Citation: | Hanlin Liu, Caineng Zou, Rukai Zhu, Songtao Wu, Jingwei Cui, Zhen Qiu, Guolong Liu, Mingzhen Zhang. Accumulation Mechanism of Organic Matters in Paleogene Qaidam Basin, Northwestern China. Journal of Earth Science, 2025, 36(5): 2117-2137. doi: 10.1007/s12583-025-0179-4 |
The high-quality laminated source rock organic matter (OM) originated from planktonic algae, and its sedimentation was affected by global climate change significantly in the upper Xiaganchaigou Formation of the western Qaidam Basin. However, coupling research on the paleoenvironment change and OM enrichment during the sedimentation period of the source rock is still lacking. This study from the aspects of sedimentary petrology, geochemistry and paleontology palynology, the paleoenvironment of source rock is restored and the OM enrichment model is established in the study area. Firstly, kerogen maceral identification indicates that the kerogen maceral is mainly composed of
Arthur, M. A., Sageman, B. B., 1994. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences, 22: 499–551. https://doi.org/10.1146/annurev.ea.22.050194.002435 |
Bond, D. P. G., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian–Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7/8): 1265–1279. https://doi.org/10.1130/b30042.1 |
Bosboom, R., Mandic, O., Dupont-Nivet, G., et al., 2017. Late Eocene Palaeogeography of the Proto-Paratethys Sea in Central Asia (NW China, Southern Kyrgyzstan and SW Tajikistan). Geological Society, London, Special Publications, 427(1): 565–588. https://doi.org/10.1144/sp427.11 |
Calvert, S. E., Pedersen, T. F., Naidu, P. D., et al., 1995. On the Organic Carbon Maximum on the Continental Slope of the Eastern Arabian Sea. Journal of Marine Research, 53(2): 269–296. https://doi.org/10.1357/0022240953213232 |
Chen, J., An, Z. S., Liu, L. W., et al., 2001. Variations in Chemical Compositions of the Eolian Dust in Chinese Loess Plateau over the Past 2.5 Ma and Chemical Weathering in the Asian Inland. Science in China (Series D: Earth Sciences), 44(5): 403–413 (in Chinese with English Abstract) |
Chen, L., Jiang, S., Chen, P., et al., 2021. Relative Sea-Level Changes and Organic Matter Enrichment in the Upper Ordovician–Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze Area, China. Marine and Petroleum Geology, 124: 104809. https://doi.org/10.1016/j.marpetgeo.2020.104809 |
Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9 |
Cullers, R. L., Podkovyrov, V. N., 2000. Geochemistry of the Mesoproterozoic Lakhanda Shales in Southeastern Yakutia, Russia: Implications for Mineralogical and Provenance Control, and Recycling. Precambrian Research, 104(1/2): 77–93. https://doi.org/10.1016/s0301-9268(00)00090-5 |
DeConto, R. M., Pollard, D., 2003. Rapid Cenozoic Glaciation of Antarctica Induced by Declining Atmospheric CO2. Nature, 421(6920): 245–249. https://doi.org/10.1038/nature01290 |
Dehairs, F., Chesselet, R., Jedwab, J., 1980. Discrete Suspended Particles of Barite and the Barium Cycle in the Open Ocean. Earth and Planetary Science Letters, 49(2): 528–550. https://doi.org/10.1016/0012-821x(80)90094-1 |
Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2(1): 9–31. https://doi.org/10.1016/0146-6380(80)90017-0 |
Ding, J. H., Zhang, J. C., Huo, Z. P., et al., 2021. Controlling Factors and Formation Models of Organic Matter Accumulation for the Upper Permian Dalong Formation Black Shale in the Lower Yangtze Region, South China: Constraints from Geochemical Evidence. ACS Omega, 6(5): 3681–3692. https://testpubschina.acs.org/doi/10.1021/acsomega.0c04979 doi: 10.1021/acsomega.0c04979 |
Ding, J. H., Zhang, J. C., Tang, X., et al., 2018. Elemental Geochemical Evidence for Depositional Conditions and Organic Matter Enrichment of Black Rock Series Strata in an Inter-Platform Basin: The Lower Carboniferous Datang Formation, Southern Guizhou, Southwest China. Minerals, 8(11): 509. https://doi.org/10.3390/min8110509 |
Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163–181. https://doi.org/10.1029/92pa00181 |
Falkner, K. K., Klinkhammer, G. P., Bowers, T. S., et al., 1993. The Behavior of Barium in Anoxic Marine Waters. Geochimica et Cosmochimica Acta, 57(3): 537–554. https://doi.org/10.1016/0016-7037(93)90366-5 |
Guo, P., Liu, C. Y., Gibert, L., et al., 2020. How to Find High-Quality Petroleum Source Rocks in Saline Lacustrine basins: A Case Study from the Cenozoic Qaidam Basin, NW China. Marine and Petroleum Geology, 111: 603–623. https://doi.org/10.1016/j.marpetgeo.2019.08.050 |
Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323–339. https://doi.org/10.1016/j.orggeochem.2011.01.010 |
Henrichs, S. M., Reeburgh, W. S., 1987. Anaerobic Mineralization of Marine Sediment Organic Matter: Rates and the Role of Anaerobic Processes in the Oceanic Carbon Economy. Geomicrobiology Journal, 5(3/4): 191–237. https://doi.org/10.1080/01490458709385971 |
Hu, G., Cao, J., Hu, W. X., et al., 2014. Frontiers of the Oceanic Anoxic Events (OAEs), Terrestrial Deposits and Development of Source Rocks. Journal of Southwest Petroleum University (Science & Technology Edition), 36(5): 1–15 (in Chinese with English Abstract) |
Hu, J. F., Peng, P. A., Liu, M. Y., et al., 2015. Seawater Incursion Events in a Cretaceous Paleo-Lake Revealed by Specific Marine Biological Markers. Scientific Reports, 5: 9508. https://doi.org/10.1038/srep09508 |
Hu, T., Pang, X. Q., Jiang, F. J., et al., 2021. Factors Controlling Differential Enrichment of Organic Matter in Saline Lacustrine Rift Basin: A Case Study of Third Member Shahejie Fm in Dongpu Depression. Acta Sedimentologica Sinica, 39(1): 140–152 (in Chinese with English Abstract) |
Hu, T., Pang, X. Q., Jiang, S., et al., 2018. Impact of Paleosalinity, Dilution, Redox, and Paleoproductivity on Organic Matter Enrichment in a Saline Lacustrine Rift Basin: A Case Study of Paleogene Organic-Rich Shale in Dongpu Depression, Bohai Bay Basin, Eastern China. Energy & Fuels, 32(4): 5045–5061. https://doi.org/10.1021/acs.energyfuels.8b00643 |
Ingall, E., Jahnke, R., 1997. Influence of Water-Column Anoxia on the Elemental Fractionation of Carbon and Phosphorus during Sediment Diagenesis. Marine Geology, 139(1/2/3/4): 219–229. https://doi.org/10.1016/s0025-3227(96)00112-0 |
Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 11(3): Q03004. https://doi.org/10.1029/2009gc002788 |
Ji, L. M., Li, J. F., Zhang, M. Z., et al., 2021. Effects of Lacustrine Hydrothermal Activity on the Organic Matter Input of Source Rocks during the Yanchang Period in the Ordos Basin. Marine and Petroleum Geology, 125: 104868. https://doi.org/10.1016/j.marpetgeo.2020.104868 |
Katz, B., Lin, F., 2014. Lacustrine Basin Unconventional Resource Plays: Key Differences. Marine and Petroleum Geology, 56: 255–265. https://doi.org/10.1016/j.marpetgeo.2014.02.013 |
Lenz, O. K., Wilde, V., Riegel, W., 2011. Short-Term Fluctuations in Vegetation and Phytoplankton during the Middle Eocene Greenhouse Climate: A 640-Kyr Record from the Messel Oil Shale (Germany). International Journal of Earth Sciences, 100(8): 1851–1874. https://doi.org/10.1007/s00531-010-0609-z |
Li, G. X., Wu, K. Y., Zhu, R. K., et al., 2023. Enrichment Model and High-Efficiency Production of Thick Plateau Mountainous Shale Oil Reservoir: A Case Study of the Yingxiongling Shale Oil Reservoir in Qaidam Basin. Natural Gas Geoscience, 44(1): 144–157 (in Chinese with English Abstract) |
Li, G. X., Zhu, R. K., Zhang, Y. S., et al., 2022. Geological Characteristics, Evaluation Criteria and Discovery Significance of Paleogene Yingxiongling Shale Oil in Qaidam Basin, NW China. Petroleum Exploration and Development, 49(1): 21–36. https://doi.org/10.1016/s1876-3804(22)60002-8 |
Li, J. J., Wang, W. M., Cao, Q., et al., 2015. Impact of Hydrocarbon Expulsion Efficiency of Continental Shale upon Shale Oil Accumulations in Eastern China. Marine and Petroleum Geology, 59: 467–479. https://doi.org/10.1016/j.marpetgeo.2014.10.002 |
Li, S., Zhu, R. K., Cui, J. W., et al., 2020. Sedimentary Characteristics of Fine-Grained Sedimentary Rock and Paleo-Environment of Chang 7 Member in the Ordos Basin: A Case Study from Well Yaoye 1 in Tongchuan. Acta Sedimentologica Sinica, 38(3): 554–570 (in Chinese with English Abstract) |
Li, Y. S., Liu, G. D., Song, Z. Z., et al., 2022. Organic Matter Enrichment due to High Primary Productivity in the Deep-Water shelf: Insights from the Lower Cambrian Qiongzhusi Shales of the Central Sichuan Basin, SW China. Journal of Asian Earth Sciences, 239: 105417. https://doi.org/10.1016/j.jseaes.2022.105417 |
Liang, X. P., Jin, Z. J., Liu, Q. Y., et al., 2021. Impact of Volcanic Ash on the Formation of Organic-Rich Shale: A Case Study on the Mesozoic Bazhenov Formation, West Siberian Basin. Oil Gas Geology, 42(1): 201–211 (in Chinese with English Abstract) |
Liang, Y., Hou, D. J., Zhang, J. C., et al., 2014. Hydrothermal Activities on the Seafloor and Evidence of Organic-Rich Source Rock from the Lower Cambrian Niutitang Formation, Northwestern Guizhou. Petroleum Geology and Recovery Efficiency, 21(4): 28–32, 113 (in Chinese with English Abstract) |
Liu, B., Sun, J. H., Zhang, Y. Q., et al., 2021. Reservoir Space and Enrichment Model of Shale Oil in the First Member of Cretaceous Qingshankou Formation in the Changling Sag, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 48(3): 608–624. https://doi.org/10.1016/S1876-3804(21)60049-6 |
Liu, G. L., Zhang, M. Z., Zhao, R. C., et al., 2025. Genesis of Botryococcus-Rich Laminae of the Eocene Upper Xiaganchaigou Formation in the Western Qaidam Basin, NW China. Marine and Petroleum Geology, 171: 107203. https://doi.org/10.1016/j.marpetgeo.2024.107203 |
Liu, H. L., Zou, C. N., Qiu, Z., et al., 2023. Sedimentary Depositional Environment and Organic Matter Enrichment Mechanism of Lacustrine Black Shales: A Case Study of the Chang 7 Member in the Ordos Basin. Acta Sedimentologica Sinica, 41(6): 1810–1829 (in Chinese with English Abstract) |
Liu, J., Xie, L. Z., Elsworth, D., et al., 2019. CO(2)/CH(4) Competitive Adsorption in Shale: Implications for Enhancement in Gas Production and Reduction in Carbon Emissions. Environmental Science & Technology, 53(15): 9328–9336. https://doi.org/10.1021/acs.est.9b02432 |
Liu, J., Xie, L. Z., He, B., et al., 2021. Influence of Anisotropic and Heterogeneous Permeability Coupled with in-situ Stress on CO2 Sequestration with Simultaneous Enhanced Gas Recovery in shale: Quantitative Modeling and Case Study. International Journal of Greenhouse Gas Control, 104: 103208. https://doi.org/10.1016/j.ijggc.2020.103208 |
Liu, K., Wang, W. T., Zhao, X. D., et al., 2020. Provenance Identification for the Honggou Section of the Qaidam Basin in the Northeastern Margin of the Tibetan Plateau and Its Tectonic Significance. Acta Geologica Sinica, 94(3): 716–728 (in Chinese with English Abstract) |
McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks; Influence of Provenance and Sedimentary Processes. Reviews in Mineralogy and Geochemistry, 21(1): 169–200. https://doi.org/10.1515/9781501509032-010 |
Miller, K. G., Kominz, M. A., Browning, J. V., et al., 2005. The Phanerozoic Record of Global Sea-Level Change. Science, 310(5752): 1293–1298. https://doi.org/10.1126/science.1116412 |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715–717. https://doi.org/10.1038/299715a0 |
Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3 |
Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129–147. https://doi.org/10.1086/629290 |
Neumeister, S., Algeo, T. J., Bechtel, A., et al., 2016. Redox Conditions and Depositional Environment of the Lower Jurassic Bächental Bituminous Marls (Tyrol, Austria). Austrian Journal of Earth Sciences, 109(2): 142–159. https://doi.org/10.17738/ajes.2016.0010 |
Pei, Z. W., Wu, Y. X., Wu, Y. Z., et al., 2022. Deposition Rate of the Paleogene in Yingxiongling Depression, Qaidam Basin and Its Significance for Oil and Gas Exploration. Xi'an Shiyou University, Xi'an (in Chinese with English Abstract) |
Sachsenhofer, R. F., Bechtel, A., Reischenbacher, D., et al., 2003. Evolution of Lacustrine Systems along the Miocene Mur-MÜRZ Fault System (Eastern Alps, Austria) and Implications on Source Rocks in Pull-Apart Basins. Marine and Petroleum Geology, 20(2): 83–110. https://doi.org/10.1016/s0264-8172(03)00018-7 |
Shi, L. F., Fan, B. J., Wang, X., et al., 2023. Element Composition and Sedimentary Environment of Chang 9 Shale Source Rocks in the Ordos Basin. Geoscience, 37(5): 1254–1263 (in Chinese with English Abstract) |
Song, S. J., 2022. Different Developing Mechanism of Fine-Grained Sediments in Cenozoic Saline Lakes in the Qaidam Basin and Its Geological Implications: [Dissertation]. Northwest University, Xi'an (in Chinese) |
Sun, S. S., Huang, S. P., Gomez-Rivas, E., et al., 2023. Characterization of Natural Fractures in Deep-Marine Shales: A Case Study of the Wufeng and Longmaxi Shale in the Luzhou Block Sichuan Basin, China. Frontiers of Earth Science, 17(1): 337–350. https://doi.org/10.1007/s11707-022-1021-2 |
Tang, Y., Zheng, M. L., Wang, X. T., et al., 2022. Sedimentary Paleoenvironment of Source Rocks of Fengcheng Formation in Mahu Sag, Junggar Basin. Natural Gas Geoscience, 33(5): 677–692 (in Chinese with English Abstract) |
Tenger, B., Shen, B. J., Yu, L. J., et al., 2017. Mechanisms of Shale Gas Generation and Accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China. Petroleum Exploration and Development, 44(1): 69–78. https://doi.org/10.1016/s1876-3804(17)30009-5 |
Tyson, R. V., Pearson, T. H., 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society of London Special Publications, 58(1): 1–24. https://doi.org/10.1144/gsl.sp.1991.058.01.01 |
Volkman, J. K., Zhang, Z. R., Xie, X. M., et al., 2015. Biomarker Evidence for Botryococcus and a Methane Cycle in the Eocene Huadian Oil Shale, NE China. Organic Geochemistry, 78: 121–134. https://doi.org/10.1016/j.orggeochem.2014.11.002 |
Wang, J. G., Zhang, Y. S., Li, X., et al., 2020. Sedimentary Characteristics and in-situ Accumulation of the Oligocene Laminites in the Western Qaidam Basin. Acta Petrolei Sinica, 41(8): 940–959 (in Chinese with English Abstract) |
Wang, Q. Y., Mou, C. L., Chen, X. W., et al., 2014. Palaeogeographic Characteristics and Basic Geological Conditions of Petroleum of the Carboniferous in Junggar Basin and Its Adjacent Areas. Journal of Palaeogeography, 16(5): 655–671 (in Chinese with English Abstract) |
Wang, X., Carrapa, B., Chapman, J. B., et al., 2019. Parathethys last Gasp in Central Asia and Late Oligocene Accelerated Uplift of the Pamirs. Geophysical Research Letters, 46(21): 11773–11781. https://doi.org/10.1029/2019gl084838 |
Wei, H. Y., Chen, D. Z., Wang, J. G., et al., 2012. Organic Accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from Pyrite Morphology and Multiple Geochemical Proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 353: 73–86. https://doi.org/10.1016/j.palaeo.2012.07.005 |
Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897–3912. https://doi.org/10.1016/0016-7037(96)00209-8 |
Wu, J., Liang, C., Hu, Z. Q., et al., 2019. Sedimentation Mechanisms and Enrichment of Organic Matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin. Marine and Petroleum Geology, 101: 556–565. https://doi.org/10.1016/j.marpetgeo.2018.11.025 |
Wu, J. W., Zhang, C. H., Si, D., et al., 2023. Relation between Effective Fractures and in-situ Stress as well as Its Significance in Upper Xiaganchaigou Formation in Shizigou Structure, Qaidam Basin. Earth Science, 48(7): 2557–2571. https://doi.org/10.3799/dqkx.2022.114 (in Chinese with English Abstract) |
Wu, M. H., Zhuang, G. S., Hou, M. Q., et al., 2021. Expanded Lacustrine Sedimentation in the Qaidam Basin on the Northern Tibetan Plateau: Manifestation of Climatic Wetting during the Oligocene Icehouse. Earth and Planetary Science Letters, 565: 116935. https://doi.org/10.1016/j.epsl.2021.116935 |
Xu, L. L., Huang, S. P., Wang, Y., et al., 2023. Palaeoenvironment Evolution and Organic Matter Enrichment Mechanisms of the Wufeng-Longmaxi Shales of Yuanán Block in Western Hubei, Middle Yangtze: Implications for Shale Gas Accumulation Potential. Marine and Petroleum Geology, 152: 106242. https://doi.org/10.1016/j.marpetgeo.2023.106242 |
Yi, F., Yi, H. S., Mu, C. L., et al., 2023. Organic Geochemical Characteristics and Organic Matter Accumulation of the Eocene Lacustrine Source Rock in the Yingxi Area, Western Qaidam Basin, China. International Journal of Earth Sciences, 112(4): 1277–1292. https://doi.org/10.1007/s00531-023-02297-3 |
Yi, Z. Y., Liu, Y. S., Meert, J. G., et al., 2023. A New View of the Pangea Supercontinent with an Emphasis on the East Asian Blocks. Earth and Planetary Science Letters, 611: 118143. https://doi.org/10.1016/j.epsl.2023.118143 |
Yin, J., Wang, Q., Hao, F., et al., 2017. Palaeolake Environment and Depositional Model of Source Rocks of the Lower Sub-Member of Sha1 in Raoyang Sag, Bohai Bay Basin. Earth Science, 42(7): 1209–1222 (in Chinese with English Abstract) |
Yu, L. D., Peng, J., Xu, T. Y., et al., 2024. Analysis of Organic Matter Enrichment and Influences in Fine-Grained Sedimentary Strata in Saline Lacustrine Basins of Continental Fault Depressions: Case Study of the Upper Sub-Section of the Upper 4th Member of the Shahejie Formation in the Dongying Sag. Acta Sedimentologica Sinica, 42(2): 701–722 (in Chinese with English Abstract) |
Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686–693. https://doi.org/10.1126/science.1059412 |
Zhang, B., He, Y. Y., Chen, Y., et al., 2017. Geochemical Characteristics and Oil Accumulation Significance of the High Quality Saline Lacustrine Source Rocks in the Western Qaidam Basin, NW China. Acta Petroleum Sinica, 38(10): 1158-1167 (in Chinese with English Abstract) |
Zhang, H. F., Wu, X. S., Wang, B., et al., 2016. Research Progress of the Enrichment Mechanism of Sedimentary Organics in Lacustrine Basin. Acta Sedimentologica Sinica, 34(3): 463–477 (in Chinese with English Abstract) |
Zhang, M. Z., Dai, S., Pan, S. Q., et al., 2023. Deciphering the Laminated Botryococcus-Dominated Shales in Saline Lacustrine Basin, Western Qaidam Basin, NW China: Implications for Shale Oil Potential. Marine and Petroleum Geology, 155: 106397. https://doi.org/10.1016/j.marpetgeo.2023.106397 |
Zhang, Y. M., Huang, L., Song, S. J., et al., 2021. Characteristics of Neogene Palynology and Palaeoenvironment Significance in Yiliping Sag, Qaidam Basin. Geological Review, 67(6): 1586–1604 (in Chinese with English Abstract) |
Zheng, Y. D., Lei, Y. H., Zhang, L. Q., et al., 2015. Characteristics of Element Geochemistry and Paleo Sedimentary Environment Evolution of Zhangjiatan Shale in the Southeast of Ordos Basin and Its Geological Significance for Oil and Gas. Journal of Natural Gas Geoscience, 26(7): 1395–1404 (in Chinese with English Abstract) |