Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 3
Jun 2025
Turn off MathJax
Article Contents
Shaohua Gao, Yang Gao, Yueping Yin, Bin Li, Wenpei Wang, Tiantian Zhang, Haoyuan Gao. Characteristics of Massive Glacier-Related Watershed Geohazard Chains in the Eastern Himalayan Syntaxis, China. Journal of Earth Science, 2025, 36(3): 1181-1197. doi: 10.1007/s12583-024-0116-y
Citation: Shaohua Gao, Yang Gao, Yueping Yin, Bin Li, Wenpei Wang, Tiantian Zhang, Haoyuan Gao. Characteristics of Massive Glacier-Related Watershed Geohazard Chains in the Eastern Himalayan Syntaxis, China. Journal of Earth Science, 2025, 36(3): 1181-1197. doi: 10.1007/s12583-024-0116-y

Characteristics of Massive Glacier-Related Watershed Geohazard Chains in the Eastern Himalayan Syntaxis, China

doi: 10.1007/s12583-024-0116-y
More Information
  • Corresponding author: Yang Gao, 737263992@qq.com; Yueping Yin, cug1952@cug.edu.cn
  • Received Date: 15 Nov 2024
  • Accepted Date: 24 Jan 2025
  • Available Online: 11 Jun 2025
  • Issue Publish Date: 30 Jun 2025
  • Frequent glacier-related watershed geohazard chains are causing severe damage to life and infrastructure, reported consistently from the Eastern Himalayan Syntaxis. This paper presents a systematic method for researching geohazard, from regional to individual scale. The methodology includes the establishment of geological chain inventories, discrimination of geohazard chain modes, analyses of dynamics and dam breaches, and risk assessments. The following results were obtained: (1) In the downstream of Yarlung Zangbo River, 175 sites were identified as high-risk for river blockage disasters, indicating the development of watershed geohazards. Five geohazard chain modes were summarized by incorporating geomorphological characteristics, historical events, landslide zoning, and materials. The risk areas of typical hazard were identified and assessed using InSAR data. (2) Glacier-related watershed geohazard chains are significantly different from traditional landslides. A detailed inversion analysis was conducted on the massive rock-ice avalanche in the Sedongpu gully in 2021. This particular event lasted roughly 300 seconds, with a maximum flow velocity of 77.2 m/s and a maximum flow height of 93 meters. By scrutinizing the dynamic processes and mechanical characteristics, mobility stages and phase transitions can be divided into four stages. (3) Watershed geohazard chains tend to block rivers. The peak breach discharge of the Yigong Landslide reached 12.4 × 104 m3/s, which is 36 times the volume of the seasonal flood discharge in the Yigong River. Megafloods caused by landslide dam breaches have significantly shaped the geomorphology. This study offers insights into disaster patterns and the multi-staged movement characteristics of glacier-related watershed geohazard chains, providing a comprehensive method for investigations and assessments in glacial regions.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Alean, J., 1985. Ice Avalanches: Some Empirical Information about Their Formation and Reach. Journal of Glaciology, 31(109): 324–333. https://doi.org/10.3189/s0022143000006663
    Bai, L., Jiang, Y., Mori, J., 2023. Source Processes Associated with the 2021 Glacier Collapse in the Yarlung Tsangpo Grand Canyon, Southeastern Tibetan Plateau. Landslides, 20(2): 421–426. https://doi.org/10.1007/s10346-022-02002-6
    Chen, C., Zhang, L. M., Xiao, T., et al., 2020. Barrier Lake Bursting and Flood Routing in the Yarlung Tsangpo Grand Canyon in October 2018. Journal of Hydrology, 583: 124603. https://doi.org/10.1016/j.jhydrol.2020.124603
    Colgan, W., Rajaram, H., Abdalati, W., et al., 2016. Glacier Crevasses: Observations, Models, and Mass Balance Implications. Reviews of Geophysics, 54(1): 119–161. https://doi.org/10.1002/2015rg000504
    Cook, K. L., Andermann, C., Gimbert, F., et al., 2018. Glacial Lake Outburst Floods as Drivers of Fluvial Erosion in the Himalaya. Science, 362(6410): 53–57. https://doi.org/10.1126/science.aat4981
    Delaney, K. B., Evans, S. G., 2015. The 2000 Yigong Landslide (Tibetan Plateau), Rockslide-Dammed Lake and Outburst Flood: Review, Remote Sensing Analysis, and Process Modelling. Geomorphology, 246: 377–393. https://doi.org/10.1016/j.geomorph.2015.06.020
    Ding, L., Zhong, D. L., Yin, A., et al., 2001. Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192(3): 423–438. https://doi.org/10.1016/s0012-821x(01)00463-0
    Ding, Y. J., Liu, S. Y., Li, J., et al., 2006. The Retreat of Glaciers in Response to Recent Climate Warming in Western China. Annals of Glaciology, 43: 97–105. https://doi.org/10.3189/172756406781812005
    Evans, S. G., 2006. The Formation and Failure of Landslide Dams: An Approach to Risk Assessment. Italian Journal of Engineering Geology and Environment, 1: 15–19. https://doi.org/10.4408/ijege.2006-01.s-02
    Evans, S. G., Clague, J. J., 1988. Catastrophic Rock Avalanches in Glacial Environments. 5th International Symposium on Land-slides. A. A. Balkema, Rotterdam. 2: 1153–1158
    Evans, S. G., Delaney, K. B., 2011. Characterization of the 2000 Yigong Zangbo River (Tibet) Landslide Dam and Impoundment by Remote Sensing. Natural and Artificial Rockslide Dams. Springer, Berlin, Heidelberg. 543–559. https://doi.org/10.1007/978-3-642-04764-0_22
    Finnegan, N. J., Hallet, B., Montgomery, D. R., et al., 2008. Coupling of Rock Uplift and River Incision in the Namche Barwa-Gyala Peri Massif, Tibet. Geological Society of America Bulletin, 120(1/2): 142–155. https://doi.org/10.1130/b26224.1
    Gao, S. H., Yin, Y. P., Li, B., et al., 2024. Dynamic Characteristics of the Long Runout Rock-Ice Avalanche at High Altitude—A Case from the Zelongnong Basin, Eastern Himalayan Syntaxis, China. Acta Geologica Sinica—English Edition, 98(5): 1376–1393. https://doi.org/10.1111/1755-6724.15207
    Gao, Y., Li, B., Gao, H. Y., et al., 2023. Risk Assessment of the Sedongpu High-Altitude and Ultra-Long-Runout Landslide in the Lower Yarlung Zangbo River, China. Bulletin of Engineering Geology and the Environment, 82: 360. https://doi.org/10.1007/s10064-023-03374-2
    Gao, Y., Li, B., Zhang, H., et al., 2024a. Numerical Modeling of Mixed Two-Phase in Long Runout Flow-Like Landslide Using LPF3D. Landslides, 21: 641–660. https://doi.org/10.1007/s10346-023-02159-8
    Gao, Y., Yin, Y. P., Li, B., et al., 2024b. Multistate Transition and Coupled Solid-Liquid Modeling of Motion Process of Long-Runout Landslide. Journal of Rock Mechanics and Geotechnical Engineering, 16(7): 2694–2714. https://doi.org/10.1016/j.jrmge.2023.12.001
    Geertsema, M., Clague, J. J., Schwab, J. W., et al., 2006. An Overview of Recent Large Catastrophic Landslides in Northern British Columbia, Canada. Engineering Geology, 83(1/2/3): 120–143. https://doi.org/10.1016/j.enggeo.2005.06.028
    Gilany, N., Iqbal, J., 2019. Simulation of Glacial Avalanche Hazards in Shyok Basin of Upper Indus. Scientific Reports, 9: 20077. https://doi.org/10.1038/s41598-019-56523-7
    He, X. R., Yin, Y. P., Zhao, L. M., et al., 2024. Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test. Earth Science, 49(7): 2650–2661. https://doi.org/10.3799/dqkx.2023.021 (in Chinese with English Abstract)
    Hewitt, K., Clague, J. J., Orwin, J. F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1/2): 1–38. https://doi.org/10.1016/j.earscirev.2007.10.002
    Huang, Y. D., Xu, C., Zhang, X. L., et al., 2021. An Updated Database and Spatial Distribution of Landslides Triggered by the Milin, Tibet Mw 6.4 Earthquake of 18 November 2017. Journal of Earth Science, 32: 1069–1078. https://doi.org/10.1007/s12583-021-1433-z
    Huggel, C., Salzmann, N., Allen, S., et al., 2010. Recent and Future Warm Extreme Events and High-Mountain Slope Stability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 368(1919): 2435–2459. https://doi.org/10.1098/rsta.2010.0078
    Jafari, M. K., Amini Hosseini, K., Pellet, F., et al., 2003. Evaluation of Shear Strength of Rock Joints Subjected to Cyclic Loading. Soil Dynamics and Earthquake Engineering, 23(7): 619–630. https://doi.org/10.1016/s0267-7261(03)00063-0
    Jiang, S. H., Xiong, W., Zhu, G. Y., et al., 2024. Probabilitic Analysis of Reservoir Landslides Considering the Spatial Variation of Seepage Parameters under the Conditions of Rainstorm and Sudden Drop of Water Level. Earth Science, 49(5): 1679–1691. https://doi.org/10.3799/dqkx.2022.361 (in Chinese with English Abstract)
    Jibson, R. W., Harp, E. L., Schulz, W., et al., 2006. Large Rock Avalanches Triggered by the M 7.9 Denali Fault, Alaska, Earthquake of 3 November 2002. Engineering Geology, 83(1/2/3): 144–160. https://doi.org/10.1016/j.enggeo.2005.06.029
    Jin, X. P., 2019. Reviews and Reflections on Emergency Response Countermeasures for Barrier Lakes in Jinsha River and Yarlung Zangbo River. Yangtze River, 50(3): 5–9. https://doi.org/10.16232/j.cnki.1001-4179.2019.03.002 (in Chinese with English Abstract)
    Kääb, A., Jacquemart, M., Gilbert, A., et al., 2021. Sudden Large-Volume Detachments of Low-Angle Mountain Glaciers-More Frequent than Thought? The Cryosphere, 15(4): 1751–1785. https://doi.org/10.5194/tc-15-1751-2021
    Kamran, M., Hu, X. W., Hussain, M. A., et al., 2023. Dynamic Response and Deformation Behavior of Kadui-2 Landslide Influenced by Reservoir Impoundment and Rainfall, Baoxing, China. Journal of Earth Science, 34: 911–923. https://doi.org/10.1007/s12583-022-1649-6
    Kattel, P., Kafle, J., Fischer, J. T., et al., 2018. Interaction of Two-Phase Debris Flow with Obstacles. Engineering Geology, 242: 197–217. https://doi.org/10.1016/j.enggeo.2018.05.023
    Korup, O., Montgomery, D. R., 2008. Tibetan Plateau River Incision Inhibited by Glacial Stabilization of the Tsangpo Gorge. Nature, 455(7214): 786–789. https://doi.org/10.1038/nature07322
    Larsen, I. J., Montgomery, D. R., 2012. Landslide Erosion Coupled to Tectonics and River Incision. Nature Geoscience, 5: 468–473. https://doi.org/10.1038/ngeo1479
    Legros, F., 2002. The Mobility of Long-Runout Landslides. Engineering Geology, 63(3/4): 301–331. https://doi.org/10.1016/s0013-7952(01)00090-4
    Liu, W. M., Lai, Z. P., Hu, K. H., et al., 2015. Age and Extent of a Giant Glacial-Dammed Lake at Yarlung Tsangpo Gorge in the Tibetan Plateau. Geomorphology, 246: 370–376. https://doi.org/10.1016/j.geomorph.2015.06.034
    Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35: 583–596. https://doi.org/10.1007/s12583-022-1625-1
    Margreth, S., Funk, M., Tobler, D., et al., 2017. Analysis of the Hazard Caused by Ice Avalanches from the Hanging Glacier on the Eiger West Face. Cold Regions Science and Technology, 144: 63–72. https://doi.org/10.1016/j.coldregions.2017.05.012
    Mergili, M., Pudasaini, S. P., Emmer, A., et al., 2020. Reconstruction of the 1941 GLOF Process Chain at Lake Palcacocha (Cordillera Blanca, Peru). Hydrology and Earth System Sciences, 24(1): 93–114. https://doi.org/10.5194/hess-24-93-2020
    Montgomery, D. R., Hallet, B., Liu, Y. P., et al., 2004. Evidence for Holocene Megafloods down the Tsangpo River Gorge, Southeastern Tibet. Quaternary Research, 62(2): 201–207. https://doi.org/10.1016/j.yqres.2004.06.008
    Nicoletti, P. G., Sorriso-Valvo, M., 1991. Geomorphic Controls of the Shape and Mobility of Rock Avalanches. Geological Society of America Bulletin, 103(10): 1365–1373. https://doi.org/10.1130/0016-7606(1991)1031365:gcotsa>2.3.co;2 doi: 10.1130/0016-7606(1991)1031365:gcotsa>2.3.co;2
    Okura, Y., Kitahara, H., Kawanami, A., et al., 2003. Topography and Volume Effects on Travel Distance of Surface Failure. Engineering Geology, 67(3/4): 243–254. https://doi.org/10.1016/s0013-7952(02)00183-7
    Pandey, P., Ali, S. N., Champati Ray, P. K., 2021. Glacier-Glacial Lake Interactions and Glacial Lake Development in the Central Himalaya, India (1994–2017). Journal of Earth Science, 32(6): 1563–1574. https://doi.org/10.1007/s12583-020-1056-9
    Plafker, G., Ericksen, G. E., 1978. Nevados Huascarán Avalanches, Peru. Developments in Geotechnical Engineering, 14: 277–314. https://doi.org/10.1016/b978-0-444-41507-3.50016-7
    Ramachandra Rao, M. B., 1952. A Compilation of Papers on the Assam Earthquake of August 15, 1950. Central Board of Geophysics, Calcutta
    Rodríguez-Morata, C., Villacorta, S., Stoffel, M., et al., 2019. Assessing Strategies to Mitigate Debris-Flow Risk in Abancay Province, South-Central Peruvian Andes. Geomorphology, 342: 127–139. https://doi.org/10.1016/j.geomorph.2019.06.012
    Schneider, D., Huggel, C., Haeberli, W., et al., 2011. Unraveling Driving Factors for Large Rock-Ice Avalanche Mobility. Earth Surface Processes and Landforms, 36(14): 1948–1966. https://doi.org/10.1002/esp.2218
    Shang, Y. J., Yang, Z. F., Li, L. H., et al., 2003. A Super-Large Landslide in Tibet in 2000: Background, Occurrence, Disaster, and Origin. Geomorphology, 54(3/4): 225–243. https://doi.org/10.1016/s0169-555x(02)00358-6
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677. https://doi.org/10.1126/science.105978
    Tian, J. J., Li, T. T., Pei, X. J., et al., 2024. Experimental Study on Multistage Seismic Damage Process of Bedding Rock Slope: A Case Study of the Xinmo Landslide. Journal of Earth Science, 35: 1594–1612. https://doi.org/10.1007/s12583-023-1829-z
    Turzewski, M. D., Huntington, K. W., LeVeque, R. J., 2019. The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. Journal of Geophysical Research: Earth Surface, 124(5): 1056–1079. https://doi.org/10.1029/2018JF004778
    Veettil, B. K., Kamp, U., 2021. Glacial Lakes in the Andes under a Changing Climate: A Review. Journal of Earth Science, 32(6): 1575–1593. https://doi.org/10.1007/s12583-020-1118-z
    Voight, B., 1989. A Relation to Describe Rate-Dependent Material Failure. Science, 243(4888): 200–203. https://doi.org/10.1126/science.243.4888.200
    Wang, M., Wang, X. Y., Pan, B. T., et al., 2023. Multiple Paleolakes Caused by Glacier River-Blocking on the Southeastern Tibetan Plateau in Response to Climate Changes since the Last Glacial Maximum. Quaternary Science Reviews, 305: 108012. https://doi.org/10.1016/j.quascirev.2023.108012
    Wasowski, J., Bovenga, F., 2014. Investigating Landslides and Unstable Slopes with Satellite Multi Temporal Interferometry: Current Issues and Future Perspectives. Engineering Geology, 174: 103–138. https://doi.org/10.1016/j.enggeo.2014.03.003
    Xu, Q., Shang, Y. J., van Asch, T., et al., 2012. Observations from the Large, Rapid Yigong Rock Slide-Debris Avalanche, Southeast Tibet. Canadian Geotechnical Journal, 49(5): 589–606. https://doi.org/10.1139/t2012-021
    Yang, W., Wang, Z. Y., An, B. S., et al., 2023. Early Warning System for Ice Collapses and River Blockages in the Sedongpu Valley, Southeastern Tibetan Plateau. Natural Hazards and Earth System Sciences, 23(9): 3015–3029. https://doi.org/10.5194/nhess-23-3015-2023
    Yao, T. D., Xue, Y. K., Chen, D. L., et al., 2019. Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 100(3): 423–444. https://doi.org/10.1175/bams-d-17-0057.1
    Yin, Y. P., 2000. Research on the Characteristics and Disaster Reduction of Yigong Landslides in Bomi, Tibet. Hydrogeology and Engineering Geology, 27(4): 8–11. https://doi.org/10.3969/j.issn.1000-3665.2000.04.003 (in Chinese with English Abstract)
    Yin, Y. P., 2011. Recent Catastrophic Landslides and Mitigation in China. Journal of Rock Mechanics and Geotechnical Engineering, 3(1): 10–18. https://doi.org/10.3724/sp.j.1235.2011.00010
    Yin, Y. P., Gao, S. H., 2024. Research on High-Altitude and Long-Runout Rockslides: Review and Prospects. The Chinese Journal of Geological Hazard and Control, 35(1): 1–18. https://doi.org/10.16031/j.cnki.issn.1003-8035.202310006 (in Chinese with English Abstract)
    Yin, Y. P., Li, B., Gao, Y., et al., 2023. Geostructures, Dynamics and Risk Mitigation of High-Altitude and Long-Runout Rockslides. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 66–101. https://doi.org/10.1016/j.jrmge.2022.11.001
    Yin, Y. P., Liu, X. J., Zhao, C. Y., et al., 2022. Multi-Dimensional and Long-Term Time Series Monitoring and Early Warning of Landslide Hazard with Improved Cross-Platform SAR Offset Tracking Method. Science China Technological Sciences, 65(8): 1891–1912. https://doi.org/10.1007/s11431-021-2008-6
    Zhang, C. Y., Yin, Y. P., Yan, H., et al., 2024. Centrifuge Modeling of Unreinforced and Multi-Row Stabilizing Piles Reinforced Land-slides Subjected to Reservoir Water Level Fluctuation. Journal of Rock Mechanics and Geotechnical Engineering, 16(5): 1600–1614. https://doi.org/10.1016/j.jrmge.2023.09.025
    Zhang, T. T., Li, B., Gao, Y., et al., 2023. Massive Glacier-Related Geohazard Chains and Dynamics Analysis at the Yarlung Zangbo River Downstream of Southeastern Tibetan Plateau. Bulletin of Engineering Geology and the Environment, 82(11): 426. https://doi.org/10.1007/s10064-023-03423-w
    Zhao, C. X., Yang, W., Westoby, M., et al., 2022. Brief Communication: An Approximately 50 Mm3 Ice-Rock Avalanche on 22 March 2021 in the Sedongpu Valley, Southeastern Tibetan Plateau. The Cryosphere, 16(4): 1333–1340. https://doi.org/10.5194/tc-16-1333-2022
    Zou, Q., Cui, P., Jiang, H., et al., 2020. Analysis of Regional River Blocking by Debris Flows in Response to Climate Change. Science of the Total Environment, 741: 140262. https://doi.org/10.1016/j.scitotenv.2020.140262
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(5) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return