Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Pingping Zhang, Min Cai, Mingxian Han, Jibin Han, Xiying Zhang, Jian Yang, Hongchen Jiang. Increased Anoxia Promotes Organic Carbon Mineralization in Surface Sediments of Saline Lakes. Journal of Earth Science, 2025, 36(5): 2240-2250. doi: 10.1007/s12583-024-0155-4
Citation: Pingping Zhang, Min Cai, Mingxian Han, Jibin Han, Xiying Zhang, Jian Yang, Hongchen Jiang. Increased Anoxia Promotes Organic Carbon Mineralization in Surface Sediments of Saline Lakes. Journal of Earth Science, 2025, 36(5): 2240-2250. doi: 10.1007/s12583-024-0155-4

Increased Anoxia Promotes Organic Carbon Mineralization in Surface Sediments of Saline Lakes

doi: 10.1007/s12583-024-0155-4
More Information
  • Corresponding author: Hongchen Jiang, jiangh@cug.edu.cn
  • Received Date: 29 Jun 2024
  • Accepted Date: 03 Jan 2025
  • Available Online: 14 Oct 2025
  • Issue Publish Date: 30 Oct 2025
  • Global warming and human activities have reduced the concentrations of dissolved oxygen in the bottom water of lakes, resulting in increased anoxia in surface sediments. This increased anoxia likely alters carbon cycling processes (e.g., organic carbon mineralization) by altering microbial community composition and functions in lakes. However, it remains unclear how organic carbon mineralization responds to increased anoxia in surface sediments of lakes (particularly saline lakes). In this study, CO2 production in surface sediments of six lakes with different salinity (0.47–250 g/L) on the Tibetan Plateau was investigated using microcosm incubations under aerobic and anaerobic conditions, respectively, followed by geochemical and microbial analyses. The results showed that for the freshwater lake, CO2 production rates in anaerobic sediment microcosms were significantly (P < 0.05) lower than their aerobic counterparts. In contrast, an opposite trend was observed for CO2 production in saline lakes. Furthermore, the CO2 production rates decreased significantly (P < 0.05) under aerobic conditions, while it exhibited a hump-like relationship with increasing salinity under anaerobic conditions. Taken together, our results suggest that increased anoxia would enhance organic carbon mineralization in surface sediments of saline lakes and help understand carbon feedback on global changes in saline lakes.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S2; Figures S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0155-4.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abraham, A., Pedregosa, F., Eickenberg, M., et al., 2014. Machine Learning for Neuroirnaging with Scikit-Learn. Frontiers in Neuroinformatics, 8: 14. http://doi.org/10.3389/fninf.2014.00014
    Bastviken, D., Persson, L., Odham, G., et al., 2004. Degradation of Dissolved Organic Matter in Oxic and Anoxic Lake Water. Limnology and Oceanography, 49(1): 109–116. https://doi.org/10.4319/lo.2004.49.1.0109
    Belkin, P., Nechaeva, Y., Blinov, S., et al., 2024. Sediment Microbial Communities of a Technogenic Saline-Alkaline Reservoir. Heliyon, 10(13): e33640. https://doi.org/10.1016/j.heliyon.2024.e33640
    Buettner, S. W., Kramer, M. G., Chadwick, O. A., et al., 2014. Mobilization of Colloidal Carbon during Iron Reduction in Basaltic Soils. Geoderma, 221: 139–145. https://doi.org/10.1016/j.geoderma.2014.01.012
    Cai, M., Wang, B. C., Han, J. B., et al., 2024. Microbial Difference and Its Influencing Factors in Ice-Covered Lakes on the Three Poles. Environmental Research, 252: 118753. https://doi.org/10.1016/j.envres.2024.118753
    Caporaso, J. G., Lauber, C. L., Walters, W. A., et al., 2012. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. The ISME Journal, 6(8): 1621–1624. https://doi.org/10.1038/ismej.2012.8
    Chen, C., Hall, S. J., Coward, E., et al., 2020. Iron-Mediated Organic Matter Decomposition in Humid Soils Can Counteract Protection. Nat. Commun., 11(1): 2255. https://doi.org/10.1038/s41467-020-16071-5
    Cole, J. J., Prairie, Y. T., Caraco, N. F., et al., 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10(1): 172–185. https://doi.org/10.1007/s10021-006-9013-8
    Dai, Z., Liu, G., Chen, H., et al., 2020. Long-Term Nutrient Inputs Shift Soil Microbial Functional Profiles of Phosphorus Cycling in Diverse Agroecosystems. ISME J., 14(3): 757–770. https://doi.org/10.1038/s41396-019-0567-9
    Dixon, P., 2003. VEGAN, a Package of R Functions for Community Ecology. Journal of Vegetation Science, 14(6): 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
    Duarte, C. M., Prairie, Y. T., Montes, C., et al., 2008. CO2 Emissions from Saline Lakes: A Global Estimate of a Surprisingly Large Flux. Journal of Geophysical Research: Biogeosciences, 113(G4): 2007JG000637. https://doi.org/10.1029/2007jg000637
    Ellis-Evans, J. C., Bayliss, P. R., 2001. An Assessment of Carbon Oxidation Processes in Contrasting Maritime Antarctic Lakes. In 8th SCAR International Biology Symposium. Vrije Univ, Amsterdam. https://nora.nerc.ac.uk/id/eprint/17595
    Gao, G. Z., Li, G. L., Liu, M., et al., 2023. Changes in Soil Stoichiometry, Soil Organic Carbon Mineralization and Bacterial Community Assembly Processes across Soil Profiles. Science of the Total Environment, 903: 166408. https://doi.org/10.1016/j.scitotenv.2023.166408
    Han, M. X., Huang, J. R., Yang, J., et al., 2023. Distinct Assembly Mechanisms for Prokaryotic and Microeukaryotic Communities in the Water of Qinghai Lake. Journal of Earth Science, 34(4): 1189–1200. https://doi.org/10.1007/s12583-023-1812-8
    Hedges, J. I., Oades, J. M., 1997. Comparative Organic Geochemistries of Soils and Marine Sediments. Organic Geochemistry, 27(7/8): 319–361. https://doi.org/10.1016/S0146-6380(97)00056-9
    Huang, J. R., Yang, J., Han, M. X., et al., 2023. Microbial Carbon Fixation and Its Influencing Factors in Saline Lake Water. Science of the Total Environment, 877: 162922. https://doi.org/10.1016/j.scitotenv.2023.162922
    Huang, J. F., Yang, J., Jiang, H. C., et al., 2020. Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai-Tibetan Lakes. Front. Microbiol., 11: 1772. https://doi.org/10.3389/fmicb.2020.01772
    Huang, W. J., Hall, S. J., 2017. Elevated Moisture Stimulates Carbon Loss from Mineral Soils by Releasing Protected Organic Matter. Nat. Commun., 8(1): 1774. https://doi.org/10.1038/s41467-017-01998-z
    Huang, W. J., Wang, K. F., Ye, C. L., et al., 2021. High Carbon Losses from Oxygen-Limited Soils Challenge Biogeochemical Theory and Model Assumptions. Glob. Chang. Biol., 27(23): 6166–6180. https://doi.org/10.1111/gcb.15867
    Huang, W. J., Ye, C. L, Hockaday, W. C., et al., 2020. Trade-Offs in Soil Carbon Protection Mechanisms under Aerobic and Anaerobic Conditions. Glob. Chang. Biol., 26(6): 3726–3737. https://doi.org/10.1111/gcb.15100
    Isidorova, A., Bravo, A. G., Riise, G., et al., 2016. The Effect of Lake Browning and Respiration Mode on the Burial and Fate of Carbon and Mercury in the Sediment of Two Boreal Lakes. Journal of Geophysical Research: Biogeosciences, 121(1): 233–245. https://doi.org/10.1002/2015jg003086
    Jane, S. F., Hansen, G. J. A., Kraemer, B. M., et al., 2021. Widespread Deoxygenation of Temperate Lakes. Nature, 594(7861): 66–70. https://doi.org/10.1038/s41586-021-03550-y
    Jørgensen, B. B., Findlay, A. J., Pellerin, A., 2019. The Biogeochemical Sulfur Cycle of Marine Sediments. Front. Microbiol., 10: 849. https://doi.org/10.3389/fmicb.2019.00849
    Jørgensen, B. B., Wenzhöfer, F., Egger, M., et al., 2022. Sediment Oxygen Consumption: Role in the Global Marine Carbon Cycle. Earth-Science Reviews, 228: 103987. https://doi.org/10.1016/j.earscirev.2022.103987
    Keiluweit, M., Wanzek, T., Kleber, M., et al., 2017. Anaerobic Microsites Have an Unaccounted Role in Soil Carbon Stabilization. Nat. Commun., 8(1): 1771. https://doi.org/10.1038/s41467-017-01406-6
    Kosolapov, D. B., Rogozin, D. Y., Gladchenko, I. A., et al., 2003. Microbial Sulfate Reduction in a Brackish Meromictic Steppe Lake. Aquatic Ecology, 37(3): 215–226. https://doi.org/10.1023/a:1025871300917
    Krevs, A., Kucinskiene, A., 2012. Microbial Decomposition of Organic Matter in the Bottom Sediments of Small Lakes of the Urban Landscape (Lithuania). Microbiology, 81(4): 477–483. https://doi.org/10.1134/s0026261712040091
    Leloup, J., Loy, A., Knab, N. J., et al., 2007. Diversity and Abundance of Sulfate-Reducing Microorganisms in the Sulfate and Methane Zones of a Marine Sediment, Black Sea. Environ Microbiol, 9(1): 131–142. https://doi.org/10.1111/j.1462-2920.2006.01122.x
    Lewis, A. S. L., Lau, M. P., Jane, S. F., et al., 2024. Anoxia Begets Anoxia: A Positive Feedback to the Deoxygenation of Temperate Lakes. Glob Chang Biol, 30(1): e17046. https://doi.org/10.1111/gcb.17046
    Liang, C., Yang, B., Cao, Y. C., et al., 2024. Salinization Mechanism of Lakes and Controls on Organic Matter Enrichment: From Present to Deep-Time Records. Earth-Science Reviews, 251: 104720. https://doi.org/10.1016/j.earscirev.2024.104720
    Liu, K. H., Ding, X. W., Wang, H. F., et al., 2014. Eukaryotic Microbial Communities in Hypersaline Soils and Sediments from the Alkaline Hypersaline Huama Lake as Revealed by 454 Pyrosequencing. Antonie Van Leeuwenhoek, 105(5): 871–880. https://doi.org/10.1007/s10482-014-0141-4
    Liu, Q., Yang, J., Wang, B. C., et al., 2022. Influence of Salinity on the Diversity and Composition of Carbohydrate Metabolism, Nitrogen and Sulfur Cycling Genes in Lake Surface Sediments. Frontiers in Microbiology, 13: 1019010. https://doi.org/10.3389/fmicb.2022.1019010
    Liu, X. J., Zhang, Y., Li, P., et al., 2024. Siltation of Check Dams Alters Microbial Communities and thus Limits Organic Carbon Mineralization. Soil and Tillage Research, 236: 105949. https://doi.org/10.1016/j.still.2023.105949
    Lugato, E., Lavallee, J. M., Haddix, M. L., et al., 2021. Different Climate Sensitivity of Particulate and Mineral-Associated Soil Organic Matter. Nature Geoscience, 14(5): 295–300. https://doi.org/10.1038/s41561-021-00744-x
    Luo, M., Huang, J. F., Zhu, W. F., et al., 2019. Impacts of Increasing Salinity and Inundation on Rates and Pathways of Organic Carbon Mineralization in Tidal Wetlands: A Review. Hydrobiologia, 827(1): 31–49. https://doi.org/10.1007/s10750-017-3416-8
    Ma, J., He, F., Yan, X. C., et al., 2022. Stoichiometric Flexibility Regulates the Co-Metabolism Effect during Organic Carbon Mineralization in Eutrophic Lacustrine Sediments. Journal of Oceanology and Limnology, 40(5): 1974–1984. https://doi.org/10.1007/s00343-021-1261-0
    Ma, L., Wu, G., Yang, J., et al., 2021. Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Frontiers in Microbiology, 12: 569020. https://doi.org/10.3389/fmicb.2021.569020
    Maron, P. A., Sarr, A., Kaisermann, A., et al., 2018. High Microbial Diversity Promotes Soil Ecosystem Functioning. Appl Environ Microbiol, 84(9): e02738-17. https://doi.org/10.1128/aem.02738-17
    Messager, M. L., Lehner, B., Grill, G., et al., 2016. Estimating the Volume and Age of Water Stored in Global Lakes Using a Geo-Statistical Approach. Nat. Commun., 7: 13603. https://doi.org/10.1038/ncomms13603
    Naik, R., Naqvi, S. W. A., Araujo, J., 2017. Anaerobic Carbon Mineralisation through Sulphate Reduction in the Inner Shelf Sediments of Eastern Arabian Sea. Estuaries and Coasts, 40(1): 134–144. https://doi.org/10.1007/s12237-016-0130-0
    Ollivier, B., Caumette, P., Garcia, J. L., et al., 1994. Anaerobic Bacteria from Hypersaline Environments. Microbiol. Rev., 58(1): 27–38. https://doi.org/10.1128/mr.58.1.27-38.1994
    Oren, A., 2011. Thermodynamic Limits to Microbial Life at High Salt Concentrations. Environ Microbiol, 13(8): 1908–1923. https://doi.org/10.1111/j.1462-2920.2010.02365.x
    Pan, C. C., Liu, C. G., Zhao, H. L., et al., 2013. Changes of Soil Physico-Chemical Properties and Enzyme Activities in Relation to Grassland Salinization. European Journal of Soil Biology, 55: 13–19. https://doi.org/10.1016/j.ejsobi.2012.09.009
    Plugge, C. M., Zhang, W., Scholten, J. C., et al., 2011. Metabolic Flexibility of Sulfate-Reducing Bacteria. Front. Microbiol., 2: 81. https://doi.org/10.3389/fmicb.2011.00081
    Polymenakou, P. N., Stephanou, E. G., Tselepides, A., et al., 2007. Organic Matter Preservation and Microbial Community Accumulations in Deep-Hypersaline Anoxic Basins. Geomicrobiology Journal, 24(1): 19–29. https://doi.org/10.1080/01490450601134283
    Porter, D., Roychoudhury, A. N., Cowan, D., 2007. Dissimilatory Sulfate Reduction in Hypersaline Coastal Pans: Activity across a Salinity Gradient. Geochimica et Cosmochimica Acta, 71(21): 5102–5116. https://doi.org/10.1016/j.gca.2007.08.023
    Rath, K. M., Rousk, J., 2015. Salt Effects on the Soil Microbial Decomposer Community and Their Role in Organic Carbon Cycling: A Review. Soil Biology and Biochemistry, 81: 108–123. https://doi.org/10.1016/j.soilbio.2014.11.001
    Reed, H. E., Martiny, J. B., 2013. Microbial Composition Affects the Functioning of Estuarine Sediments. ISME J., 7(4): 868–879. https://doi.org/10.1038/ismej.2012.154
    Rovira, P., Vallejo, V. R., 2002. Labile and Recalcitrant Pools of Carbon and Nitrogen in Organic Matter Decomposing at Different Depths in Soil: An Acid Hydrolysis Approach. Geoderma, 107(1/2): 109–141. https://doi.org/10.1016/S0016-7061(01)00143-4
    Roychoudhury, A. N., Cowan, D., Porter, D., et al., 2013. Dissimilatory Sulphate Reduction in Hypersaline Coastal Pans: An Integrated Microbiological and Geochemical Study. Geobiology, 11(3): 224–233. https://doi.org/10.1111/gbi.12027
    Schmidt, M. L., Biddanda, B. A., Weinke, A. D., et al., 2020. Microhabitats Are Associated with Diversity-Productivity Relationships in Freshwater Bacterial Communities. FEMS Microbiol. Ecol., 96(4): fiaa029. https://doi.org/10.1093/femsec/fiaa029
    Schmidtko, S., Stramma, L., Visbeck, M., 2017. Decline in Global Oceanic Oxygen Content during the Past Five Decades. Nature, 542(7641): 335–339. https://doi.org/10.1038/nature21399
    Schütte, U. M., Cadieux, S. B., Hemmerich, C., et al., 2016. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake. Front. Microbiol., 7: 1035. https://doi.org/10.3389/fmicb.2016.01035
    Thompson, A., Chadwick, O. A., Boman, S., et al., 2006. Colloid Mobilization during Soil Iron Redox Oscillations. Environ. Sci. Technol., 40(18): 5743–5749. https://doi.org/10.1021/es061203b
    Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54(6part2): 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
    Woolway, R. I., Merchant, C. J., 2019. Worldwide Alteration of Lake Mixing Regimes in Response to Climate Change. Nature Geoscience, 12(4): 271–276. https://doi.org/10.1038/s41561-019-0322-x
    Xu, Q., Du, Z., Wang, L., et al., 2022. The Role of Thermokarst Lake Expansion in Altering the Microbial Community and Methane Cycling in Beiluhe Basin on Tibetan Plateau. Microorganisms, 10(8): 1620. https://doi.org/10.3390/microorganisms10081620
    Xu, Q. H., Wu, N., Wang, J., et al., 2023. Sedimentary Characteristics and Lake Basin Evolution of Salinized Lake Basin of Qingshuiying Formation in Yinchuan Basin. Earth Science, 48(1): 317–328. https://doi.org/10.3799/dqkx.2021.257 (in Chinese with English Abstract)
    Yang, J., Chen, Y., She, W. Y., et al., 2020. Deciphering Linkages between Microbial Communities and Priming Effects in Lake Sediments with Different Salinity. Journal of Geophysical Research: Biogeosciences, 125(11): e2019JG005611. https://doi.org/10.1029/2019jg005611
    Yang, J., Huang, L. Q., She, W. Y., et al., 2023a. Compositional Changes of Dissolved Organic Molecules along Water Flow and Their Influencing Factors in the Three Gorges Reservoir. Chemical Geology, 639: 121741. https://doi.org/10.1016/j.chemgeo.2023.121741
    Yang, J., Han, M. X., Wang, B. C., et al., 2023b. Predominance of Positive Priming Effects Induced by Algal and Terrestrial Organic Matter Input in Saline Lake Sediments. Geochimica et Cosmochimica Acta, 349: 126–134. https://doi.org/10.1016/j.gca.2023.04.005
    Yang, J., Han, M. X., Zhao, Z. L., et al., 2022a. Positive Priming Effects Induced by Allochthonous and Autochthonous Organic Matter Input in the Lake Sediments with Different Salinity. Geophysical Research Letters, 49(5): e2021GL096133. https://doi.org/10.1029/2021gl096133
    Yang, J., Han, M. X., Zhao, Z. L., et al., 2022b. Microbial Response to Multiple-Level Addition of Grass Organic Matter in Lake Sediments with Different Salinity. FEMS Microbiology Ecology, 98(4): fiac046. https://doi.org/10.1093/femsec/fiac046
    Yang, J., Jiang, H. C., Dong, H. L., et al., 2019. A Comprehensive Census of Lake Microbial Diversity on a Global Scale. Science China Life Sciences, 62(10): 1320–1331. https://doi.org/10.1007/s11427-018-9525-9
    Yang, J., Jiang, H. C., Sun, X. X., et al., 2021. Distinct Co-Occurrence Patterns of Prokaryotic Community between the Waters and Sediments in Lakes with Different Salinity. FEMS Microbiology Ecology, 97(1): fiaa234. https://doi.org/10.1093/femsec/fiaa234
    Yang, M. L., Liu, N., Wang, B. L., et al., 2024. Stepwise Degradation of Organic Matters Driven by Microbial Interactions in China's Coastal Wetlands: Evidence from Carbon Isotope Analysis. Water Research, 250: 121062. https://doi.org/10.1016/j.watres.2023.121062
    Yao, B, F., Yang, J., Lyu, Q. Y., et al., 2023. Organic Carbon Composition in Lake Sediments on the Qinghai-Tibet Plateau and the Influence on Microbial Community Structure. Acta Microbiologica Sinica, 63(6): 2291–2311 (in Chinese with English Abstract)
    Ye, Q., Wu, Y., Zhu, Z., et al., 2016. Bacterial Diversity in the Surface Sediments of the Hypoxic Zone near the Changjiang Estuary and in the East China Sea. Microbiologyopen, 5(2): 323–339. https://doi.org/10.1002/mbo3.330
    Yin, J. Q., Hu, W. L., Chen, A. Q., et al., 2024. Human-Caused Increases in Organic Carbon Burial in Plateau Lakes: The Response to Warming Effect. Science of the Total Environment, 937: 173556. https://doi.org/10.1016/j.scitotenv.2024.173556
    Yu, L. J., Cheng, Y., Wang, B., et al., 2023. Climate and Vegetation Codetermine the Increased Carbon Burial Rates in Tibetan Plateau Lakes during the Holocene. Quaternary Science Reviews, 310: 108118. https://doi.org/10.1016/j.quascirev.2023.108118
    Yu, Q., Wang, F., Yan, W., et al., 2018. Carbon and Nitrogen Burial and Response to Climate Change and Anthropogenic Disturbance in Chaohu Lake, China. Int. J. Environ. Res. Public Health, 15(12): E2734.. https://doi.org/10.3390/ijerph15122734
    Zhang, X. H., Zhang, C. M., Hartley, A., et al., 2023. Analysis of the Sedimentary Characteristics of a Modern Distributive Fluvial System: A Case Study of the Great Halten River in the Sugan Lake Basin, Qinghai, China. Journal of Earth Science, 34(4): 1249–1262. https://doi.org/10.1007/s12583-022-1715-0
    Zhang, Y., Wang, H. J., Hu, L. M., et al., 2024. Different Pacemakers of Marine Organic Carbon Burial in the North Yellow Sea from the Early to Late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 652: 112408. https://doi.org/10.1016/j.palaeo.2024.112408
    Zhao, Z., Zhao, Y., Marotta, F., et al., 2024. The Microbial Community Structure and Nitrogen Cycle of High-Altitude Pristine Saline Lakes on the Qinghai-Tibetan Plateau. Front Microbiol, 15: 1424368. https://doi.org/10.3389/fmicb.2024.1424368
    Zhou, J., Leavitt, P. R., Zhang, Y. B., et al., 2022. Anthropogenic Eutrophication of Shallow Lakes: Is It Occasional? Water Research, 221: 118728. https://doi.org/10.1016/j.watres.2022.118728
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(7) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return