iran. Carbonates and Evaporites, 29(3): 263–278. https://doi.org/10.1007/s13146-013-0168-z
    Mir, A., Khan, M. R., Wahid, A., et al., 2023. Petroleum System Modeling of a Fold and Thrust Belt: A Case Study from the Bannu Basin, Pakistan. Energies, 16(12): 4710. https://doi.org/10.3390/en16124710
    Mujtaba, M., Abbas, G., 2001. Diagenetic Control on Porosity Development in Early Eocene Carbonate Reservoirs of Potwar Sub-Basin, Pakistan. Pakistan Journal of Hydrocarbon Research, 12: 65–72
    Nizami, A. R., Qayyum, A., Shahbaz, A., et al., 2010. Microfacies Assemblages and Diagenetic Framework of the Lower Eocene Sakesar Limestone, Karoli Area, Central Salt Range, Sub-Himalayas of Pakistan. Journal of Himalayan Earth Science, 43: 66
    Paganoni, M., Al Harthi, A., Morad, D., et al., 2016. Impact of Stylolitization on Diagenesis of a Lower Cretaceous Carbonate Reservoir from a Giant Oilfield, Abu Dhabi, United Arab Emirates. Sedimentary Geology, 335: 70–92. https://doi.org/10.1016/j.sedgeo.2016.02.004
    Passchier, C. W., Trouw, R. A. J., 2005. A Framework of Microtectonic Studies. Microtectonics. Springer, Berlin, Heidelberg. 1–6. https://doi.org/10.1007/3-540-29359-0_1
    Perry, C. T., 2002. Biofilm-Related Calcification, Sediment Trapping and Constructive Micrite Envelopes: A Criterion for the Recog-nition of Ancient Grass-Bed Environments? Sedimentology, 46(1): 33–45. https://doi.org/10.1046/j.1365-3091.1999.00201.x
    Qadri, S. T., Mirza, M. Q., Raja, A., et al., 2023. Application of Probabilistic Seismic Hazard Assessment to Understand the Earthquake Hazard in Attock City, Pakistan: A Step towards Linking Hazards and Sustainability. Sustainability, 15(2): 1023. https://doi.org/10.3390/su15021023
    Qayyum, A., Poessé, J. W., Kaymakci, N., et al., 2022. Neogene Kinematics of the Potwar Plateau and the Salt Range, NW Himalayan Front: A Paleostress Inversion and AMS Study. International Geology Review, 64(9): 1311–1329. https://doi.org/10.1080/00206814.2021.1929514
    Racey, A., 1994. Biostratigraphy and Paleobiogeographic Significance of Tertiary Nummulitids (Foraminifera) from Northern Oman. Micropaleontology and Hydrocarbon Exploration in the Middle East. Chapman and Hall, London. 343–370
    Racey, A., 2001. A Review of Eocene Nummulite Accumulations: Structure, Formation and Reservoir Potential. Journal of Petroleum Geology, 24(1): 79–100. https://doi.org/10.1111/j.1747-5457.2001.tb00662.x
    Rahman, Z. U., Khan, Z. M., Khattak, Z., et al., 2017. Microfacies Analysis and Resrvoir Potential of Sakesar Limestone, Nammal Gorge (Western Salt Range), Upper Indus Basin, PakistanZain. Pakistan Journal of Geology, 1(1): 12–17. https://doi.org/10.26480/pjg.01.2017.12.17
    Rasser, M. W., Scheibner, C., Mutti, M., 2005. A Paleoenvironmental Standard Section for Early Ilerdian Tropical Carbonate Factories (Corbieres, France; Pyrenees, Spain). Facies, 51(1): 218–232. https://doi.org/10.1007/s10347-005-0070-9
    Rehman, N., Ullah, A., ALI, S. H., et al., 2023. Eocene Kohat Formation Suitability as an Aggregate from Kohat Range, Sub-Himalayas, Pakistan, Based on Outcrop, Petrographic and Geotechnical Properties. Acta Montanistica Slovaca, 28: 277–288. https://doi.org/10.46544/ams.v28i2.02
    Reid, R. P., MacIntyre, I. G., 1998. Carbonate Recrystallization in Shallow Marine Environments: A Widespread Diagenetic Process Forming Micritized Grains. Journal of Sedimentary Research, 68(5): 928–946. https://doi.org/10.2110/jsr.68.928
    Renema, W., Troelstra, S. R., 2001. Larger Foraminifera Distribution on a Mesotrophic Carbonate Shelf in SW Sulawesi (Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 175(1/2/3/4): 125–146. https://doi.org/10.1016/s0031-0182(01)00389-3
    Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2012. Effects of Diagenesis on the Acoustic Velocity of the Triassic Oolitic Shoals in the Yudongzi Outcrop of Erlangmiao Area, Northwest Sichuan Basin. Journal of Earth Science, 23(4): 542–558. https://doi.org/10.1007/s12583-012-0274-1
    Rosales, I., Pomar, L., Al-Awwad, S. F., 2018. Microfacies, Diagenesis and Oil Emplacement of the Upper Jurassic Arab-D Carbonate Reservoir in an Oil Field in Central Saudi Arabia (Khurais Complex). Marine and Petroleum Geology, 96: 551–576. https://doi.org/10.1016/j.marpetgeo.2018.05.010
    Sajed, O. K. M., Glover, P. W. J., Collier, R. E. L., 2021. Reservoir Quality Estimation Using a New Ternary Diagram Approach Applied to Carbonate Formations in North-Western Iraq. Journal of Petroleum Science and Engineering, 196: 108024. https://doi.org/10.1016/j.petrol.2020.108024
    Schmid, S., Worden, R. H., Fisher, Q. J., 2004. Diagenesis and Reservoir Quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, West of Ireland. Marine and Petroleum Geology, 21(3): 299–315. https://doi.org/10.1016/j.marpetgeo.2003.11.015
    Schulze, F., Kuss, J., Marzouk, A., 2005. Platform Configuration, Microfacies and Cyclicities of the Upper Albian to Turonian of West-Central Jordan. Facies, 50(3): 505–527. https://doi.org/10.1007/s10347-004-0032-7
    Shah, S. B. A., 2023. Integrated Analysis of Microfacies, Depositional Environment, and Reservoir Potential of the Sakesar Formation in the Potwar Basin, Pakistan. https://doi.org/10.21203/rs.3.rs-2503663/v1
    Shah, S. M. I., 2009. Stratigraphy of Pakistan (Memoirs of the Geological Survey of Pakistan). The Geological Survey of Pakistan. 22
    Shakeri, A., Parham, S., 2014. Microfacies, Depositional Environment, and Diagenetic Processes of the Mauddud Member, in the Persian Gulf. Journal of Petroleum Science and Technology, 4(2): 67–78. https://doi.org/10.22078/jpst.2014.396
    Taghavi, A. A., Mørk, A., Emadi, M. A., 2006. Sequence Stratigraphically Controlled Diagenesis Governs Reservoir Quality in the Carbonate Dehluran Field, Southwest Iran. Petroleum Geoscience, 12(2): 115–126. https://doi.org/10.1144/1354-079305-672
    Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Backwell Scientific, Hoboken. 496. https://doi.org/10.1002/9781444314175
    Viti, C., Collettini, C., Tesei, T., 2014. Pressure Solution Seams in Carbonatic Fault Rocks: Mineralogy, Micro/Nanostructures and Deformation Mechanism. Contributions to Mineralogy and Petrology, 167(2): 1–15. https://doi.org/10.1007/s00410-014-0970-1
    Wahid, A., Rauf, A., Ali, S. H., et al., 2022. Impact of Complex Tectonics on the Development of Geo-pressured Zones: A Case Study from Petroliferous Sub-Himalayan Basin, Pakistan. Geopersia, 12: 89–106. https://doi.org/10.22059/geope.2021.324799.648618
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(5) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return