Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 5
Oct 2025
Turn off MathJax
Article Contents
Hanlin Liu, Caineng Zou, Rukai Zhu, Songtao Wu, Jingwei Cui, Zhen Qiu, Guolong Liu, Mingzhen Zhang. Accumulation Mechanism of Organic Matters in Paleogene Qaidam Basin, Northwestern China. Journal of Earth Science, 2025, 36(5): 2117-2137. doi: 10.1007/s12583-025-0179-4
Citation: Hanlin Liu, Caineng Zou, Rukai Zhu, Songtao Wu, Jingwei Cui, Zhen Qiu, Guolong Liu, Mingzhen Zhang. Accumulation Mechanism of Organic Matters in Paleogene Qaidam Basin, Northwestern China. Journal of Earth Science, 2025, 36(5): 2117-2137. doi: 10.1007/s12583-025-0179-4

Accumulation Mechanism of Organic Matters in Paleogene Qaidam Basin, Northwestern China

doi: 10.1007/s12583-025-0179-4
More Information
  • Corresponding author: Guolong Liu, lx1182207152@163.com; Mingzhen Zhang, zhangmzh08@lzb.ac.cn
  • Received Date: 25 Mar 2025
  • Accepted Date: 11 Jun 2025
  • Available Online: 14 Oct 2025
  • Issue Publish Date: 30 Oct 2025
  • The high-quality laminated source rock organic matter (OM) originated from planktonic algae, and its sedimentation was affected by global climate change significantly in the upper Xiaganchaigou Formation of the western Qaidam Basin. However, coupling research on the paleoenvironment change and OM enrichment during the sedimentation period of the source rock is still lacking. This study from the aspects of sedimentary petrology, geochemistry and paleontology palynology, the paleoenvironment of source rock is restored and the OM enrichment model is established in the study area. Firstly, kerogen maceral identification indicates that the kerogen maceral is mainly composed of Botryococcus, accompanied with amorphous organic matter and plant debris. Secondly, arid climate and relatively active tectonic were observed during the deposition of the source rock. The water column was received felsic source from the continental island arc tectonic background, and has the environmental characteristics of relatively saline, shallow depth, medium low productivity, fast sedimentation rate and anoxic reduction and so on. Lastly, the first-order controlling factors for the OM enrichment are anoxic water conditions and suitable sedimentation rate, and the secondary controlling factor is paleoproductivity. Through the coupling study of paleoclimate, paleoenvironment and OM enrichment, the paleoclimate high frequency alternating evolution was the root cause of sedimentary environment change and OM enrichment of the laminated shale in the Upper Xiaganchaigou Formation. The study on the OM enrichment mechanism of algae in Qaidam provides a good model for understanding the coupling relationship between the algae bloom in the saline lake basins and the environments, and provides important theoretical basis for predicting shale oil "sweet spot" and production well sites arrangement for the continental saline lacustrine basins.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Arthur, M. A., Sageman, B. B., 1994. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences, 22: 499–551. https://doi.org/10.1146/annurev.ea.22.050194.002435
    Bond, D. P. G., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian–Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7/8): 1265–1279. https://doi.org/10.1130/b30042.1
    Bosboom, R., Mandic, O., Dupont-Nivet, G., et al., 2017. Late Eocene Palaeogeography of the Proto-Paratethys Sea in Central Asia (NW China, Southern Kyrgyzstan and SW Tajikistan). Geological Society, London, Special Publications, 427(1): 565–588. https://doi.org/10.1144/sp427.11
    Calvert, S. E., Pedersen, T. F., Naidu, P. D., et al., 1995. On the Organic Carbon Maximum on the Continental Slope of the Eastern Arabian Sea. Journal of Marine Research, 53(2): 269–296. https://doi.org/10.1357/0022240953213232
    Chen, J., An, Z. S., Liu, L. W., et al., 2001. Variations in Chemical Compositions of the Eolian Dust in Chinese Loess Plateau over the Past 2.5 Ma and Chemical Weathering in the Asian Inland. Science in China (Series D: Earth Sciences), 44(5): 403–413 (in Chinese with English Abstract)
    Chen, L., Jiang, S., Chen, P., et al., 2021. Relative Sea-Level Changes and Organic Matter Enrichment in the Upper Ordovician–Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze Area, China. Marine and Petroleum Geology, 124: 104809. https://doi.org/10.1016/j.marpetgeo.2020.104809
    Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9
    Cullers, R. L., Podkovyrov, V. N., 2000. Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia: Implications for Mineralogical and Provenance Control, and Recycling. Precambrian Research, 104(1/2): 77–93. https://doi.org/10.1016/s0301-9268(00)00090-5
    DeConto, R. M., Pollard, D., 2003. Rapid Cenozoic Glaciation of Antarctica Induced by Declining Atmospheric CO2. Nature, 421(6920): 245–249. https://doi.org/10.1038/nature01290
    Dehairs, F., Chesselet, R., Jedwab, J., 1980. Discrete Suspended Particles of Barite and the Barium Cycle in the Open Ocean. Earth and Planetary Science Letters, 49(2): 528–550. https://doi.org/10.1016/0012-821x(80)90094-1
    Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2(1): 9–31. https://doi.org/10.1016/0146-6380(80)90017-0
    Ding, J. H., Zhang, J. C., Huo, Z. P., et al., 2021. Controlling Factors and Formation Models of Organic Matter Accumulation for the Upper Permian Dalong Formation Black Shale in the Lower Yangtze Region, South China: Constraints from Geochemical Evidence. ACS Omega, 6(5): 3681–3692. https://testpubschina.acs.org/doi/10.1021/acsomega.0c04979 doi: 10.1021/acsomega.0c04979
    Ding, J. H., Zhang, J. C., Tang, X., et al., 2018. Elemental Geochemical Evidence for Depositional Conditions and Organic Matter Enrichment of Black Rock Series Strata in an Inter-Platform Basin: The Lower Carboniferous Datang Formation, Southern Guizhou, Southwest China. Minerals, 8(11): 509. https://doi.org/10.3390/min8110509
    Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163–181. https://doi.org/10.1029/92pa00181
    Falkner, K. K., Klinkhammer, G. P., Bowers, T. S., et al., 1993. The Behavior of Barium in Anoxic Marine Waters. Geochimica et Cosmochimica Acta, 57(3): 537–554. https://doi.org/10.1016/0016-7037(93)90366-5
    Guo, P., Liu, C. Y., Gibert, L., et al., 2020. How to Find High-Quality Petroleum Source Rocks in Saline Lacustrine basins: A Case Study from the Cenozoic Qaidam Basin, NW China. Marine and Petroleum Geology, 111: 603–623. https://doi.org/10.1016/j.marpetgeo.2019.08.050
    Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323–339. https://doi.org/10.1016/j.orggeochem.2011.01.010
    Henrichs, S. M., Reeburgh, W. S., 1987. Anaerobic Mineralization of Marine Sediment Organic Matter: Rates and the Role of Anaerobic Processes in the Oceanic Carbon Economy. Geomicrobiology Journal, 5(3/4): 191–237. https://doi.org/10.1080/01490458709385971
    Hu, G., Cao, J., Hu, W. X., et al., 2014. Frontiers of the Oceanic Anoxic Events (OAEs), Terrestrial Deposits and Development of Source Rocks. Journal of Southwest Petroleum University (Science & Technology Edition), 36(5): 1–15 (in Chinese with English Abstract)
    Hu, J. F., Peng, P. A., Liu, M. Y., et al., 2015. Seawater Incursion Events in a Cretaceous Paleo-Lake Revealed by Specific Marine Biological Markers. Scientific Reports, 5: 9508. https://doi.org/10.1038/srep09508
    Hu, T., Pang, X. Q., Jiang, F. J., et al., 2021. Factors Controlling Differential Enrichment of Organic Matter in Saline Lacustrine Rift Basin: A Case Study of Third Member Shahejie Fm in Dongpu Depression. Acta Sedimentologica Sinica, 39(1): 140–152 (in Chinese with English Abstract)
    Hu, T., Pang, X. Q., Jiang, S., et al., 2018. Impact of Paleosalinity, Dilution, Redox, and Paleoproductivity on Organic Matter Enrichment in a Saline Lacustrine Rift Basin: A Case Study of Paleogene Organic-Rich Shale in Dongpu Depression, Bohai Bay Basin, Eastern China. Energy & Fuels, 32(4): 5045–5061. https://doi.org/10.1021/acs.energyfuels.8b00643
    Ingall, E., Jahnke, R., 1997. Influence of Water-Column Anoxia on the Elemental Fractionation of Carbon and Phosphorus during Sediment Diagenesis. Marine Geology, 139(1/2/3/4): 219–229. https://doi.org/10.1016/s0025-3227(96)00112-0
    Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 11(3): Q03004. https://doi.org/10.1029/2009gc002788
    Ji, L. M., Li, J. F., Zhang, M. Z., et al., 2021. Effects of Lacustrine Hydrothermal Activity on the Organic Matter Input of Source Rocks during the Yanchang Period in the Ordos Basin. Marine and Petroleum Geology, 125: 104868. https://doi.org/10.1016/j.marpetgeo.2020.104868
    Katz, B., Lin, F., 2014. Lacustrine Basin Unconventional Resource Plays: Key Differences. Marine and Petroleum Geology, 56: 255–265. https://doi.org/10.1016/j.marpetgeo.2014.02.013
    Lenz, O. K., Wilde, V., Riegel, W., 2011. Short-Term Fluctuations in Vegetation and Phytoplankton during the Middle Eocene Greenhouse Climate: A 640-Kyr Record from the Messel Oil Shale (Germany). International Journal of Earth Sciences, 100(8): 1851–1874. https://doi.org/10.1007/s00531-010-0609-z
    Li, G. X., Wu, K. Y., Zhu, R. K., et al., 2023. Enrichment Model and High-Efficiency Production of Thick Plateau Mountainous Shale Oil Reservoir: A Case Study of the Yingxiongling Shale Oil Reservoir in Qaidam Basin. Natural Gas Geoscience, 44(1): 144–157 (in Chinese with English Abstract)
    Li, G. X., Zhu, R. K., Zhang, Y. S., et al., 2022. Geological Characteristics, Evaluation Criteria and Discovery Significance of Paleogene Yingxiongling Shale Oil in Qaidam Basin, NW China. Petroleum Exploration and Development, 49(1): 21–36. https://doi.org/10.1016/s1876-3804(22)60002-8
    Li, J. J., Wang, W. M., Cao, Q., et al., 2015. Impact of Hydrocarbon Expulsion Efficiency of Continental Shale upon Shale Oil Accumulations in Eastern China. Marine and Petroleum Geology, 59: 467–479. https://doi.org/10.1016/j.marpetgeo.2014.10.002
    Li, S., Zhu, R. K., Cui, J. W., et al., 2020. Sedimentary Characteristics of Fine-Grained Sedimentary Rock and Paleo-Environment of Chang 7 Member in the Ordos Basin: A Case Study from Well Yaoye 1 in Tongchuan. Acta Sedimentologica Sinica, 38(3): 554–570 (in Chinese with English Abstract)
    Li, Y. S., Liu, G. D., Song, Z. Z., et al., 2022. Organic Matter Enrichment due to High Primary Productivity in the Deep-Water shelf: Insights from the Lower Cambrian Qiongzhusi Shales of the Central Sichuan Basin, SW China. Journal of Asian Earth Sciences, 239: 105417. https://doi.org/10.1016/j.jseaes.2022.105417
    Liang, X. P., Jin, Z. J., Liu, Q. Y., et al., 2021. Impact of Volcanic Ash on the Formation of Organic-Rich Shale: A Case Study on the Mesozoic Bazhenov Formation, West Siberian Basin. Oil Gas Geology, 42(1): 201–211 (in Chinese with English Abstract)
    Liang, Y., Hou, D. J., Zhang, J. C., et al., 2014. Hydrothermal Activities on the Seafloor and Evidence of Organic-Rich Source Rock from the Lower Cambrian Niutitang Formation, Northwestern Guizhou. Petroleum Geology and Recovery Efficiency, 21(4): 28–32, 113 (in Chinese with English Abstract)
    Liu, B., Sun, J. H., Zhang, Y. Q., et al., 2021. Reservoir Space and Enrichment Model of Shale Oil in the First Member of Cretaceous Qingshankou Formation in the Changling Sag, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 48(3): 608–624. https://doi.org/10.1016/S1876-3804(21)60049-6
    Liu, G. L., Zhang, M. Z., Zhao, R. C., et al., 2025. Genesis of Botryococcus-Rich Laminae of the Eocene Upper Xiaganchaigou Formation in the Western Qaidam Basin, NW China. Marine and Petroleum Geology, 171: 107203. https://doi.org/10.1016/j.marpetgeo.2024.107203
    Liu, H. L., Zou, C. N., Qiu, Z., et al., 2023. Sedimentary Depositional Environment and Organic Matter Enrichment Mechanism of Lacustrine Black Shales: A Case Study of the Chang 7 Member in the Ordos Basin. Acta Sedimentologica Sinica, 41(6): 1810–1829 (in Chinese with English Abstract)
    Liu, J., Xie, L. Z., Elsworth, D., et al., 2019. CO(2)/CH(4) Competitive Adsorption in Shale: Implications for Enhancement in Gas Production and Reduction in Carbon Emissions. Environmental Science & Technology, 53(15): 9328–9336. https://doi.org/10.1021/acs.est.9b02432
    Liu, J., Xie, L. Z., He, B., et al., 2021. Influence of Anisotropic and Heterogeneous Permeability Coupled with in-situ Stress on CO2 Sequestration with Simultaneous Enhanced Gas Recovery in shale: Quantitative Modeling and Case Study. International Journal of Greenhouse Gas Control, 104: 103208. https://doi.org/10.1016/j.ijggc.2020.103208
    Liu, K., Wang, W. T., Zhao, X. D., et al., 2020. Provenance Identification for the Honggou Section of the Qaidam Basin in the Northeastern Margin of the Tibetan Plateau and Its Tectonic Significance. Acta Geologica Sinica, 94(3): 716–728 (in Chinese with English Abstract)
    McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks; Influence of Provenance and Sedimentary Processes. Reviews in Mineralogy and Geochemistry, 21(1): 169–200. https://doi.org/10.1515/9781501509032-010
    Miller, K. G., Kominz, M. A., Browning, J. V., et al., 2005. The Phanerozoic Record of Global Sea-Level Change. Science, 310(5752): 1293–1298. https://doi.org/10.1126/science.1116412
    Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715–717. https://doi.org/10.1038/299715a0
    Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3
    Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129–147. https://doi.org/10.1086/629290
    Neumeister, S., Algeo, T. J., Bechtel, A., et al., 2016. Redox Conditions and Depositional Environment of the Lower Jurassic Bächental Bituminous Marls (Tyrol, Austria). Austrian Journal of Earth Sciences, 109(2): 142–159. https://doi.org/10.17738/ajes.2016.0010
    Pei, Z. W., Wu, Y. X., Wu, Y. Z., et al., 2022. Deposition Rate of the Paleogene in Yingxiongling Depression, Qaidam Basin and Its Significance for Oil and Gas Exploration. Xi'an Shiyou University, Xi'an (in Chinese with English Abstract)
    Sachsenhofer, R. F., Bechtel, A., Reischenbacher, D., et al., 2003. Evolution of Lacustrine Systems along the Miocene Mur-MÜRZ Fault System (Eastern Alps, Austria) and Implications on Source Rocks in Pull-Apart Basins. Marine and Petroleum Geology, 20(2): 83–110. https://doi.org/10.1016/s0264-8172(03)00018-7
    Shi, L. F., Fan, B. J., Wang, X., et al., 2023. Element Composition and Sedimentary Environment of Chang 9 Shale Source Rocks in the Ordos Basin. Geoscience, 37(5): 1254–1263 (in Chinese with English Abstract)
    Song, S. J., 2022. Different Developing Mechanism of Fine-Grained Sediments in Cenozoic Saline Lakes in the Qaidam Basin and Its Geological Implications: [Dissertation]. Northwest University, Xi'an (in Chinese)
    Sun, S. S., Huang, S. P., Gomez-Rivas, E., et al., 2023. Characterization of Natural Fractures in Deep-Marine Shales: A Case Study of the Wufeng and Longmaxi Shale in the Luzhou Block Sichuan Basin, China. Frontiers of Earth Science, 17(1): 337–350. https://doi.org/10.1007/s11707-022-1021-2
    Tang, Y., Zheng, M. L., Wang, X. T., et al., 2022. Sedimentary Paleoenvironment of Source Rocks of Fengcheng Formation in Mahu Sag, Junggar Basin. Natural Gas Geoscience, 33(5): 677–692 (in Chinese with English Abstract)
    Tenger, B., Shen, B. J., Yu, L. J., et al., 2017. Mechanisms of Shale Gas Generation and Accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China. Petroleum Exploration and Development, 44(1): 69–78. https://doi.org/10.1016/s1876-3804(17)30009-5
    Tyson, R. V., Pearson, T. H., 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society of London Special Publications, 58(1): 1–24. https://doi.org/10.1144/gsl.sp.1991.058.01.01
    Volkman, J. K., Zhang, Z. R., Xie, X. M., et al., 2015. Biomarker Evidence for Botryococcus and a Methane Cycle in the Eocene Huadian Oil Shale, NE China. Organic Geochemistry, 78: 121–134. https://doi.org/10.1016/j.orggeochem.2014.11.002
    Wang, J. G., Zhang, Y. S., Li, X., et al., 2020. Sedimentary Characteristics and in-situ Accumulation of the Oligocene Laminites in the Western Qaidam Basin. Acta Petrolei Sinica, 41(8): 940–959 (in Chinese with English Abstract)
    Wang, Q. Y., Mou, C. L., Chen, X. W., et al., 2014. Palaeogeographic Characteristics and Basic Geological Conditions of Petroleum of the Carboniferous in Junggar Basin and Its Adjacent Areas. Journal of Palaeogeography, 16(5): 655–671 (in Chinese with English Abstract)
    Wang, X., Carrapa, B., Chapman, J. B., et al., 2019. Parathethys last Gasp in Central Asia and Late Oligocene Accelerated Uplift of the Pamirs. Geophysical Research Letters, 46(21): 11773–11781. https://doi.org/10.1029/2019gl084838
    Wei, H. Y., Chen, D. Z., Wang, J. G., et al., 2012. Organic Accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from Pyrite Morphology and Multiple Geochemical Proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 353: 73–86. https://doi.org/10.1016/j.palaeo.2012.07.005
    Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897–3912. https://doi.org/10.1016/0016-7037(96)00209-8
    Wu, J., Liang, C., Hu, Z. Q., et al., 2019. Sedimentation Mechanisms and Enrichment of Organic Matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin. Marine and Petroleum Geology, 101: 556–565. https://doi.org/10.1016/j.marpetgeo.2018.11.025
    Wu, J. W., Zhang, C. H., Si, D., et al., 2023. Relation between Effective Fractures and in-situ Stress as well as Its Significance in Upper Xiaganchaigou Formation in Shizigou Structure, Qaidam Basin. Earth Science, 48(7): 2557–2571. https://doi.org/10.3799/dqkx.2022.114 (in Chinese with English Abstract)
    Wu, M. H., Zhuang, G. S., Hou, M. Q., et al., 2021. Expanded Lacustrine Sedimentation in the Qaidam Basin on the Northern Tibetan Plateau: Manifestation of Climatic Wetting during the Oligocene Icehouse. Earth and Planetary Science Letters, 565: 116935. https://doi.org/10.1016/j.epsl.2021.116935
    Xu, L. L., Huang, S. P., Wang, Y., et al., 2023. Palaeoenvironment Evolution and Organic Matter Enrichment Mechanisms of the Wufeng-Longmaxi Shales of Yuanán Block in Western Hubei, Middle Yangtze: Implications for Shale Gas Accumulation Potential. Marine and Petroleum Geology, 152: 106242. https://doi.org/10.1016/j.marpetgeo.2023.106242
    Yi, F., Yi, H. S., Mu, C. L., et al., 2023. Organic Geochemical Characteristics and Organic Matter Accumulation of the Eocene Lacustrine Source Rock in the Yingxi Area, Western Qaidam Basin, China. International Journal of Earth Sciences, 112(4): 1277–1292. https://doi.org/10.1007/s00531-023-02297-3
    Yi, Z. Y., Liu, Y. S., Meert, J. G., et al., 2023. A New View of the Pangea Supercontinent with an Emphasis on the East Asian Blocks. Earth and Planetary Science Letters, 611: 118143. https://doi.org/10.1016/j.epsl.2023.118143
    Yin, J., Wang, Q., Hao, F., et al., 2017. Palaeolake Environment and Depositional Model of Source Rocks of the Lower Sub-Member of Sha1 in Raoyang Sag, Bohai Bay Basin. Earth Science, 42(7): 1209–1222 (in Chinese with English Abstract)
    Yu, L. D., Peng, J., Xu, T. Y., et al., 2024. Analysis of Organic Matter Enrichment and Influences in Fine-Grained Sedimentary Strata in Saline Lacustrine Basins of Continental Fault Depressions: Case Study of the Upper Sub-Section of the Upper 4th Member of the Shahejie Formation in the Dongying Sag. Acta Sedimentologica Sinica, 42(2): 701–722 (in Chinese with English Abstract)
    Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686–693. https://doi.org/10.1126/science.1059412
    Zhang, B., He, Y. Y., Chen, Y., et al., 2017. Geochemical Characteristics and Oil Accumulation Significance of the High Quality Saline Lacustrine Source Rocks in the Western Qaidam Basin, NW China. Acta Petroleum Sinica, 38(10): 1158-1167 (in Chinese with English Abstract)
    Zhang, H. F., Wu, X. S., Wang, B., et al., 2016. Research Progress of the Enrichment Mechanism of Sedimentary Organics in Lacustrine Basin. Acta Sedimentologica Sinica, 34(3): 463–477 (in Chinese with English Abstract)
    Zhang, M. Z., Dai, S., Pan, S. Q., et al., 2023. Deciphering the Laminated Botryococcus-Dominated Shales in Saline Lacustrine Basin, Western Qaidam Basin, NW China: Implications for Shale Oil Potential. Marine and Petroleum Geology, 155: 106397. https://doi.org/10.1016/j.marpetgeo.2023.106397
    Zhang, Y. M., Huang, L., Song, S. J., et al., 2021. Characteristics of Neogene Palynology and Palaeoenvironment Significance in Yiliping Sag, Qaidam Basin. Geological Review, 67(6): 1586–1604 (in Chinese with English Abstract)
    Zheng, Y. D., Lei, Y. H., Zhang, L. Q., et al., 2015. Characteristics of Element Geochemistry and Paleo Sedimentary Environment Evolution of Zhangjiatan Shale in the Southeast of Ordos Basin and Its Geological Significance for Oil and Gas. Journal of Natural Gas Geoscience, 26(7): 1395–1404 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(8) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return