Citation: | Zuopeng Xiang, Xinghai Lang, Xuhui Wang, Stephanie Lohmeier, Bernd Lehmann, Yulin Deng, Weicai Dong, Chao Luo. Origin and Tectonic Setting of the Ore-Related Late Ordovician Porphyry in the Songshunangou District, North Qilian, Northwest China: Whole-Rock Geochemical, Sr-Nd-Pb Isotopes and Zircon Hf Isotopes Constraints. Journal of Earth Science, 2025, 36(3): 1051-1068. doi: 10.1007/s12583-024-0114-0 |
The Early Paleozoic porphyry-epithermal Au system of the Songshunangou District sits in the central segment of the North Qilian orogenic belt (NQOB). The porphyry Au mineralization is centered on the quartz diorite porphyry (QDP), which is constrained to the Late Ordovician period. However, the geochemical signatures, the origin, and the tectonic setting of the QDP are not yet known and understood and are thus in the focus here. The QDP is a high-K calc-alkaline metaluminous rocks (K2O + Na2O: 6.90‒8.13; Al2O3/(CaO + Na2O + K2O): 0.69‒0.90) characterized by high (87Sr/86Sr)
Annen, C., Blundy, J. D., Sparks, R. S. J., 2006. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 47(3): 505–539. https://doi.org/10.1093/petrology/egi084 |
Bai, Y., Guo, Z. P., Zhao, X. M., 2017. Geochronology, Hf Isotopic and Geochemical Characteristics of Maozang Granodiorite in Langlike Area, North Qilian Mountain. Mineral Deposits, 36(1): 158–170 (in Chinese with English Abstract) |
Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5): 554–566. https://doi.org/10.1007/s004100000211 |
Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-revisited. Chemical Geology, 351: 324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028 |
Brown, M., 2013. Granite: From Genesis to Emplacement. Geological Society of America Bulletin, 125(7/8): 1079–1113. https://doi.org/10.1130/b30877.1 |
Chappell, B. W., Bryant, C. J., Wyborn, D., 2012. Peraluminous Ⅰ-Type Granites. Lithos, 153: 142–153. https://doi.org/10.1016/j.lithos.2012.07.008 |
Chauvel, C., Lewin, E., Carpentier, M., et al., 2008. Role of Recycled Oceanic Basalt and Sediment in Generating the Hf-Nd Mantlearray. Nature Geoscience, 1: 64–67. https://doi.org/10.1038/ngeo.2007.51 |
Chen, Y. X., Song, S. G., Niu, Y. L., et al., 2014. Melting of Continental Crust during Subduction Initiation: A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone. Geochimica et Cosmochimica Acta, 132: 311–336. https://doi.org/10.1016/j.gca.2014.02.011 |
Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31(11): 1021. https://doi.org/10.1130/g19796.1 |
Clemens, J., 2003. S-Type Granitic Magmas—Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 61(1/2): 1–18. https://doi.org/10.1016/s0012-8252(02)00107-1 |
Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23(1/2): 0024493789900200. https://doi.org/10.1016/0024-4937(89)90020-0 |
Cun, K., Xie, Y. L., Qu, Y. W., et al., 2023. Geochemistry, Geochronology and Petrogenesis of Granite Porphyry in Langcun W-Mo Deposit, Zhejiang Province. Earth Science, 48(10): 3725–3742. https://doi.org/10.3799/dqkx.2021.209 (in Chinese with English Abstract) |
Davidson, J., MacPherson, C., Turner, S., 2007. Amphibole Control in the Differentiation of Arc Magmas. Geochimica et Cosmochimica Acta, 71(15): A204 |
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662–665. https://doi.org/10.1038/347662a0 |
Ding, Q. F., Huang, Z. B., 2019. U-Pb Ages and Geochemistry of Maozangsi Granodiorite in North Qilian Mountains, China. Northwestern Geology, 52(4): 53–62. https://doi.org/10.19751/j.cnki.61-1149/p.2019.04.004 (in Chinese with English Abstract) |
Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503–21521. https://doi.org/10.1029/jb095ib13p21503 |
Fan, X. X., Kong, W. Q., Yang, Z. X., et al., 2020. U-Pb Chronology, Geochemical Characteristics and Petrogenesis of the Chelugou Pluton in the Western Part of North Qilian Orogenic Belt. Geology in China, 47(3): 755–766 (in Chinese with English Abstract) |
Fu, D., Huang, B., Johnson, T. E., et al., 2022. Boninitic Blueschists Record Subduction Initiation and Subsequent Accretion of an Arc-Forearc in the Northeast Proto-Tethys Ocean. Geology, 50(1): 10–15. https://doi.org/10.1130/g49457.1 |
Fu, D., Huang, B., Wilde, S. A., et al., 2023. The Tempo of Back-Arc Basin Evolution: Insights from the Early Paleozoic Proto-Tethyan North Qilian Orogenic Belt, Northeastern Tibet. Earth and Planetary Science Letters, 603: 117976. https://doi.org/10.1016/j.epsl.2022.117976 |
Guo, Z. P., Zhao, X. M., Bai, Y., et al., 2015. Zircon U-Pb and Molybdenite Re-Os Dating of the Langlike Copper Deposit in North Qilian Mountain and Its Geological Implications. Geology in China, 42(3): 691–701 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-3657.2015.03.021 |
Hao, H. D., Park, J. W., Zheng, Y. C., et al., 2024. Role of Chalcophile Element Fertility in the Formation of the Eastern Tethyan Post-Collisional Porphyry Cu Deposits. Mineralium Deposita, 59(8): 1579–1594. https://doi.org/10.1007/s00126-024-01280-5 |
Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. https://doi.org/10.1093/petrology/egm062 |
Healy, B., Collins, W. J., Richards, S. W., 2004. A Hybrid Origin for Lachlan S-Type Granites: The Murrumbidgee Batholith Example. Lithos, 78(1/2): 197–216. https://doi.org/10.1016/j.lithos.2004.04.047 |
Hou, Q. Y., Zhao, Z. D., Zhang, H. F., et al., 2006. Indian Ocean-MORB-Type Isotopic Signature of Yushigou Ophiolite in North Qilian Mountains and Its Implications. Science in China Series D: Earth Sciences, 49(6): 561–572. https://doi.org/10.1007/s11430-006-0561-8 |
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980–983. https://doi.org/10.1126/science.1136154 |
Lang, X. H., Xiang, Z. P., Wang, X. H., et al., 2024. Unveiling an Early Paleozoic Porphyry-Epithermal Gold System in Songshunangou District, North Qilian, Northwest China: Geological and Geochronological Constraints. Ore Geology Reviews, 164: 105816. https://doi.org/10.1016/j.oregeorev.2023.105816 |
Large, R. R., Gemmell, J. B., Paulick, H., et al., 2001. The Alteration Box Plot: A Simple Approach toUnderstanding the Relationship between Alteration Mineralogy andLithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Economic Geology, 96(5): 957–971. https://doi.org/10.2113/gsecongeo.96.5.957 |
Li, X. M., Ma, Z. P., Sun, J. M., et al., 2009. A LA ICP-MS Chronological Study of Basic Volcanics in Baiyin Ore Field, Gansu, China. Geological Bulletin of China, 28(7): 901–906 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2009.07.010 |
Li, Y. S., Xu, L. J., Yu, S. Y., et al., 2020. Partial Melting of Thickened Lower Crust in Post-Collisional Setting: Evidence from High Silicon Adakitic Granites in the North Qilian Orogen. Geological Journal, 55(5): 3990–4007. https://doi.org/10.1002/gj.3645 |
Lin, P. N., Stern, R. J., Morris, J., et al., 1990. Nd- and Sr-Isotopic Compositions of Lavas from the Northern Mariana and Southern Volcano Arcs: Implications for the Origin of Island Arc Melts. Contributions to Mineralogy and Petrology, 105(4): 381–392. https://doi.org/10.1007/bf00286826 |
Liu, Q. Q., Li, H., Shao, Y. J., et al., 2021. Age, Genesis, and Tectonic Setting of the Qiushuwan Cu-Mo Deposit in East Qinling (Central China): Constraints from Sr-Nd-Hf Isotopes, Zircon U-Pb and Molybdenite Re-Os Dating. Ore Geology Reviews, 132: 103998. https://doi.org/10.1016/j.oregeorev.2021.103998 |
Liu, X. J., Xiao, W. J., Ao, S. J., et al., 2024. Editorial: Paleo-Asian and Tethyan Domains: Magmatism, Tectonics, Mineralization, and Geodynamics. Frontiers in Earth Science, 12: 1391291. https://doi.org/10.3389/feart.2024.1391291 |
Liu, X. H., Sun, B. N., Qu, W. J., et al., 2007. Re-Os Dating of Molybdenite in Xiliugou W-Mo Deposit in Western Part of North Qilian Mountains and Its Geological Significance. Acta Petrologica Sinica, 32: 2434–2442 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-0569.2007.10.012 |
MacPherson, C. G., Dreher, S. T., Thirlwall, M. F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3/4): 581–593. https://doi.org/10.1016/j.epsl.2005.12.034 |
Mao, J. W., Zhang, X. Y., Zhang, Z. C., et al., 1999. Temporo-Spatial Distribution and Evolution of Ore Deposits in the West Sector of the Northern Qilian Mountains. Acta Geologica Sinica—English Edition, 73(2): 230–241. https://doi.org/10.1111/j.1755-6724.1999.tb00831.x |
Miller, C. F., 1985. Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources? Journal of Geology, 93(6): 673–689. https://doi.org/10.1086/628995 |
Moritz, R., Rezeau, H., Ovtcharova, M., et al., 2016. Long-Lived, Stationary Magmatism and Pulsed Porphyry Systems during Tethyan Subduction to Post-Collision Evolution in the Southern-most Lesser Caucasus, Armenia and Nakhitchevan. Gondwana Research, 37: 465–503. https://doi.org/10.1016/j.gr.2015.10.009 |
Moyen, J. F., Janoušek, V., Laurent, O., et al., 2021. Crustal Melting vs. Fractionation of Basaltic Magmas: Part 1, Granites and Paradigms. Lithos, 402/403: 106291. https://doi.org/10.1016/j.lithos.2021.106291 |
Muntean, J. L., Einaudi, M. T., 2000. Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile. Economic Geology, 95(7): 1445–1472. https://doi.org/10.2113/gsecongeo.95.7.1445 |
Niu, P. P., Jiang, S. Y., 2023. Geochronology and Geochemistry of Wangjiadashan Quartz Syenite Porphyry in Suizao Area of Hubei Province in the Tongbai-Dabie Orogenic Belt. Journal of Earth Science, 34(3): 790–805. https://doi.org/10.1007/s12583-020-1383-x |
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956 |
Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343 |
Pearce, J. A., Baker, P. E., Harvey, P. K., et al., 1995. Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc. Journal of Petrology, 36(4): 1073–1109. https://doi.org/10.1093/petrology/36.4.1073 |
Peate, D. W., Pearce, J. A., 1998. Causes of Spatial Compositional Variations in Mariana Arc Lavas: Trace Element Evidence. Island Arc, 7(3): 479–495. https://doi.org/10.1111/j.1440-1738.1998.00205.x |
Peng, Y. B., Yu, S. Y., Zhang, J. X., et al., 2017a. Early Paleozoic Arc Magmatism and Metamorphism in the Northern Qilian Block, Western China: Petrological and Geochronological Constraints. Geological Journal, 52(S1): 339–364. https://doi.org/10.1002/gj.3041 |
Peng, Y. B., Yu, S. Y., Zhang, J. X., et al., 2017b. Early Paleozoic Arc Magmatism and Metamorphism in the Northern Qilian Block, Western China: A Case Study of Menyuan-Kekeli. Acta Petrologica Sinica, 33(12): 3925–3941 (in Chinese with English Abstract) |
Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491–1521. https://doi.org/10.1093/petrology/37.6.1491 |
Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3/4): 197–218. https://doi.org/10.1016/s0301-9268(03)00095-0 |
Qiu, K. F., Deng, J., Taylor, R. D., et al., 2016. Paleozoic Magmatism and Porphyry Cu-Mineralization in an Evolving Tectonic Setting in the North Qilian Orogenic Belt, NW China. Journal of Asian Earth Sciences, 122: 20–40. https://doi.org/10.1016/j.jseaes.2016.02.007 |
Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335–356. https://doi.org/10.1016/s0009-2541(99)00106-0 |
Richards, J. P., 2011. High Sr/Y Arc Magmas and Porphyry Cu ± Mo ± Au Deposits: Just Add Water. Economic Geology, 106(7): 1075–1081. https://doi.org/10.2113/econgeo.106.7.1075 |
Richards, J. P., 2015. Tectonic, Magmatic, and Metallogenic Evolution of the Tethyan Orogen: From Subduction to Collision. Ore Geology Reviews, 70: 323–345. https://doi.org/10.1016/j.oregeorev.2014.11.009 |
Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297–312. https://doi.org/10.1007/s00410-009-0478-2 |
Shao, Y. J., Tan, H. J., Peng, G. X., et al., 2019. Geology, Fluid Inclusions and Stable Isotopes of the Xialiugou Polymetallic Deposit in North Qilian, Northwest China: Constraints on Its Metallogenesis. Minerals, 9(8): 478. https://doi.org/10.3390/min9080478 |
Sillitoe, R. H., 2000. Gold-Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery. SEG Reviews, 13: 315–345. https://doi.org/10.5382/rev.13.09 |
Sillitoe, R. H., 2002. Some Metallogenic Features of Gold and Copper Deposits Related to Alkaline Rocks and Consequences for Exploration. Mineralium Deposita, 37(1): 4–13. https://doi.org/10.1007/s00126-001-0227-6 |
Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3 |
Sillitoe, R. H., Tolman, J., Van Kerkvoort, G., 2013. Geology of the Caspiche Porphyry Gold-Copper Deposit, Maricunga Belt, Northern Chile. Economic Geology, 108(4): 585–604. https://doi.org/10.2113/econgeo.108.4.585 |
Song, S. G., Niu, Y. L., Su, L., et al., 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378–1401. https://doi.org/10.1016/j.gr.2012.02.004 |
Spitz, G., Darling, R., 1978. Major and Minor Element Lithogeochemical Anomalies Surrounding the Louvem Copper Deposit, Val d'Or, Quebec. Canadian Journal of Earth Sciences, 15(7): 1161–1169. https://doi.org/10.1139/e78-122 |
Sun, H. T., 1992. A General Review of Volcanogenic Massive Sulphide Deposits in China. Ore Geology Reviews, 7(1): 43–71. https://doi.org/10.1016/0169-1368(92)90018-g |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313–345. |
Tatsumi, Y., Takahashi, T., Hirahara, Y., et al., 2008. New Insights into Andesite Genesis: The Role of Mantle-Derived Calc-Alkalic and Crust-Derived Tholeiitic Melts in Magma Differentiation beneath Zao Volcano, NE Japan. Journal of Petrology, 49(11): 1971–2008. https://doi.org/10.1093/petrology/egn055 |
Tseng, C. Y., Yang, H. J., Yang, H. Y., et al., 2009. Continuity of the North Qilian and North Qinling Orogenic Belts, Central Orogenic System of China: Evidence from newly Discovered Paleozoic Adakitic Rocks. Gondwana Research, 16: 285–293. https://doi.org/10.1016/j.gr.2009.04.003 |
Vernon, R. H., 1984. Microgranitoid Enclaves in Granites—Globules of Hybrid Magma Quenched in a Plutonic Environment. Nature, 309: 438–439. https://doi.org/10.1038/309438a0 |
Vila, T., Sillitoe, R. H., Betzhold, J., et al., 1991. The Porphyry Gold Deposit at Marte, Northern Chile. Economic Geology, 86(6): 1271–1286. https://doi.org/10.2113/gsecongeo.86.6.1271 |
Wang, C., Zhang, Q., Qian, Q., et al., 2005. Geochemistry of the Early Paleozoic Baiyin Volcanic Rocks (NW China): Implications for the Tectonic Evolution of the North Qilian Orogenic Belt. Journal of Geology, 113: 83–94. https://doi.org/10.1086/425970 |
Wang, G. Q., Li, X. M., Xu, X. Y., et al., 2011. LA-ICP-MS U-Pb Dating of Zircons from Basic Volcanic Rocks in the Honggou Copper Polymetallic Deposit, Menyuan Area, Qinghai. Geological Bulletin of China, 30(7): 1060–1065 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2011.07.008 |
Wang, N., Wu, C. L., Lei, M., et al., 2017. Geochronology and Petrogenesis of Granite in Shibaocheng Area from the North Qilian Orogenic Belt. Acta Petrologica Sinica, 33(12): 3909–3924 (in Chinese with English Abstract) |
Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122–143. https://doi.org/10.1016/j.earscirev.2018.02.019 |
Wang, X. H., Lang, X. H., Turlin, F., et al., 2024. Copper Behavior in Arc-Back-Arc Systems: Insights into the Porphyry Cu Metallogeny of the Gangdese Belt, Southern Tibet. Mineralium Deposita, 59(1): 133–154. https://doi.org/10.1007/s00126-023-01199-3 |
Wang, Y. C., Li, H., Liu, J. S., et al., 2020. Genesis of W-Mo Mineralization in the Xiaoliugou and Ta'ergou Ore Fields, North Qilian Orogen (NW China): Constraints from Fluid Inclusions and S-Pb H O Nd Isotopes. Ore Geology Reviews, 124: 103649. https://doi.org/10.1016/j.oregeorev.2020.103649 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202 |
Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London. https://doi.org/10.1007/978-1-4020 |
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2 |
Winter, J. D., 2010. Principles of Igneous and Metamorphic Petrology, Second Edition. Prentice Hall, New Jersey |
Wu, C., Li, J., Zuza, A. V., et al., 2022. Proterozoic–Phanerozoic Tectonic Evolution of the Qilian Shan and Eastern Kunlun Range, Northern Tibet. GSA Bulletin, 134(9/10): 2179–2205. https://doi.org/10.1130/b36306.1 |
Wu, C. L., Gao, Y. H., Frost, B. R., et al., 2011. An Early Palaeozoic Double-Subduction Model for the North Qilian Oceanic Plate: Evidence from Zircon SHRIMP Dating of Granites. International Geology Review, 53(2): 157–181. https://doi.org/10.1080/00206810902965346 |
Wu, C. L., Xu, X. Y., Gao, Q. M., et al., 2010. Early Palaezoic Granitoid Magmatism and Tectonic Evolution in North Qilian, NW China. Acta Petrologica Sinica, 26: 1027–1044 (in Chinese with English Abstract) |
Wu, C. L., Yang, J. S., Yang, H. Y., et al., 2004. Two Types of Ⅰ-Type Granite Dating and Geological Significance from North Qilian. NW China. Acta Petrologica Sinica, 20(3): 425–432 (in Chinese with English Abstract) |
Wu, C. L., Yao, S. Z., Yang, J. S., et al., 2006. Double-Subduction of the Early Paleozoic North Qilian, NW China. Geology in China, 33(6): 1197–1208 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-3657.2006.06.002 |
Wu, J. R., Yu, P. S., Ren, B. C., 2001. Geological Characteristics and Comprehensive Metallogenic Model of Copper and/or Zinc Sulfide Deposits in Shijuli Area, North Qilian Mountains. Mineral Deposits, 4: 339–346 (in Chinese with English Abstract) |
Xia, L. Q., Li, X. M., Yu, J. Y., et al., 2016. Mid–Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilianshan, NW China. GeoResJ, 9: 1–41. https://doi.org/10.1016/j.grj.2016.06.001 |
Xia, X. H., Song, S. G., Niu, Y. L., 2012. Tholeiite-Boninite Terrane in the North Qilian Suture Zone: Implications for Subduction Initiation and Back-Arc Basin Development. Chemical Geology, 328: 259–277. https://doi.org/10.1016/j.chemgeo.2011.12.001 |
Xiong, L., Song, S. G., Su, L., et al., 2023. Detrital Zircons from High-Pressure Trench Sediments (Qilian Orogen): Constraints on Continental-Arc Accretion, Subduction Initiation and Polarity of the Proto-Tethys Ocean. Gondwana Research, 113: 194–209. https://doi.org/10.1016/j.gr.2022.11.005 |
Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111. https://doi.org/10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 doi: 10.1130/0091-7613(2002)0301111:oomair>2.0.co;2 |
Xu, W. C., 2007. U-Pb Zircon Geochronology, Geochemical and Sr-Nd-Pb Isotopic Compositions of the Hualong Group in Qilian Mountains: Constraints on Tectonic Evolution of Crustal Basement: [Dissertation]. China University of Geosciences, Wuhan. 39 (in Chinese with English Abstract) |
Xu, Z. H., Ma, Y. J., Cao, J. H., et al., 2019. Analysis on Metallogenic Geological Characteristics and Prospecting Potential of the Balahatu-Baitougou Area, Qinghai. Mineral Exploration, 10(9): 2180–2186 (in Chinese with English Abstract) doi: 10.3969/j.issn.1674-7801.2019.09.007 |
Yan, M. Q., Li, G. M., Shi, W. J., et al., 2024. Recognizing Crystal Accumulation in Plutonic System: Evidence from Mafic Microgranular Enclaves in Early Silurian Qingshan Granodiorite, North Qilian Orogenic Belt, NW China. Lithos, 468/469: 107518. https://doi.org/10.1016/j.lithos.2024.107518 |
Yan, Z., Xiao, W. J., Windley, B. F., et al., 2010. Silurian Clastic Sediments in the North Qilian Shan, NW China: Chemical and Isotopic Constraints on Their Forearc Provenance with Implications for the Paleozoic Evolution of the Tibetan Plateau. Sedimentary Geology, 231(3/4): 98–114. https://doi.org/10.1016/j.sedgeo.2010.09.001 |
Yang, X. Q., Zhang, Z. H., Duan, S. G., et al., 2015. Petrological and Geochemical Features of the Jingtieshan Banded Iron Formation (BIF): A Unique Type of BIF from the Northern Qilian Orogenic Belt, NW China. Journal of Asian Earth Sciences, 113: 1218–1234. https://doi.org/10.1016/j.jseaes.2015.03.024 |
Yang, X. Q., Zhang, Z. H., Guo, S. F., et al., 2016. Geochronological and Geochemical Studies of the Metasedimentary Rocks and Diabase from the Jingtieshan Deposit, North Qilian, NW China: Constraints on the Associated Banded Iron Formations. Ore Geology Reviews, 73: 42–58. https://doi.org/10.1016/j.oregeorev.2015.10.018 |
Yang, X. Q., Zhang, Z. H., Jiang, Z. S., et al., 2018a. Geochronology, Petrogenesis and Tectonic Significance of Huashugou Granitoids in North Qilian, NW China. Lithos, 314/315: 497–505. https://doi.org/10.1016/j.lithos.2018.06.023 |
Yang, X. Q., Zhang, Z. H., Santosh, M., et al., 2018b. Hydrothermal Copper Mineralization in the Mesoproterozoic Huashugou Banded Iron Formation, Northwest China: Characteristics, Timing of Formation and Genesis. Ore Geology Reviews, 102: 776–790. https://doi.org/10.1016/j.oregeorev.2018.10.005 |
Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China. Special Publications of the Society of Economic Geologists, 22: 133–187. https://doi.org/10.5382/sp.22.05 |
Yu, S. Y., Zhang, J. X., Qin, H. P., et al., 2015. Petrogenesis of the Early Paleozoic Low-Mg and High-Mg Adakitic Rocks in the North Qilian Orogenic Belt, NW China: Implications for Transition from Crustal Thickening to Extension Thinning. Journal of Asian Earth Sciences, 107: 122–139. https://doi.org/10.1016/j.jseaes.2015.04.018 |
Zhang, H. F., Zhang, B. R., Harris, N., et al., 2006. U-Pb Zircon SHRIMP Ages, Geochemical and Sr-Nd-Pb Isotopic Compo-sitions of Intrusive Rocks from the Longshan-Tianshui Area in the Southeast Corner of the Qilian Orogenic Belt, China: Constraints on Petrogenesis and Tectonic Affinity. Journal of Asian Earth Sciences, 27(6): 751–764. https://doi.org/10.1016/j.jseaes.2005.07.008 |
Zhang, J. X., Mattinson, C., Yu, S. Y., et al., 2019. Two Contrasting Accretion v. Collision Orogenies: Insights from Early Paleozoic Polyphase Metamorphism in the Altun-Qilian-North Qaidam Orogenic System, NW China. Geological Society, London, Special Publications, 474(1): 153–181. https://doi.org/10.1144/sp474.8 |
Zhang, L. Q., Zhang, H. F., Zhang, S. S., et al., 2017. Lithospheric Delamination in Post-Collisional Setting: Evidence from Intrusive Magmatism from the North Qilian Orogen to Southern Margin of the Alxa Block, NW China. Lithos, 288/289: 20–34. https://doi.org/10.1016/j.lithos.2017.07.009 |
Zhao, X. M., Zhang, Z. H., Liu, M., et al., 2014. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Xiaoliugou in the Western of the North Qilian. Acta Petrologica Sinica, 30: 16–34 (in Chinese with English Abstract) |
Zheng, Y., Ding, Z. J., Cawood, P. A., et al., 2017. Geology, Geochronology and Isotopic Geochemistry of the Xiaoliugou W-Mo Ore Field in the Qilian Orogen, NW China: Case Study of a Skarn System Formed during Continental Collision. Ore Geology Reviews, 81: 575–586. https://doi.org/10.1016/j.oregeorev.2016.01.013 |
Zou, H. B., 2007. Quantitative Geochemistry. Imperial College Press, London. https://doi.org/10.1142/9781860948206_fmatter |