Citation: | Pingping Zhang, Min Cai, Mingxian Han, Jibin Han, Xiying Zhang, Jian Yang, Hongchen Jiang. Increased Anoxia Promotes Organic Carbon Mineralization in Surface Sediments of Saline Lakes. Journal of Earth Science, 2025, 36(5): 2240-2250. doi: 10.1007/s12583-024-0155-4 |
Global warming and human activities have reduced the concentrations of dissolved oxygen in the bottom water of lakes, resulting in increased anoxia in surface sediments. This increased anoxia likely alters carbon cycling processes (e.g., organic carbon mineralization) by altering microbial community composition and functions in lakes. However, it remains unclear how organic carbon mineralization responds to increased anoxia in surface sediments of lakes (particularly saline lakes). In this study, CO2 production in surface sediments of six lakes with different salinity (0.47–250 g/L) on the Tibetan Plateau was investigated using microcosm incubations under aerobic and anaerobic conditions, respectively, followed by geochemical and microbial analyses. The results showed that for the freshwater lake, CO2 production rates in anaerobic sediment microcosms were significantly (
Abraham, A., Pedregosa, F., Eickenberg, M., et al., 2014. Machine Learning for Neuroirnaging with Scikit-Learn. Frontiers in Neuroinformatics, 8: 14. http://doi.org/10.3389/fninf.2014.00014 |
Bastviken, D., Persson, L., Odham, G., et al., 2004. Degradation of Dissolved Organic Matter in Oxic and Anoxic Lake Water. Limnology and Oceanography, 49(1): 109–116. https://doi.org/10.4319/lo.2004.49.1.0109 |
Belkin, P., Nechaeva, Y., Blinov, S., et al., 2024. Sediment Microbial Communities of a Technogenic Saline-Alkaline Reservoir. Heliyon, 10(13): e33640. https://doi.org/10.1016/j.heliyon.2024.e33640 |
Buettner, S. W., Kramer, M. G., Chadwick, O. A., et al., 2014. Mobilization of Colloidal Carbon during Iron Reduction in Basaltic Soils. Geoderma, 221: 139–145. https://doi.org/10.1016/j.geoderma.2014.01.012 |
Cai, M., Wang, B. C., Han, J. B., et al., 2024. Microbial Difference and Its Influencing Factors in Ice-Covered Lakes on the Three Poles. Environmental Research, 252: 118753. https://doi.org/10.1016/j.envres.2024.118753 |
Caporaso, J. G., Lauber, C. L., Walters, W. A., et al., 2012. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. The ISME Journal, 6(8): 1621–1624. https://doi.org/10.1038/ismej.2012.8 |
Chen, C., Hall, S. J., Coward, E., et al., 2020. Iron-Mediated Organic Matter Decomposition in Humid Soils Can Counteract Protection. Nat. Commun., 11(1): 2255. https://doi.org/10.1038/s41467-020-16071-5 |
Cole, J. J., Prairie, Y. T., Caraco, N. F., et al., 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10(1): 172–185. https://doi.org/10.1007/s10021-006-9013-8 |
Dai, Z., Liu, G., Chen, H., et al., 2020. Long-Term Nutrient Inputs Shift Soil Microbial Functional Profiles of Phosphorus Cycling in Diverse Agroecosystems. ISME J., 14(3): 757–770. https://doi.org/10.1038/s41396-019-0567-9 |
Dixon, P., 2003. VEGAN, a Package of R Functions for Community Ecology. Journal of Vegetation Science, 14(6): 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x |
Duarte, C. M., Prairie, Y. T., Montes, C., et al., 2008. CO2 Emissions from Saline Lakes: A Global Estimate of a Surprisingly Large Flux. Journal of Geophysical Research: Biogeosciences, 113(G4): 2007JG000637. https://doi.org/10.1029/2007jg000637 |
Ellis-Evans, J. C., Bayliss, P. R., 2001. An Assessment of Carbon Oxidation Processes in Contrasting Maritime Antarctic Lakes. In 8th SCAR International Biology Symposium. Vrije Univ, Amsterdam. |
Gao, G. Z., Li, G. L., Liu, M., et al., 2023. Changes in Soil Stoichiometry, Soil Organic Carbon Mineralization and Bacterial Community Assembly Processes across Soil Profiles. Science of the Total Environment, 903: 166408. https://doi.org/10.1016/j.scitotenv.2023.166408 |
Han, M. X., Huang, J. R., Yang, J., et al., 2023. Distinct Assembly Mechanisms for Prokaryotic and Microeukaryotic Communities in the Water of Qinghai Lake. Journal of Earth Science, 34(4): 1189–1200. https://doi.org/10.1007/s12583-023-1812-8 |
Hedges, J. I., Oades, J. M., 1997. Comparative Organic Geochemistries of Soils and Marine Sediments. Organic Geochemistry, 27(7/8): 319–361. https://doi.org/10.1016/S0146-6380(97)00056-9 |
Huang, J. R., Yang, J., Han, M. X., et al., 2023. Microbial Carbon Fixation and Its Influencing Factors in Saline Lake Water. Science of the Total Environment, 877: 162922. https://doi.org/10.1016/j.scitotenv.2023.162922 |
Huang, J. F., Yang, J., Jiang, H. C., et al., 2020. Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai-Tibetan Lakes. Front. Microbiol., 11: 1772. https://doi.org/10.3389/fmicb.2020.01772 |
Huang, W. J., Hall, S. J., 2017. Elevated Moisture Stimulates Carbon Loss from Mineral Soils by Releasing Protected Organic Matter. Nat. Commun., 8(1): 1774. https://doi.org/10.1038/s41467-017-01998-z |
Huang, W. J., Wang, K. F., Ye, C. L., et al., 2021. High Carbon Losses from Oxygen-Limited Soils Challenge Biogeochemical Theory and Model Assumptions. Glob. Chang. Biol., 27(23): 6166–6180. https://doi.org/10.1111/gcb.15867 |
Huang, W. J., Ye, C. L, Hockaday, W. C., et al., 2020. Trade-Offs in Soil Carbon Protection Mechanisms under Aerobic and Anaerobic Conditions. Glob. Chang. Biol., 26(6): 3726–3737. https://doi.org/10.1111/gcb.15100 |
Isidorova, A., Bravo, A. G., Riise, G., et al., 2016. The Effect of Lake Browning and Respiration Mode on the Burial and Fate of Carbon and Mercury in the Sediment of Two Boreal Lakes. Journal of Geophysical Research: Biogeosciences, 121(1): 233–245. https://doi.org/10.1002/2015jg003086 |
Jane, S. F., Hansen, G. J. A., Kraemer, B. M., et al., 2021. Widespread Deoxygenation of Temperate Lakes. Nature, 594(7861): 66–70. https://doi.org/10.1038/s41586-021-03550-y |
Jørgensen, B. B., Findlay, A. J., Pellerin, A., 2019. The Biogeochemical Sulfur Cycle of Marine Sediments. Front. Microbiol., 10: 849. https://doi.org/10.3389/fmicb.2019.00849 |
Jørgensen, B. B., Wenzhöfer, F., Egger, M., et al., 2022. Sediment Oxygen Consumption: Role in the Global Marine Carbon Cycle. Earth-Science Reviews, 228: 103987. https://doi.org/10.1016/j.earscirev.2022.103987 |
Keiluweit, M., Wanzek, T., Kleber, M., et al., 2017. Anaerobic Microsites Have an Unaccounted Role in Soil Carbon Stabilization. Nat. Commun., 8(1): 1771. https://doi.org/10.1038/s41467-017-01406-6 |
Kosolapov, D. B., Rogozin, D. Y., Gladchenko, I. A., et al., 2003. Microbial Sulfate Reduction in a Brackish Meromictic Steppe Lake. Aquatic Ecology, 37(3): 215–226. https://doi.org/10.1023/a:1025871300917 |
Krevs, A., Kucinskiene, A., 2012. Microbial Decomposition of Organic Matter in the Bottom Sediments of Small Lakes of the Urban Landscape (Lithuania). Microbiology, 81(4): 477–483. https://doi.org/10.1134/s0026261712040091 |
Leloup, J., Loy, A., Knab, N. J., et al., 2007. Diversity and Abundance of Sulfate-Reducing Microorganisms in the Sulfate and Methane Zones of a Marine Sediment, Black Sea. Environ Microbiol, 9(1): 131–142. https://doi.org/10.1111/j.1462-2920.2006.01122.x |
Lewis, A. S. L., Lau, M. P., Jane, S. F., et al., 2024. Anoxia Begets Anoxia: A Positive Feedback to the Deoxygenation of Temperate Lakes. Glob Chang Biol, 30(1): e17046. https://doi.org/10.1111/gcb.17046 |
Liang, C., Yang, B., Cao, Y. C., et al., 2024. Salinization Mechanism of Lakes and Controls on Organic Matter Enrichment: From Present to Deep-Time Records. Earth-Science Reviews, 251: 104720. https://doi.org/10.1016/j.earscirev.2024.104720 |
Liu, K. H., Ding, X. W., Wang, H. F., et al., 2014. Eukaryotic Microbial Communities in Hypersaline Soils and Sediments from the Alkaline Hypersaline Huama Lake as Revealed by 454 Pyrosequencing. Antonie Van Leeuwenhoek, 105(5): 871–880. https://doi.org/10.1007/s10482-014-0141-4 |
Liu, Q., Yang, J., Wang, B. C., et al., 2022. Influence of Salinity on the Diversity and Composition of Carbohydrate Metabolism, Nitrogen and Sulfur Cycling Genes in Lake Surface Sediments. Frontiers in Microbiology, 13: 1019010. https://doi.org/10.3389/fmicb.2022.1019010 |
Liu, X. J., Zhang, Y., Li, P., et al., 2024. Siltation of Check Dams Alters Microbial Communities and thus Limits Organic Carbon Mineralization. Soil and Tillage Research, 236: 105949. https://doi.org/10.1016/j.still.2023.105949 |
Lugato, E., Lavallee, J. M., Haddix, M. L., et al., 2021. Different Climate Sensitivity of Particulate and Mineral-Associated Soil Organic Matter. Nature Geoscience, 14(5): 295–300. https://doi.org/10.1038/s41561-021-00744-x |
Luo, M., Huang, J. F., Zhu, W. F., et al., 2019. Impacts of Increasing Salinity and Inundation on Rates and Pathways of Organic Carbon Mineralization in Tidal Wetlands: A Review. Hydrobiologia, 827(1): 31–49. https://doi.org/10.1007/s10750-017-3416-8 |
Ma, J., He, F., Yan, X. C., et al., 2022. Stoichiometric Flexibility Regulates the Co-Metabolism Effect during Organic Carbon Mineralization in Eutrophic Lacustrine Sediments. Journal of Oceanology and Limnology, 40(5): 1974–1984. https://doi.org/10.1007/s00343-021-1261-0 |
Ma, L., Wu, G., Yang, J., et al., 2021. Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Frontiers in Microbiology, 12: 569020. https://doi.org/10.3389/fmicb.2021.569020 |
Maron, P. A., Sarr, A., Kaisermann, A., et al., 2018. High Microbial Diversity Promotes Soil Ecosystem Functioning. Appl Environ Microbiol, 84(9): e02738-17. https://doi.org/10.1128/aem.02738-17 |
Messager, M. L., Lehner, B., Grill, G., et al., 2016. Estimating the Volume and Age of Water Stored in Global Lakes Using a Geo-Statistical Approach. Nat. Commun., 7: 13603. https://doi.org/10.1038/ncomms13603 |
Naik, R., Naqvi, S. W. A., Araujo, J., 2017. Anaerobic Carbon Mineralisation through Sulphate Reduction in the Inner Shelf Sediments of Eastern Arabian Sea. Estuaries and Coasts, 40(1): 134–144. https://doi.org/10.1007/s12237-016-0130-0 |
Ollivier, B., Caumette, P., Garcia, J. L., et al., 1994. Anaerobic Bacteria from Hypersaline Environments. Microbiol. Rev., 58(1): 27–38. https://doi.org/10.1128/mr.58.1.27-38.1994 |
Oren, A., 2011. Thermodynamic Limits to Microbial Life at High Salt Concentrations. Environ Microbiol, 13(8): 1908–1923. https://doi.org/10.1111/j.1462-2920.2010.02365.x |
Pan, C. C., Liu, C. G., Zhao, H. L., et al., 2013. Changes of Soil Physico-Chemical Properties and Enzyme Activities in Relation to Grassland Salinization. European Journal of Soil Biology, 55: 13–19. https://doi.org/10.1016/j.ejsobi.2012.09.009 |
Plugge, C. M., Zhang, W., Scholten, J. C., et al., 2011. Metabolic Flexibility of Sulfate-Reducing Bacteria. Front. Microbiol., 2: 81. https://doi.org/10.3389/fmicb.2011.00081 |
Polymenakou, P. N., Stephanou, E. G., Tselepides, A., et al., 2007. Organic Matter Preservation and Microbial Community Accumulations in Deep-Hypersaline Anoxic Basins. Geomicrobiology Journal, 24(1): 19–29. https://doi.org/10.1080/01490450601134283 |
Porter, D., Roychoudhury, A. N., Cowan, D., 2007. Dissimilatory Sulfate Reduction in Hypersaline Coastal Pans: Activity across a Salinity Gradient. Geochimica et Cosmochimica Acta, 71(21): 5102–5116. https://doi.org/10.1016/j.gca.2007.08.023 |
Rath, K. M., Rousk, J., 2015. Salt Effects on the Soil Microbial Decomposer Community and Their Role in Organic Carbon Cycling: A Review. Soil Biology and Biochemistry, 81: 108–123. https://doi.org/10.1016/j.soilbio.2014.11.001 |
Reed, H. E., Martiny, J. B., 2013. Microbial Composition Affects the Functioning of Estuarine Sediments. ISME J., 7(4): 868–879. https://doi.org/10.1038/ismej.2012.154 |
Rovira, P., Vallejo, V. R., 2002. Labile and Recalcitrant Pools of Carbon and Nitrogen in Organic Matter Decomposing at Different Depths in Soil: An Acid Hydrolysis Approach. Geoderma, 107(1/2): 109–141. https://doi.org/10.1016/S0016-7061(01)00143-4 |
Roychoudhury, A. N., Cowan, D., Porter, D., et al., 2013. Dissimilatory Sulphate Reduction in Hypersaline Coastal Pans: An Integrated Microbiological and Geochemical Study. Geobiology, 11(3): 224–233. https://doi.org/10.1111/gbi.12027 |
Schmidt, M. L., Biddanda, B. A., Weinke, A. D., et al., 2020. Microhabitats Are Associated with Diversity-Productivity Relationships in Freshwater Bacterial Communities. FEMS Microbiol. Ecol., 96(4): fiaa029. https://doi.org/10.1093/femsec/fiaa029 |
Schmidtko, S., Stramma, L., Visbeck, M., 2017. Decline in Global Oceanic Oxygen Content during the Past Five Decades. Nature, 542(7641): 335–339. https://doi.org/10.1038/nature21399 |
Schütte, U. M., Cadieux, S. B., Hemmerich, C., et al., 2016. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake. Front. Microbiol., 7: 1035. https://doi.org/10.3389/fmicb.2016.01035 |
Thompson, A., Chadwick, O. A., Boman, S., et al., 2006. Colloid Mobilization during Soil Iron Redox Oscillations. Environ. Sci. Technol., 40(18): 5743–5749. https://doi.org/10.1021/es061203b |
Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54(6part2): 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298 |
Woolway, R. I., Merchant, C. J., 2019. Worldwide Alteration of Lake Mixing Regimes in Response to Climate Change. Nature Geoscience, 12(4): 271–276. https://doi.org/10.1038/s41561-019-0322-x |
Xu, Q., Du, Z., Wang, L., et al., 2022. The Role of Thermokarst Lake Expansion in Altering the Microbial Community and Methane Cycling in Beiluhe Basin on Tibetan Plateau. Microorganisms, 10(8): 1620. https://doi.org/10.3390/microorganisms10081620 |
Xu, Q. H., Wu, N., Wang, J., et al., 2023. Sedimentary Characteristics and Lake Basin Evolution of Salinized Lake Basin of Qingshuiying Formation in Yinchuan Basin. Earth Science, 48(1): 317–328. https://doi.org/10.3799/dqkx.2021.257 (in Chinese with English Abstract) |
Yang, J., Chen, Y., She, W. Y., et al., 2020. Deciphering Linkages between Microbial Communities and Priming Effects in Lake Sediments with Different Salinity. Journal of Geophysical Research: Biogeosciences, 125(11): e2019JG005611. https://doi.org/10.1029/2019jg005611 |
Yang, J., Huang, L. Q., She, W. Y., et al., 2023a. Compositional Changes of Dissolved Organic Molecules along Water Flow and Their Influencing Factors in the Three Gorges Reservoir. Chemical Geology, 639: 121741. https://doi.org/10.1016/j.chemgeo.2023.121741 |
Yang, J., Han, M. X., Wang, B. C., et al., 2023b. Predominance of Positive Priming Effects Induced by Algal and Terrestrial Organic Matter Input in Saline Lake Sediments. Geochimica et Cosmochimica Acta, 349: 126–134. https://doi.org/10.1016/j.gca.2023.04.005 |
Yang, J., Han, M. X., Zhao, Z. L., et al., 2022a. Positive Priming Effects Induced by Allochthonous and Autochthonous Organic Matter Input in the Lake Sediments with Different Salinity. Geophysical Research Letters, 49(5): e2021GL096133. https://doi.org/10.1029/2021gl096133 |
Yang, J., Han, M. X., Zhao, Z. L., et al., 2022b. Microbial Response to Multiple-Level Addition of Grass Organic Matter in Lake Sediments with Different Salinity. FEMS Microbiology Ecology, 98(4): fiac046. https://doi.org/10.1093/femsec/fiac046 |
Yang, J., Jiang, H. C., Dong, H. L., et al., 2019. A Comprehensive Census of Lake Microbial Diversity on a Global Scale. Science China Life Sciences, 62(10): 1320–1331. https://doi.org/10.1007/s11427-018-9525-9 |
Yang, J., Jiang, H. C., Sun, X. X., et al., 2021. Distinct Co-Occurrence Patterns of Prokaryotic Community between the Waters and Sediments in Lakes with Different Salinity. FEMS Microbiology Ecology, 97(1): fiaa234. https://doi.org/10.1093/femsec/fiaa234 |
Yang, M. L., Liu, N., Wang, B. L., et al., 2024. Stepwise Degradation of Organic Matters Driven by Microbial Interactions in China's Coastal Wetlands: Evidence from Carbon Isotope Analysis. Water Research, 250: 121062. https://doi.org/10.1016/j.watres.2023.121062 |
Yao, B, F., Yang, J., Lyu, Q. Y., et al., 2023. Organic Carbon Composition in Lake Sediments on the Qinghai-Tibet Plateau and the Influence on Microbial Community Structure. Acta Microbiologica Sinica, 63(6): 2291–2311 (in Chinese with English Abstract) |
Ye, Q., Wu, Y., Zhu, Z., et al., 2016. Bacterial Diversity in the Surface Sediments of the Hypoxic Zone near the Changjiang Estuary and in the East China Sea. Microbiologyopen, 5(2): 323–339. https://doi.org/10.1002/mbo3.330 |
Yin, J. Q., Hu, W. L., Chen, A. Q., et al., 2024. Human-Caused Increases in Organic Carbon Burial in Plateau Lakes: The Response to Warming Effect. Science of the Total Environment, 937: 173556. https://doi.org/10.1016/j.scitotenv.2024.173556 |
Yu, L. J., Cheng, Y., Wang, B., et al., 2023. Climate and Vegetation Codetermine the Increased Carbon Burial Rates in Tibetan Plateau Lakes during the Holocene. Quaternary Science Reviews, 310: 108118. https://doi.org/10.1016/j.quascirev.2023.108118 |
Yu, Q., Wang, F., Yan, W., et al., 2018. Carbon and Nitrogen Burial and Response to Climate Change and Anthropogenic Disturbance in Chaohu Lake, China. Int. J. Environ. Res. Public Health, 15(12): E2734.. https://doi.org/10.3390/ijerph15122734 |
Zhang, X. H., Zhang, C. M., Hartley, A., et al., 2023. Analysis of the Sedimentary Characteristics of a Modern Distributive Fluvial System: A Case Study of the Great Halten River in the Sugan Lake Basin, Qinghai, China. Journal of Earth Science, 34(4): 1249–1262. https://doi.org/10.1007/s12583-022-1715-0 |
Zhang, Y., Wang, H. J., Hu, L. M., et al., 2024. Different Pacemakers of Marine Organic Carbon Burial in the North Yellow Sea from the Early to Late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 652: 112408. https://doi.org/10.1016/j.palaeo.2024.112408 |
Zhao, Z., Zhao, Y., Marotta, F., et al., 2024. The Microbial Community Structure and Nitrogen Cycle of High-Altitude Pristine Saline Lakes on the Qinghai-Tibetan Plateau. Front Microbiol, 15: 1424368. https://doi.org/10.3389/fmicb.2024.1424368 |
Zhou, J., Leavitt, P. R., Zhang, Y. B., et al., 2022. Anthropogenic Eutrophication of Shallow Lakes: Is It Occasional? Water Research, 221: 118728. https://doi.org/10.1016/j.watres.2022.118728 |